1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines physical expression for `lead` and `lag` that can evaluated
//! at runtime during query execution
use crate::window::BuiltInWindowFunctionExpr;
use crate::PhysicalExpr;
use arrow::array::ArrayRef;
use arrow::datatypes::{DataType, Field};
use arrow_array::Array;
use datafusion_common::{arrow_datafusion_err, DataFusionError, Result, ScalarValue};
use datafusion_expr::PartitionEvaluator;
use std::any::Any;
use std::cmp::min;
use std::collections::VecDeque;
use std::ops::{Neg, Range};
use std::sync::Arc;
/// window shift expression
#[derive(Debug)]
pub struct WindowShift {
name: String,
/// Output data type
data_type: DataType,
shift_offset: i64,
expr: Arc<dyn PhysicalExpr>,
default_value: ScalarValue,
ignore_nulls: bool,
}
impl WindowShift {
/// Get shift_offset of window shift expression
pub fn get_shift_offset(&self) -> i64 {
self.shift_offset
}
/// Get the default_value for window shift expression.
pub fn get_default_value(&self) -> ScalarValue {
self.default_value.clone()
}
}
/// lead() window function
pub fn lead(
name: String,
data_type: DataType,
expr: Arc<dyn PhysicalExpr>,
shift_offset: Option<i64>,
default_value: ScalarValue,
ignore_nulls: bool,
) -> WindowShift {
WindowShift {
name,
data_type,
shift_offset: shift_offset.map(|v| v.neg()).unwrap_or(-1),
expr,
default_value,
ignore_nulls,
}
}
/// lag() window function
pub fn lag(
name: String,
data_type: DataType,
expr: Arc<dyn PhysicalExpr>,
shift_offset: Option<i64>,
default_value: ScalarValue,
ignore_nulls: bool,
) -> WindowShift {
WindowShift {
name,
data_type,
shift_offset: shift_offset.unwrap_or(1),
expr,
default_value,
ignore_nulls,
}
}
impl BuiltInWindowFunctionExpr for WindowShift {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
let nullable = true;
Ok(Field::new(&self.name, self.data_type.clone(), nullable))
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![Arc::clone(&self.expr)]
}
fn name(&self) -> &str {
&self.name
}
fn create_evaluator(&self) -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::new(WindowShiftEvaluator {
shift_offset: self.shift_offset,
default_value: self.default_value.clone(),
ignore_nulls: self.ignore_nulls,
non_null_offsets: VecDeque::new(),
}))
}
fn reverse_expr(&self) -> Option<Arc<dyn BuiltInWindowFunctionExpr>> {
Some(Arc::new(Self {
name: self.name.clone(),
data_type: self.data_type.clone(),
shift_offset: -self.shift_offset,
expr: Arc::clone(&self.expr),
default_value: self.default_value.clone(),
ignore_nulls: self.ignore_nulls,
}))
}
}
#[derive(Debug)]
pub(crate) struct WindowShiftEvaluator {
shift_offset: i64,
default_value: ScalarValue,
ignore_nulls: bool,
// VecDeque contains offset values that between non-null entries
non_null_offsets: VecDeque<usize>,
}
impl WindowShiftEvaluator {
fn is_lag(&self) -> bool {
// Mode is LAG, when shift_offset is positive
self.shift_offset > 0
}
}
// implement ignore null for evaluate_all
fn evaluate_all_with_ignore_null(
array: &ArrayRef,
offset: i64,
default_value: &ScalarValue,
is_lag: bool,
) -> Result<ArrayRef, DataFusionError> {
let valid_indices: Vec<usize> =
array.nulls().unwrap().valid_indices().collect::<Vec<_>>();
let direction = !is_lag;
let new_array_results: Result<Vec<_>, DataFusionError> = (0..array.len())
.map(|id| {
let result_index = match valid_indices.binary_search(&id) {
Ok(pos) => if direction {
pos.checked_add(offset as usize)
} else {
pos.checked_sub(offset.unsigned_abs() as usize)
}
.and_then(|new_pos| {
if new_pos < valid_indices.len() {
Some(valid_indices[new_pos])
} else {
None
}
}),
Err(pos) => if direction {
pos.checked_add(offset as usize)
} else if pos > 0 {
pos.checked_sub(offset.unsigned_abs() as usize)
} else {
None
}
.and_then(|new_pos| {
if new_pos < valid_indices.len() {
Some(valid_indices[new_pos])
} else {
None
}
}),
};
match result_index {
Some(index) => ScalarValue::try_from_array(array, index),
None => Ok(default_value.clone()),
}
})
.collect();
let new_array = new_array_results?;
ScalarValue::iter_to_array(new_array)
}
// TODO: change the original arrow::compute::kernels::window::shift impl to support an optional default value
fn shift_with_default_value(
array: &ArrayRef,
offset: i64,
default_value: &ScalarValue,
) -> Result<ArrayRef> {
use arrow::compute::concat;
let value_len = array.len() as i64;
if offset == 0 {
Ok(Arc::clone(array))
} else if offset == i64::MIN || offset.abs() >= value_len {
default_value.to_array_of_size(value_len as usize)
} else {
let slice_offset = (-offset).clamp(0, value_len) as usize;
let length = array.len() - offset.unsigned_abs() as usize;
let slice = array.slice(slice_offset, length);
// Generate array with remaining `null` items
let nulls = offset.unsigned_abs() as usize;
let default_values = default_value.to_array_of_size(nulls)?;
// Concatenate both arrays, add nulls after if shift > 0 else before
if offset > 0 {
concat(&[default_values.as_ref(), slice.as_ref()])
.map_err(|e| arrow_datafusion_err!(e))
} else {
concat(&[slice.as_ref(), default_values.as_ref()])
.map_err(|e| arrow_datafusion_err!(e))
}
}
}
impl PartitionEvaluator for WindowShiftEvaluator {
fn get_range(&self, idx: usize, n_rows: usize) -> Result<Range<usize>> {
if self.is_lag() {
let start = if self.non_null_offsets.len() == self.shift_offset as usize {
// How many rows needed previous than the current row to get necessary lag result
let offset: usize = self.non_null_offsets.iter().sum();
idx.saturating_sub(offset)
} else if !self.ignore_nulls {
let offset = self.shift_offset as usize;
idx.saturating_sub(offset)
} else {
0
};
let end = idx + 1;
Ok(Range { start, end })
} else {
let end = if self.non_null_offsets.len() == (-self.shift_offset) as usize {
// How many rows needed further than the current row to get necessary lead result
let offset: usize = self.non_null_offsets.iter().sum();
min(idx + offset + 1, n_rows)
} else if !self.ignore_nulls {
let offset = (-self.shift_offset) as usize;
min(idx + offset, n_rows)
} else {
n_rows
};
Ok(Range { start: idx, end })
}
}
fn is_causal(&self) -> bool {
// Lagging windows are causal by definition:
self.is_lag()
}
fn evaluate(
&mut self,
values: &[ArrayRef],
range: &Range<usize>,
) -> Result<ScalarValue> {
let array = &values[0];
let len = array.len();
// LAG mode
let i = if self.is_lag() {
(range.end as i64 - self.shift_offset - 1) as usize
} else {
// LEAD mode
(range.start as i64 - self.shift_offset) as usize
};
let mut idx: Option<usize> = if i < len { Some(i) } else { None };
// LAG with IGNORE NULLS calculated as the current row index - offset, but only for non-NULL rows
// If current row index points to NULL value the row is NOT counted
if self.ignore_nulls && self.is_lag() {
// LAG when NULLS are ignored.
// Find the nonNULL row index that shifted by offset comparing to current row index
idx = if self.non_null_offsets.len() == self.shift_offset as usize {
let total_offset: usize = self.non_null_offsets.iter().sum();
Some(range.end - 1 - total_offset)
} else {
None
};
// Keep track of offset values between non-null entries
if array.is_valid(range.end - 1) {
// Non-null add new offset
self.non_null_offsets.push_back(1);
if self.non_null_offsets.len() > self.shift_offset as usize {
// WE do not need to keep track of more than `lag number of offset` values.
self.non_null_offsets.pop_front();
}
} else if !self.non_null_offsets.is_empty() {
// Entry is null, increment offset value of the last entry.
let end_idx = self.non_null_offsets.len() - 1;
self.non_null_offsets[end_idx] += 1;
}
} else if self.ignore_nulls && !self.is_lag() {
// LEAD when NULLS are ignored.
// Stores the necessary non-null entry number further than the current row.
let non_null_row_count = (-self.shift_offset) as usize;
if self.non_null_offsets.is_empty() {
// When empty, fill non_null offsets with the data further than the current row.
let mut offset_val = 1;
for idx in range.start + 1..range.end {
if array.is_valid(idx) {
self.non_null_offsets.push_back(offset_val);
offset_val = 1;
} else {
offset_val += 1;
}
// It is enough to keep track of `non_null_row_count + 1` non-null offset.
// further data is unnecessary for the result.
if self.non_null_offsets.len() == non_null_row_count + 1 {
break;
}
}
} else if range.end < len && array.is_valid(range.end) {
// Update `non_null_offsets` with the new end data.
if array.is_valid(range.end) {
// When non-null, append a new offset.
self.non_null_offsets.push_back(1);
} else {
// When null, increment offset count of the last entry
let last_idx = self.non_null_offsets.len() - 1;
self.non_null_offsets[last_idx] += 1;
}
}
// Find the nonNULL row index that shifted by offset comparing to current row index
idx = if self.non_null_offsets.len() >= non_null_row_count {
let total_offset: usize =
self.non_null_offsets.iter().take(non_null_row_count).sum();
Some(range.start + total_offset)
} else {
None
};
// Prune `self.non_null_offsets` from the start. so that at next iteration
// start of the `self.non_null_offsets` matches with current row.
if !self.non_null_offsets.is_empty() {
self.non_null_offsets[0] -= 1;
if self.non_null_offsets[0] == 0 {
// When offset is 0. Remove it.
self.non_null_offsets.pop_front();
}
}
}
// Set the default value if
// - index is out of window bounds
// OR
// - ignore nulls mode and current value is null and is within window bounds
// .unwrap() is safe here as there is a none check in front
#[allow(clippy::unnecessary_unwrap)]
if !(idx.is_none() || (self.ignore_nulls && array.is_null(idx.unwrap()))) {
ScalarValue::try_from_array(array, idx.unwrap())
} else {
Ok(self.default_value.clone())
}
}
fn evaluate_all(
&mut self,
values: &[ArrayRef],
_num_rows: usize,
) -> Result<ArrayRef> {
// LEAD, LAG window functions take single column, values will have size 1
let value = &values[0];
if !self.ignore_nulls {
shift_with_default_value(value, self.shift_offset, &self.default_value)
} else {
evaluate_all_with_ignore_null(
value,
self.shift_offset,
&self.default_value,
self.is_lag(),
)
}
}
fn supports_bounded_execution(&self) -> bool {
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::Column;
use arrow::{array::*, datatypes::*};
use datafusion_common::cast::as_int32_array;
fn test_i32_result(expr: WindowShift, expected: Int32Array) -> Result<()> {
let arr: ArrayRef = Arc::new(Int32Array::from(vec![1, -2, 3, -4, 5, -6, 7, 8]));
let values = vec![arr];
let schema = Schema::new(vec![Field::new("arr", DataType::Int32, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), values.clone())?;
let values = expr.evaluate_args(&batch)?;
let result = expr
.create_evaluator()?
.evaluate_all(&values, batch.num_rows())?;
let result = as_int32_array(&result)?;
assert_eq!(expected, *result);
Ok(())
}
#[test]
fn lead_lag_get_range() -> Result<()> {
// LAG(2)
let lag_fn = WindowShiftEvaluator {
shift_offset: 2,
default_value: ScalarValue::Null,
ignore_nulls: false,
non_null_offsets: Default::default(),
};
assert_eq!(lag_fn.get_range(6, 10)?, Range { start: 4, end: 7 });
assert_eq!(lag_fn.get_range(0, 10)?, Range { start: 0, end: 1 });
// LAG(2 ignore nulls)
let lag_fn = WindowShiftEvaluator {
shift_offset: 2,
default_value: ScalarValue::Null,
ignore_nulls: true,
// models data received [<Some>, <Some>, <Some>, NULL, <Some>, NULL, <current row>, ...]
non_null_offsets: vec![2, 2].into(), // [1, 1, 2, 2] actually, just last 2 is used
};
assert_eq!(lag_fn.get_range(6, 10)?, Range { start: 2, end: 7 });
// LEAD(2)
let lead_fn = WindowShiftEvaluator {
shift_offset: -2,
default_value: ScalarValue::Null,
ignore_nulls: false,
non_null_offsets: Default::default(),
};
assert_eq!(lead_fn.get_range(6, 10)?, Range { start: 6, end: 8 });
assert_eq!(lead_fn.get_range(9, 10)?, Range { start: 9, end: 10 });
// LEAD(2 ignore nulls)
let lead_fn = WindowShiftEvaluator {
shift_offset: -2,
default_value: ScalarValue::Null,
ignore_nulls: true,
// models data received [..., <current row>, NULL, <Some>, NULL, <Some>, ..]
non_null_offsets: vec![2, 2].into(),
};
assert_eq!(lead_fn.get_range(4, 10)?, Range { start: 4, end: 9 });
Ok(())
}
#[test]
fn lead_lag_window_shift() -> Result<()> {
test_i32_result(
lead(
"lead".to_owned(),
DataType::Int32,
Arc::new(Column::new("c3", 0)),
None,
ScalarValue::Null.cast_to(&DataType::Int32)?,
false,
),
[
Some(-2),
Some(3),
Some(-4),
Some(5),
Some(-6),
Some(7),
Some(8),
None,
]
.iter()
.collect::<Int32Array>(),
)?;
test_i32_result(
lag(
"lead".to_owned(),
DataType::Int32,
Arc::new(Column::new("c3", 0)),
None,
ScalarValue::Null.cast_to(&DataType::Int32)?,
false,
),
[
None,
Some(1),
Some(-2),
Some(3),
Some(-4),
Some(5),
Some(-6),
Some(7),
]
.iter()
.collect::<Int32Array>(),
)?;
test_i32_result(
lag(
"lead".to_owned(),
DataType::Int32,
Arc::new(Column::new("c3", 0)),
None,
ScalarValue::Int32(Some(100)),
false,
),
[
Some(100),
Some(1),
Some(-2),
Some(3),
Some(-4),
Some(5),
Some(-6),
Some(7),
]
.iter()
.collect::<Int32Array>(),
)?;
Ok(())
}
}