1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expression for `row_number` that can evaluated at runtime during query execution

use crate::expressions::Column;
use crate::window::window_expr::NumRowsState;
use crate::window::BuiltInWindowFunctionExpr;
use crate::{PhysicalExpr, PhysicalSortExpr};

use arrow::array::{ArrayRef, UInt64Array};
use arrow::datatypes::{DataType, Field};
use arrow_schema::{SchemaRef, SortOptions};
use datafusion_common::{Result, ScalarValue};
use datafusion_expr::PartitionEvaluator;

use std::any::Any;
use std::ops::Range;
use std::sync::Arc;

/// row_number expression
#[derive(Debug)]
pub struct RowNumber {
    name: String,
    /// Output data type
    data_type: DataType,
}

impl RowNumber {
    /// Create a new ROW_NUMBER function
    pub fn new(name: impl Into<String>, data_type: &DataType) -> Self {
        Self {
            name: name.into(),
            data_type: data_type.clone(),
        }
    }
}

impl BuiltInWindowFunctionExpr for RowNumber {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        let nullable = false;
        Ok(Field::new(self.name(), self.data_type.clone(), nullable))
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![]
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn get_result_ordering(&self, schema: &SchemaRef) -> Option<PhysicalSortExpr> {
        // The built-in ROW_NUMBER window function introduces a new ordering:
        schema.column_with_name(self.name()).map(|(idx, field)| {
            let expr = Arc::new(Column::new(field.name(), idx));
            let options = SortOptions {
                descending: false,
                nulls_first: false,
            }; // ASC, NULLS LAST
            PhysicalSortExpr { expr, options }
        })
    }

    fn create_evaluator(&self) -> Result<Box<dyn PartitionEvaluator>> {
        Ok(Box::<NumRowsEvaluator>::default())
    }
}

#[derive(Default, Debug)]
pub(crate) struct NumRowsEvaluator {
    state: NumRowsState,
}

impl PartitionEvaluator for NumRowsEvaluator {
    fn is_causal(&self) -> bool {
        // The ROW_NUMBER function doesn't need "future" values to emit results:
        true
    }

    /// evaluate window function result inside given range
    fn evaluate(
        &mut self,
        _values: &[ArrayRef],
        _range: &Range<usize>,
    ) -> Result<ScalarValue> {
        self.state.n_rows += 1;
        Ok(ScalarValue::UInt64(Some(self.state.n_rows as u64)))
    }

    fn evaluate_all(
        &mut self,
        _values: &[ArrayRef],
        num_rows: usize,
    ) -> Result<ArrayRef> {
        Ok(Arc::new(UInt64Array::from_iter_values(
            1..(num_rows as u64) + 1,
        )))
    }

    fn supports_bounded_execution(&self) -> bool {
        true
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use arrow::{array::*, datatypes::*};
    use datafusion_common::cast::as_uint64_array;

    #[test]
    fn row_number_all_null() -> Result<()> {
        let arr: ArrayRef = Arc::new(BooleanArray::from(vec![
            None, None, None, None, None, None, None, None,
        ]));
        let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, true)]);
        let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
        let row_number = RowNumber::new("row_number".to_owned(), &DataType::UInt64);
        let values = row_number.evaluate_args(&batch)?;
        let result = row_number
            .create_evaluator()?
            .evaluate_all(&values, batch.num_rows())?;
        let result = as_uint64_array(&result)?;
        let result = result.values();
        assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], *result);
        Ok(())
    }

    #[test]
    fn row_number_all_values() -> Result<()> {
        let arr: ArrayRef = Arc::new(BooleanArray::from(vec![
            true, false, true, false, false, true, false, true,
        ]));
        let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, false)]);
        let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
        let row_number = RowNumber::new("row_number".to_owned(), &DataType::UInt64);
        let values = row_number.evaluate_args(&batch)?;
        let result = row_number
            .create_evaluator()?
            .evaluate_all(&values, batch.num_rows())?;
        let result = as_uint64_array(&result)?;
        let result = result.values();
        assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], *result);
        Ok(())
    }
}