use crate::expressions::Column;
use crate::window::window_expr::NumRowsState;
use crate::window::BuiltInWindowFunctionExpr;
use crate::{PhysicalExpr, PhysicalSortExpr};
use arrow::array::{ArrayRef, UInt64Array};
use arrow::datatypes::{DataType, Field};
use arrow_schema::{SchemaRef, SortOptions};
use datafusion_common::{Result, ScalarValue};
use datafusion_expr::PartitionEvaluator;
use std::any::Any;
use std::ops::Range;
use std::sync::Arc;
#[derive(Debug)]
pub struct RowNumber {
name: String,
data_type: DataType,
}
impl RowNumber {
pub fn new(name: impl Into<String>, data_type: &DataType) -> Self {
Self {
name: name.into(),
data_type: data_type.clone(),
}
}
}
impl BuiltInWindowFunctionExpr for RowNumber {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
let nullable = false;
Ok(Field::new(self.name(), self.data_type.clone(), nullable))
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![]
}
fn name(&self) -> &str {
&self.name
}
fn get_result_ordering(&self, schema: &SchemaRef) -> Option<PhysicalSortExpr> {
schema.column_with_name(self.name()).map(|(idx, field)| {
let expr = Arc::new(Column::new(field.name(), idx));
let options = SortOptions {
descending: false,
nulls_first: false,
}; PhysicalSortExpr { expr, options }
})
}
fn create_evaluator(&self) -> Result<Box<dyn PartitionEvaluator>> {
Ok(Box::<NumRowsEvaluator>::default())
}
}
#[derive(Default, Debug)]
pub(crate) struct NumRowsEvaluator {
state: NumRowsState,
}
impl PartitionEvaluator for NumRowsEvaluator {
fn is_causal(&self) -> bool {
true
}
fn evaluate(
&mut self,
_values: &[ArrayRef],
_range: &Range<usize>,
) -> Result<ScalarValue> {
self.state.n_rows += 1;
Ok(ScalarValue::UInt64(Some(self.state.n_rows as u64)))
}
fn evaluate_all(
&mut self,
_values: &[ArrayRef],
num_rows: usize,
) -> Result<ArrayRef> {
Ok(Arc::new(UInt64Array::from_iter_values(
1..(num_rows as u64) + 1,
)))
}
fn supports_bounded_execution(&self) -> bool {
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow::{array::*, datatypes::*};
use datafusion_common::cast::as_uint64_array;
#[test]
fn row_number_all_null() -> Result<()> {
let arr: ArrayRef = Arc::new(BooleanArray::from(vec![
None, None, None, None, None, None, None, None,
]));
let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, true)]);
let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
let row_number = RowNumber::new("row_number".to_owned(), &DataType::UInt64);
let values = row_number.evaluate_args(&batch)?;
let result = row_number
.create_evaluator()?
.evaluate_all(&values, batch.num_rows())?;
let result = as_uint64_array(&result)?;
let result = result.values();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], *result);
Ok(())
}
#[test]
fn row_number_all_values() -> Result<()> {
let arr: ArrayRef = Arc::new(BooleanArray::from(vec![
true, false, true, false, false, true, false, true,
]));
let schema = Schema::new(vec![Field::new("arr", DataType::Boolean, false)]);
let batch = RecordBatch::try_new(Arc::new(schema), vec![arr])?;
let row_number = RowNumber::new("row_number".to_owned(), &DataType::UInt64);
let values = row_number.evaluate_args(&batch)?;
let result = row_number
.create_evaluator()?
.evaluate_all(&values, batch.num_rows())?;
let result = as_uint64_array(&result)?;
let result = result.values();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], *result);
Ok(())
}
}