1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Interval and selectivity in [`AnalysisContext`]
use std::fmt::Debug;
use std::sync::Arc;
use crate::expressions::Column;
use crate::intervals::cp_solver::{ExprIntervalGraph, PropagationResult};
use crate::utils::collect_columns;
use crate::PhysicalExpr;
use arrow::datatypes::Schema;
use datafusion_common::stats::Precision;
use datafusion_common::{
internal_datafusion_err, internal_err, ColumnStatistics, Result, ScalarValue,
};
use datafusion_expr::interval_arithmetic::{cardinality_ratio, Interval};
/// The shared context used during the analysis of an expression. Includes
/// the boundaries for all known columns.
#[derive(Clone, Debug, PartialEq)]
pub struct AnalysisContext {
// A list of known column boundaries, ordered by the index
// of the column in the current schema.
pub boundaries: Vec<ExprBoundaries>,
/// The estimated percentage of rows that this expression would select, if
/// it were to be used as a boolean predicate on a filter. The value will be
/// between 0.0 (selects nothing) and 1.0 (selects everything).
pub selectivity: Option<f64>,
}
impl AnalysisContext {
pub fn new(boundaries: Vec<ExprBoundaries>) -> Self {
Self {
boundaries,
selectivity: None,
}
}
pub fn with_selectivity(mut self, selectivity: f64) -> Self {
self.selectivity = Some(selectivity);
self
}
/// Create a new analysis context from column statistics.
pub fn try_from_statistics(
input_schema: &Schema,
statistics: &[ColumnStatistics],
) -> Result<Self> {
statistics
.iter()
.enumerate()
.map(|(idx, stats)| ExprBoundaries::try_from_column(input_schema, stats, idx))
.collect::<Result<Vec<_>>>()
.map(Self::new)
}
}
/// Represents the boundaries (e.g. min and max values) of a particular column
///
/// This is used range analysis of expressions, to determine if the expression
/// limits the value of particular columns (e.g. analyzing an expression such as
/// `time < 50` would result in a boundary interval for `time` having a max
/// value of `50`).
#[derive(Clone, Debug, PartialEq)]
pub struct ExprBoundaries {
pub column: Column,
/// Minimum and maximum values this expression can have.
pub interval: Interval,
/// Maximum number of distinct values this expression can produce, if known.
pub distinct_count: Precision<usize>,
}
impl ExprBoundaries {
/// Create a new `ExprBoundaries` object from column level statistics.
pub fn try_from_column(
schema: &Schema,
col_stats: &ColumnStatistics,
col_index: usize,
) -> Result<Self> {
let field = schema.fields().get(col_index).ok_or_else(|| {
internal_datafusion_err!(
"Could not create `ExprBoundaries`: in `try_from_column` `col_index`
has gone out of bounds with a value of {col_index}, the schema has {} columns.",
schema.fields.len()
)
})?;
let empty_field =
ScalarValue::try_from(field.data_type()).unwrap_or(ScalarValue::Null);
let interval = Interval::try_new(
col_stats
.min_value
.get_value()
.cloned()
.unwrap_or(empty_field.clone()),
col_stats
.max_value
.get_value()
.cloned()
.unwrap_or(empty_field),
)?;
let column = Column::new(field.name(), col_index);
Ok(ExprBoundaries {
column,
interval,
distinct_count: col_stats.distinct_count.clone(),
})
}
/// Create `ExprBoundaries` that represent no known bounds for all the
/// columns in `schema`
pub fn try_new_unbounded(schema: &Schema) -> Result<Vec<Self>> {
schema
.fields()
.iter()
.enumerate()
.map(|(i, field)| {
Ok(Self {
column: Column::new(field.name(), i),
interval: Interval::make_unbounded(field.data_type())?,
distinct_count: Precision::Absent,
})
})
.collect()
}
}
/// Attempts to refine column boundaries and compute a selectivity value.
///
/// The function accepts boundaries of the input columns in the `context` parameter.
/// It then tries to tighten these boundaries based on the provided `expr`.
/// The resulting selectivity value is calculated by comparing the initial and final boundaries.
/// The computation assumes that the data within the column is uniformly distributed and not sorted.
///
/// # Arguments
///
/// * `context` - The context holding input column boundaries.
/// * `expr` - The expression used to shrink the column boundaries.
///
/// # Returns
///
/// * `AnalysisContext` constructed by pruned boundaries and a selectivity value.
pub fn analyze(
expr: &Arc<dyn PhysicalExpr>,
context: AnalysisContext,
schema: &Schema,
) -> Result<AnalysisContext> {
let target_boundaries = context.boundaries;
let mut graph = ExprIntervalGraph::try_new(Arc::clone(expr), schema)?;
let columns = collect_columns(expr)
.into_iter()
.map(|c| Arc::new(c) as _)
.collect::<Vec<_>>();
let target_expr_and_indices = graph.gather_node_indices(columns.as_slice());
let mut target_indices_and_boundaries = target_expr_and_indices
.iter()
.filter_map(|(expr, i)| {
target_boundaries.iter().find_map(|bound| {
expr.as_any()
.downcast_ref::<Column>()
.filter(|expr_column| bound.column.eq(*expr_column))
.map(|_| (*i, bound.interval.clone()))
})
})
.collect::<Vec<_>>();
match graph
.update_ranges(&mut target_indices_and_boundaries, Interval::CERTAINLY_TRUE)?
{
PropagationResult::Success => {
shrink_boundaries(graph, target_boundaries, target_expr_and_indices)
}
PropagationResult::Infeasible => {
Ok(AnalysisContext::new(target_boundaries).with_selectivity(0.0))
}
PropagationResult::CannotPropagate => {
Ok(AnalysisContext::new(target_boundaries).with_selectivity(1.0))
}
}
}
/// If the `PropagationResult` indicates success, this function calculates the
/// selectivity value by comparing the initial and final column boundaries.
/// Following this, it constructs and returns a new `AnalysisContext` with the
/// updated parameters.
fn shrink_boundaries(
graph: ExprIntervalGraph,
mut target_boundaries: Vec<ExprBoundaries>,
target_expr_and_indices: Vec<(Arc<dyn PhysicalExpr>, usize)>,
) -> Result<AnalysisContext> {
let initial_boundaries = target_boundaries.clone();
target_expr_and_indices.iter().for_each(|(expr, i)| {
if let Some(column) = expr.as_any().downcast_ref::<Column>() {
if let Some(bound) = target_boundaries
.iter_mut()
.find(|bound| bound.column.eq(column))
{
bound.interval = graph.get_interval(*i);
};
}
});
let selectivity = calculate_selectivity(&target_boundaries, &initial_boundaries);
if !(0.0..=1.0).contains(&selectivity) {
return internal_err!("Selectivity is out of limit: {}", selectivity);
}
Ok(AnalysisContext::new(target_boundaries).with_selectivity(selectivity))
}
/// This function calculates the filter predicate's selectivity by comparing
/// the initial and pruned column boundaries. Selectivity is defined as the
/// ratio of rows in a table that satisfy the filter's predicate.
fn calculate_selectivity(
target_boundaries: &[ExprBoundaries],
initial_boundaries: &[ExprBoundaries],
) -> f64 {
// Since the intervals are assumed uniform and the values
// are not correlated, we need to multiply the selectivities
// of multiple columns to get the overall selectivity.
initial_boundaries
.iter()
.zip(target_boundaries.iter())
.fold(1.0, |acc, (initial, target)| {
acc * cardinality_ratio(&initial.interval, &target.interval)
})
}