1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use super::ordering::collapse_lex_ordering;
use crate::equivalence::class::const_exprs_contains;
use crate::equivalence::{
collapse_lex_req, EquivalenceClass, EquivalenceGroup, OrderingEquivalenceClass,
ProjectionMapping,
};
use crate::expressions::Literal;
use crate::{
physical_exprs_contains, ConstExpr, LexOrdering, LexOrderingRef, LexRequirement,
LexRequirementRef, PhysicalExpr, PhysicalExprRef, PhysicalSortExpr,
PhysicalSortRequirement,
};
use arrow_schema::{SchemaRef, SortOptions};
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::{plan_err, JoinSide, JoinType, Result};
use datafusion_expr::interval_arithmetic::Interval;
use datafusion_expr::sort_properties::{ExprProperties, SortProperties};
use datafusion_physical_expr_common::expressions::column::Column;
use datafusion_physical_expr_common::expressions::CastExpr;
use datafusion_physical_expr_common::physical_expr::with_new_schema;
use datafusion_physical_expr_common::utils::ExprPropertiesNode;
use indexmap::{IndexMap, IndexSet};
use itertools::Itertools;
/// A `EquivalenceProperties` object stores useful information related to a schema.
/// Currently, it keeps track of:
/// - Equivalent expressions, e.g expressions that have same value.
/// - Valid sort expressions (orderings) for the schema.
/// - Constants expressions (e.g expressions that are known to have constant values).
///
/// Consider table below:
///
/// ```text
/// ┌-------┐
/// | a | b |
/// |---|---|
/// | 1 | 9 |
/// | 2 | 8 |
/// | 3 | 7 |
/// | 5 | 5 |
/// └---┴---┘
/// ```
///
/// where both `a ASC` and `b DESC` can describe the table ordering. With
/// `EquivalenceProperties`, we can keep track of these different valid sort
/// expressions and treat `a ASC` and `b DESC` on an equal footing.
///
/// Similarly, consider the table below:
///
/// ```text
/// ┌-------┐
/// | a | b |
/// |---|---|
/// | 1 | 1 |
/// | 2 | 2 |
/// | 3 | 3 |
/// | 5 | 5 |
/// └---┴---┘
/// ```
///
/// where columns `a` and `b` always have the same value. We keep track of such
/// equivalences inside this object. With this information, we can optimize
/// things like partitioning. For example, if the partition requirement is
/// `Hash(a)` and output partitioning is `Hash(b)`, then we can deduce that
/// the existing partitioning satisfies the requirement.
#[derive(Debug, Clone)]
pub struct EquivalenceProperties {
/// Collection of equivalence classes that store expressions with the same
/// value.
pub eq_group: EquivalenceGroup,
/// Equivalent sort expressions for this table.
pub oeq_class: OrderingEquivalenceClass,
/// Expressions whose values are constant throughout the table.
/// TODO: We do not need to track constants separately, they can be tracked
/// inside `eq_groups` as `Literal` expressions.
pub constants: Vec<ConstExpr>,
/// Schema associated with this object.
schema: SchemaRef,
}
impl EquivalenceProperties {
/// Creates an empty `EquivalenceProperties` object.
pub fn new(schema: SchemaRef) -> Self {
Self {
eq_group: EquivalenceGroup::empty(),
oeq_class: OrderingEquivalenceClass::empty(),
constants: vec![],
schema,
}
}
/// Creates a new `EquivalenceProperties` object with the given orderings.
pub fn new_with_orderings(schema: SchemaRef, orderings: &[LexOrdering]) -> Self {
Self {
eq_group: EquivalenceGroup::empty(),
oeq_class: OrderingEquivalenceClass::new(orderings.to_vec()),
constants: vec![],
schema,
}
}
/// Returns the associated schema.
pub fn schema(&self) -> &SchemaRef {
&self.schema
}
/// Returns a reference to the ordering equivalence class within.
pub fn oeq_class(&self) -> &OrderingEquivalenceClass {
&self.oeq_class
}
/// Returns a reference to the equivalence group within.
pub fn eq_group(&self) -> &EquivalenceGroup {
&self.eq_group
}
/// Returns a reference to the constant expressions
pub fn constants(&self) -> &[ConstExpr] {
&self.constants
}
/// Returns the output ordering of the properties.
pub fn output_ordering(&self) -> Option<LexOrdering> {
let constants = self.constants();
let mut output_ordering = self.oeq_class().output_ordering().unwrap_or_default();
// Prune out constant expressions
output_ordering
.retain(|sort_expr| !const_exprs_contains(constants, &sort_expr.expr));
(!output_ordering.is_empty()).then_some(output_ordering)
}
/// Returns the normalized version of the ordering equivalence class within.
/// Normalization removes constants and duplicates as well as standardizing
/// expressions according to the equivalence group within.
pub fn normalized_oeq_class(&self) -> OrderingEquivalenceClass {
OrderingEquivalenceClass::new(
self.oeq_class
.iter()
.map(|ordering| self.normalize_sort_exprs(ordering))
.collect(),
)
}
/// Extends this `EquivalenceProperties` with the `other` object.
pub fn extend(mut self, other: Self) -> Self {
self.eq_group.extend(other.eq_group);
self.oeq_class.extend(other.oeq_class);
self.add_constants(other.constants)
}
/// Clears (empties) the ordering equivalence class within this object.
/// Call this method when existing orderings are invalidated.
pub fn clear_orderings(&mut self) {
self.oeq_class.clear();
}
/// Removes constant expressions that may change across partitions.
/// This method should be used when data from different partitions are merged.
pub fn clear_per_partition_constants(&mut self) {
self.constants.retain(|item| item.across_partitions());
}
/// Extends this `EquivalenceProperties` by adding the orderings inside the
/// ordering equivalence class `other`.
pub fn add_ordering_equivalence_class(&mut self, other: OrderingEquivalenceClass) {
self.oeq_class.extend(other);
}
/// Adds new orderings into the existing ordering equivalence class.
pub fn add_new_orderings(
&mut self,
orderings: impl IntoIterator<Item = LexOrdering>,
) {
self.oeq_class.add_new_orderings(orderings);
}
/// Incorporates the given equivalence group to into the existing
/// equivalence group within.
pub fn add_equivalence_group(&mut self, other_eq_group: EquivalenceGroup) {
self.eq_group.extend(other_eq_group);
}
/// Adds a new equality condition into the existing equivalence group.
/// If the given equality defines a new equivalence class, adds this new
/// equivalence class to the equivalence group.
pub fn add_equal_conditions(
&mut self,
left: &Arc<dyn PhysicalExpr>,
right: &Arc<dyn PhysicalExpr>,
) -> Result<()> {
// Discover new constants in light of new the equality:
if self.is_expr_constant(left) {
// Left expression is constant, add right as constant
if !const_exprs_contains(&self.constants, right) {
self.constants
.push(ConstExpr::from(right).with_across_partitions(true));
}
} else if self.is_expr_constant(right) {
// Right expression is constant, add left as constant
if !const_exprs_contains(&self.constants, left) {
self.constants
.push(ConstExpr::from(left).with_across_partitions(true));
}
}
// Add equal expressions to the state
self.eq_group.add_equal_conditions(left, right);
// Discover any new orderings
self.discover_new_orderings(left)?;
Ok(())
}
/// Track/register physical expressions with constant values.
pub fn add_constants(
mut self,
constants: impl IntoIterator<Item = ConstExpr>,
) -> Self {
let (const_exprs, across_partition_flags): (
Vec<Arc<dyn PhysicalExpr>>,
Vec<bool>,
) = constants
.into_iter()
.map(|const_expr| {
let across_partitions = const_expr.across_partitions();
let expr = const_expr.owned_expr();
(expr, across_partitions)
})
.unzip();
for (expr, across_partitions) in self
.eq_group
.normalize_exprs(const_exprs)
.into_iter()
.zip(across_partition_flags)
{
if !const_exprs_contains(&self.constants, &expr) {
let const_expr =
ConstExpr::from(expr).with_across_partitions(across_partitions);
self.constants.push(const_expr);
}
}
for ordering in self.normalized_oeq_class().iter() {
if let Err(e) = self.discover_new_orderings(&ordering[0].expr) {
log::debug!("error discovering new orderings: {e}");
}
}
self
}
// Discover new valid orderings in light of a new equality.
// Accepts a single argument (`expr`) which is used to determine
// which orderings should be updated.
// When constants or equivalence classes are changed, there may be new orderings
// that can be discovered with the new equivalence properties.
// For a discussion, see: https://github.com/apache/datafusion/issues/9812
fn discover_new_orderings(&mut self, expr: &Arc<dyn PhysicalExpr>) -> Result<()> {
let normalized_expr = self.eq_group().normalize_expr(Arc::clone(expr));
let eq_class = self
.eq_group
.classes
.iter()
.find_map(|class| {
class
.contains(&normalized_expr)
.then(|| class.clone().into_vec())
})
.unwrap_or_else(|| vec![Arc::clone(&normalized_expr)]);
let mut new_orderings: Vec<LexOrdering> = vec![];
for (ordering, next_expr) in self
.normalized_oeq_class()
.iter()
.filter(|ordering| ordering[0].expr.eq(&normalized_expr))
// First expression after leading ordering
.filter_map(|ordering| Some(ordering).zip(ordering.get(1)))
{
let leading_ordering = ordering[0].options;
// Currently, we only handle expressions with a single child.
// TODO: It should be possible to handle expressions orderings like
// f(a, b, c), a, b, c if f is monotonic in all arguments.
for equivalent_expr in &eq_class {
let children = equivalent_expr.children();
if children.len() == 1
&& children[0].eq(&next_expr.expr)
&& SortProperties::Ordered(leading_ordering)
== equivalent_expr
.get_properties(&[ExprProperties {
sort_properties: SortProperties::Ordered(
leading_ordering,
),
range: Interval::make_unbounded(
&equivalent_expr.data_type(&self.schema)?,
)?,
}])?
.sort_properties
{
// Assume existing ordering is [a ASC, b ASC]
// When equality a = f(b) is given, If we know that given ordering `[b ASC]`, ordering `[f(b) ASC]` is valid,
// then we can deduce that ordering `[b ASC]` is also valid.
// Hence, ordering `[b ASC]` can be added to the state as valid ordering.
// (e.g. existing ordering where leading ordering is removed)
new_orderings.push(ordering[1..].to_vec());
break;
}
}
}
self.oeq_class.add_new_orderings(new_orderings);
Ok(())
}
/// Updates the ordering equivalence group within assuming that the table
/// is re-sorted according to the argument `sort_exprs`. Note that constants
/// and equivalence classes are unchanged as they are unaffected by a re-sort.
pub fn with_reorder(mut self, sort_exprs: Vec<PhysicalSortExpr>) -> Self {
// TODO: In some cases, existing ordering equivalences may still be valid add this analysis.
self.oeq_class = OrderingEquivalenceClass::new(vec![sort_exprs]);
self
}
/// Normalizes the given sort expressions (i.e. `sort_exprs`) using the
/// equivalence group and the ordering equivalence class within.
///
/// Assume that `self.eq_group` states column `a` and `b` are aliases.
/// Also assume that `self.oeq_class` states orderings `d ASC` and `a ASC, c ASC`
/// are equivalent (in the sense that both describe the ordering of the table).
/// If the `sort_exprs` argument were `vec![b ASC, c ASC, a ASC]`, then this
/// function would return `vec![a ASC, c ASC]`. Internally, it would first
/// normalize to `vec![a ASC, c ASC, a ASC]` and end up with the final result
/// after deduplication.
fn normalize_sort_exprs(&self, sort_exprs: LexOrderingRef) -> LexOrdering {
// Convert sort expressions to sort requirements:
let sort_reqs = PhysicalSortRequirement::from_sort_exprs(sort_exprs.iter());
// Normalize the requirements:
let normalized_sort_reqs = self.normalize_sort_requirements(&sort_reqs);
// Convert sort requirements back to sort expressions:
PhysicalSortRequirement::to_sort_exprs(normalized_sort_reqs)
}
/// Normalizes the given sort requirements (i.e. `sort_reqs`) using the
/// equivalence group and the ordering equivalence class within. It works by:
/// - Removing expressions that have a constant value from the given requirement.
/// - Replacing sections that belong to some equivalence class in the equivalence
/// group with the first entry in the matching equivalence class.
///
/// Assume that `self.eq_group` states column `a` and `b` are aliases.
/// Also assume that `self.oeq_class` states orderings `d ASC` and `a ASC, c ASC`
/// are equivalent (in the sense that both describe the ordering of the table).
/// If the `sort_reqs` argument were `vec![b ASC, c ASC, a ASC]`, then this
/// function would return `vec![a ASC, c ASC]`. Internally, it would first
/// normalize to `vec![a ASC, c ASC, a ASC]` and end up with the final result
/// after deduplication.
fn normalize_sort_requirements(
&self,
sort_reqs: LexRequirementRef,
) -> LexRequirement {
let normalized_sort_reqs = self.eq_group.normalize_sort_requirements(sort_reqs);
let mut constant_exprs = vec![];
constant_exprs.extend(
self.constants
.iter()
.map(|const_expr| Arc::clone(const_expr.expr())),
);
let constants_normalized = self.eq_group.normalize_exprs(constant_exprs);
// Prune redundant sections in the requirement:
collapse_lex_req(
normalized_sort_reqs
.iter()
.filter(|&order| {
!physical_exprs_contains(&constants_normalized, &order.expr)
})
.cloned()
.collect(),
)
}
/// Checks whether the given ordering is satisfied by any of the existing
/// orderings.
pub fn ordering_satisfy(&self, given: LexOrderingRef) -> bool {
// Convert the given sort expressions to sort requirements:
let sort_requirements = PhysicalSortRequirement::from_sort_exprs(given.iter());
self.ordering_satisfy_requirement(&sort_requirements)
}
/// Checks whether the given sort requirements are satisfied by any of the
/// existing orderings.
pub fn ordering_satisfy_requirement(&self, reqs: LexRequirementRef) -> bool {
let mut eq_properties = self.clone();
// First, standardize the given requirement:
let normalized_reqs = eq_properties.normalize_sort_requirements(reqs);
for normalized_req in normalized_reqs {
// Check whether given ordering is satisfied
if !eq_properties.ordering_satisfy_single(&normalized_req) {
return false;
}
// Treat satisfied keys as constants in subsequent iterations. We
// can do this because the "next" key only matters in a lexicographical
// ordering when the keys to its left have the same values.
//
// Note that these expressions are not properly "constants". This is just
// an implementation strategy confined to this function.
//
// For example, assume that the requirement is `[a ASC, (b + c) ASC]`,
// and existing equivalent orderings are `[a ASC, b ASC]` and `[c ASC]`.
// From the analysis above, we know that `[a ASC]` is satisfied. Then,
// we add column `a` as constant to the algorithm state. This enables us
// to deduce that `(b + c) ASC` is satisfied, given `a` is constant.
eq_properties = eq_properties
.add_constants(std::iter::once(ConstExpr::from(normalized_req.expr)));
}
true
}
/// Determines whether the ordering specified by the given sort requirement
/// is satisfied based on the orderings within, equivalence classes, and
/// constant expressions.
///
/// # Arguments
///
/// - `req`: A reference to a `PhysicalSortRequirement` for which the ordering
/// satisfaction check will be done.
///
/// # Returns
///
/// Returns `true` if the specified ordering is satisfied, `false` otherwise.
fn ordering_satisfy_single(&self, req: &PhysicalSortRequirement) -> bool {
let ExprProperties {
sort_properties, ..
} = self.get_expr_properties(Arc::clone(&req.expr));
match sort_properties {
SortProperties::Ordered(options) => {
let sort_expr = PhysicalSortExpr {
expr: Arc::clone(&req.expr),
options,
};
sort_expr.satisfy(req, self.schema())
}
// Singleton expressions satisfies any ordering.
SortProperties::Singleton => true,
SortProperties::Unordered => false,
}
}
/// Checks whether the `given`` sort requirements are equal or more specific
/// than the `reference` sort requirements.
pub fn requirements_compatible(
&self,
given: LexRequirementRef,
reference: LexRequirementRef,
) -> bool {
let normalized_given = self.normalize_sort_requirements(given);
let normalized_reference = self.normalize_sort_requirements(reference);
(normalized_reference.len() <= normalized_given.len())
&& normalized_reference
.into_iter()
.zip(normalized_given)
.all(|(reference, given)| given.compatible(&reference))
}
/// Returns the finer ordering among the orderings `lhs` and `rhs`, breaking
/// any ties by choosing `lhs`.
///
/// The finer ordering is the ordering that satisfies both of the orderings.
/// If the orderings are incomparable, returns `None`.
///
/// For example, the finer ordering among `[a ASC]` and `[a ASC, b ASC]` is
/// the latter.
pub fn get_finer_ordering(
&self,
lhs: LexOrderingRef,
rhs: LexOrderingRef,
) -> Option<LexOrdering> {
// Convert the given sort expressions to sort requirements:
let lhs = PhysicalSortRequirement::from_sort_exprs(lhs);
let rhs = PhysicalSortRequirement::from_sort_exprs(rhs);
let finer = self.get_finer_requirement(&lhs, &rhs);
// Convert the chosen sort requirements back to sort expressions:
finer.map(PhysicalSortRequirement::to_sort_exprs)
}
/// Returns the finer ordering among the requirements `lhs` and `rhs`,
/// breaking any ties by choosing `lhs`.
///
/// The finer requirements are the ones that satisfy both of the given
/// requirements. If the requirements are incomparable, returns `None`.
///
/// For example, the finer requirements among `[a ASC]` and `[a ASC, b ASC]`
/// is the latter.
pub fn get_finer_requirement(
&self,
req1: LexRequirementRef,
req2: LexRequirementRef,
) -> Option<LexRequirement> {
let mut lhs = self.normalize_sort_requirements(req1);
let mut rhs = self.normalize_sort_requirements(req2);
lhs.iter_mut()
.zip(rhs.iter_mut())
.all(|(lhs, rhs)| {
lhs.expr.eq(&rhs.expr)
&& match (lhs.options, rhs.options) {
(Some(lhs_opt), Some(rhs_opt)) => lhs_opt == rhs_opt,
(Some(options), None) => {
rhs.options = Some(options);
true
}
(None, Some(options)) => {
lhs.options = Some(options);
true
}
(None, None) => true,
}
})
.then_some(if lhs.len() >= rhs.len() { lhs } else { rhs })
}
/// we substitute the ordering according to input expression type, this is a simplified version
/// In this case, we just substitute when the expression satisfy the following condition:
/// I. just have one column and is a CAST expression
/// TODO: Add one-to-ones analysis for monotonic ScalarFunctions.
/// TODO: we could precompute all the scenario that is computable, for example: atan(x + 1000) should also be substituted if
/// x is DESC or ASC
/// After substitution, we may generate more than 1 `LexOrdering`. As an example,
/// `[a ASC, b ASC]` will turn into `[a ASC, b ASC], [CAST(a) ASC, b ASC]` when projection expressions `a, b, CAST(a)` is applied.
pub fn substitute_ordering_component(
&self,
mapping: &ProjectionMapping,
sort_expr: &[PhysicalSortExpr],
) -> Result<Vec<Vec<PhysicalSortExpr>>> {
let new_orderings = sort_expr
.iter()
.map(|sort_expr| {
let referring_exprs: Vec<_> = mapping
.iter()
.map(|(source, _target)| source)
.filter(|source| expr_refers(source, &sort_expr.expr))
.cloned()
.collect();
let mut res = vec![sort_expr.clone()];
// TODO: Add one-to-ones analysis for ScalarFunctions.
for r_expr in referring_exprs {
// we check whether this expression is substitutable or not
if let Some(cast_expr) = r_expr.as_any().downcast_ref::<CastExpr>() {
// we need to know whether the Cast Expr matches or not
let expr_type = sort_expr.expr.data_type(&self.schema)?;
if cast_expr.expr.eq(&sort_expr.expr)
&& cast_expr.is_bigger_cast(expr_type)
{
res.push(PhysicalSortExpr {
expr: Arc::clone(&r_expr),
options: sort_expr.options,
});
}
}
}
Ok(res)
})
.collect::<Result<Vec<_>>>()?;
// Generate all valid orderings, given substituted expressions.
let res = new_orderings
.into_iter()
.multi_cartesian_product()
.collect::<Vec<_>>();
Ok(res)
}
/// In projection, supposed we have a input function 'A DESC B DESC' and the output shares the same expression
/// with A and B, we could surely use the ordering of the original ordering, However, if the A has been changed,
/// for example, A-> Cast(A, Int64) or any other form, it is invalid if we continue using the original ordering
/// Since it would cause bug in dependency constructions, we should substitute the input order in order to get correct
/// dependency map, happen in issue 8838: <https://github.com/apache/datafusion/issues/8838>
pub fn substitute_oeq_class(&mut self, mapping: &ProjectionMapping) -> Result<()> {
let orderings = &self.oeq_class.orderings;
let new_order = orderings
.iter()
.map(|order| self.substitute_ordering_component(mapping, order))
.collect::<Result<Vec<_>>>()?;
let new_order = new_order.into_iter().flatten().collect();
self.oeq_class = OrderingEquivalenceClass::new(new_order);
Ok(())
}
/// Projects argument `expr` according to `projection_mapping`, taking
/// equivalences into account.
///
/// For example, assume that columns `a` and `c` are always equal, and that
/// `projection_mapping` encodes following mapping:
///
/// ```text
/// a -> a1
/// b -> b1
/// ```
///
/// Then, this function projects `a + b` to `Some(a1 + b1)`, `c + b` to
/// `Some(a1 + b1)` and `d` to `None`, meaning that it cannot be projected.
pub fn project_expr(
&self,
expr: &Arc<dyn PhysicalExpr>,
projection_mapping: &ProjectionMapping,
) -> Option<Arc<dyn PhysicalExpr>> {
self.eq_group.project_expr(projection_mapping, expr)
}
/// Constructs a dependency map based on existing orderings referred to in
/// the projection.
///
/// This function analyzes the orderings in the normalized order-equivalence
/// class and builds a dependency map. The dependency map captures relationships
/// between expressions within the orderings, helping to identify dependencies
/// and construct valid projected orderings during projection operations.
///
/// # Parameters
///
/// - `mapping`: A reference to the `ProjectionMapping` that defines the
/// relationship between source and target expressions.
///
/// # Returns
///
/// A [`DependencyMap`] representing the dependency map, where each
/// [`DependencyNode`] contains dependencies for the key [`PhysicalSortExpr`].
///
/// # Example
///
/// Assume we have two equivalent orderings: `[a ASC, b ASC]` and `[a ASC, c ASC]`,
/// and the projection mapping is `[a -> a_new, b -> b_new, b + c -> b + c]`.
/// Then, the dependency map will be:
///
/// ```text
/// a ASC: Node {Some(a_new ASC), HashSet{}}
/// b ASC: Node {Some(b_new ASC), HashSet{a ASC}}
/// c ASC: Node {None, HashSet{a ASC}}
/// ```
fn construct_dependency_map(&self, mapping: &ProjectionMapping) -> DependencyMap {
let mut dependency_map = IndexMap::new();
for ordering in self.normalized_oeq_class().iter() {
for (idx, sort_expr) in ordering.iter().enumerate() {
let target_sort_expr =
self.project_expr(&sort_expr.expr, mapping).map(|expr| {
PhysicalSortExpr {
expr,
options: sort_expr.options,
}
});
let is_projected = target_sort_expr.is_some();
if is_projected
|| mapping
.iter()
.any(|(source, _)| expr_refers(source, &sort_expr.expr))
{
// Previous ordering is a dependency. Note that there is no,
// dependency for a leading ordering (i.e. the first sort
// expression).
let dependency = idx.checked_sub(1).map(|a| &ordering[a]);
// Add sort expressions that can be projected or referred to
// by any of the projection expressions to the dependency map:
dependency_map
.entry(sort_expr.clone())
.or_insert_with(|| DependencyNode {
target_sort_expr: target_sort_expr.clone(),
dependencies: IndexSet::new(),
})
.insert_dependency(dependency);
}
if !is_projected {
// If we can not project, stop constructing the dependency
// map as remaining dependencies will be invalid after projection.
break;
}
}
}
dependency_map
}
/// Returns a new `ProjectionMapping` where source expressions are normalized.
///
/// This normalization ensures that source expressions are transformed into a
/// consistent representation. This is beneficial for algorithms that rely on
/// exact equalities, as it allows for more precise and reliable comparisons.
///
/// # Parameters
///
/// - `mapping`: A reference to the original `ProjectionMapping` to be normalized.
///
/// # Returns
///
/// A new `ProjectionMapping` with normalized source expressions.
fn normalized_mapping(&self, mapping: &ProjectionMapping) -> ProjectionMapping {
// Construct the mapping where source expressions are normalized. In this way
// In the algorithms below we can work on exact equalities
ProjectionMapping {
map: mapping
.iter()
.map(|(source, target)| {
let normalized_source =
self.eq_group.normalize_expr(Arc::clone(source));
(normalized_source, Arc::clone(target))
})
.collect(),
}
}
/// Computes projected orderings based on a given projection mapping.
///
/// This function takes a `ProjectionMapping` and computes the possible
/// orderings for the projected expressions. It considers dependencies
/// between expressions and generates valid orderings according to the
/// specified sort properties.
///
/// # Parameters
///
/// - `mapping`: A reference to the `ProjectionMapping` that defines the
/// relationship between source and target expressions.
///
/// # Returns
///
/// A vector of `LexOrdering` containing all valid orderings after projection.
fn projected_orderings(&self, mapping: &ProjectionMapping) -> Vec<LexOrdering> {
let mapping = self.normalized_mapping(mapping);
// Get dependency map for existing orderings:
let dependency_map = self.construct_dependency_map(&mapping);
let orderings = mapping.iter().flat_map(|(source, target)| {
referred_dependencies(&dependency_map, source)
.into_iter()
.filter_map(|relevant_deps| {
if let Ok(SortProperties::Ordered(options)) =
get_expr_properties(source, &relevant_deps, &self.schema)
.map(|prop| prop.sort_properties)
{
Some((options, relevant_deps))
} else {
// Do not consider unordered cases
None
}
})
.flat_map(|(options, relevant_deps)| {
let sort_expr = PhysicalSortExpr {
expr: Arc::clone(target),
options,
};
// Generate dependent orderings (i.e. prefixes for `sort_expr`):
let mut dependency_orderings =
generate_dependency_orderings(&relevant_deps, &dependency_map);
// Append `sort_expr` to the dependent orderings:
for ordering in dependency_orderings.iter_mut() {
ordering.push(sort_expr.clone());
}
dependency_orderings
})
});
// Add valid projected orderings. For example, if existing ordering is
// `a + b` and projection is `[a -> a_new, b -> b_new]`, we need to
// preserve `a_new + b_new` as ordered. Please note that `a_new` and
// `b_new` themselves need not be ordered. Such dependencies cannot be
// deduced via the pass above.
let projected_orderings = dependency_map.iter().flat_map(|(sort_expr, node)| {
let mut prefixes = construct_prefix_orderings(sort_expr, &dependency_map);
if prefixes.is_empty() {
// If prefix is empty, there is no dependency. Insert
// empty ordering:
prefixes = vec![vec![]];
}
// Append current ordering on top its dependencies:
for ordering in prefixes.iter_mut() {
if let Some(target) = &node.target_sort_expr {
ordering.push(target.clone())
}
}
prefixes
});
// Simplify each ordering by removing redundant sections:
orderings
.chain(projected_orderings)
.map(collapse_lex_ordering)
.collect()
}
/// Projects constants based on the provided `ProjectionMapping`.
///
/// This function takes a `ProjectionMapping` and identifies/projects
/// constants based on the existing constants and the mapping. It ensures
/// that constants are appropriately propagated through the projection.
///
/// # Arguments
///
/// - `mapping`: A reference to a `ProjectionMapping` representing the
/// mapping of source expressions to target expressions in the projection.
///
/// # Returns
///
/// Returns a `Vec<Arc<dyn PhysicalExpr>>` containing the projected constants.
fn projected_constants(&self, mapping: &ProjectionMapping) -> Vec<ConstExpr> {
// First, project existing constants. For example, assume that `a + b`
// is known to be constant. If the projection were `a as a_new`, `b as b_new`,
// then we would project constant `a + b` as `a_new + b_new`.
let mut projected_constants = self
.constants
.iter()
.flat_map(|const_expr| {
const_expr.map(|expr| self.eq_group.project_expr(mapping, expr))
})
.collect::<Vec<_>>();
// Add projection expressions that are known to be constant:
for (source, target) in mapping.iter() {
if self.is_expr_constant(source)
&& !const_exprs_contains(&projected_constants, target)
{
// Expression evaluates to single value
projected_constants
.push(ConstExpr::from(target).with_across_partitions(true));
}
}
projected_constants
}
/// Projects the equivalences within according to `projection_mapping`
/// and `output_schema`.
pub fn project(
&self,
projection_mapping: &ProjectionMapping,
output_schema: SchemaRef,
) -> Self {
let projected_constants = self.projected_constants(projection_mapping);
let projected_eq_group = self.eq_group.project(projection_mapping);
let projected_orderings = self.projected_orderings(projection_mapping);
Self {
eq_group: projected_eq_group,
oeq_class: OrderingEquivalenceClass::new(projected_orderings),
constants: projected_constants,
schema: output_schema,
}
}
/// Returns the longest (potentially partial) permutation satisfying the
/// existing ordering. For example, if we have the equivalent orderings
/// `[a ASC, b ASC]` and `[c DESC]`, with `exprs` containing `[c, b, a, d]`,
/// then this function returns `([a ASC, b ASC, c DESC], [2, 1, 0])`.
/// This means that the specification `[a ASC, b ASC, c DESC]` is satisfied
/// by the existing ordering, and `[a, b, c]` resides at indices: `2, 1, 0`
/// inside the argument `exprs` (respectively). For the mathematical
/// definition of "partial permutation", see:
///
/// <https://en.wikipedia.org/wiki/Permutation#k-permutations_of_n>
pub fn find_longest_permutation(
&self,
exprs: &[Arc<dyn PhysicalExpr>],
) -> (LexOrdering, Vec<usize>) {
let mut eq_properties = self.clone();
let mut result = vec![];
// The algorithm is as follows:
// - Iterate over all the expressions and insert ordered expressions
// into the result.
// - Treat inserted expressions as constants (i.e. add them as constants
// to the state).
// - Continue the above procedure until no expression is inserted; i.e.
// the algorithm reaches a fixed point.
// This algorithm should reach a fixed point in at most `exprs.len()`
// iterations.
let mut search_indices = (0..exprs.len()).collect::<IndexSet<_>>();
for _idx in 0..exprs.len() {
// Get ordered expressions with their indices.
let ordered_exprs = search_indices
.iter()
.flat_map(|&idx| {
let ExprProperties {
sort_properties, ..
} = eq_properties.get_expr_properties(Arc::clone(&exprs[idx]));
match sort_properties {
SortProperties::Ordered(options) => Some((
PhysicalSortExpr {
expr: Arc::clone(&exprs[idx]),
options,
},
idx,
)),
SortProperties::Singleton => {
// Assign default ordering to constant expressions
let options = SortOptions::default();
Some((
PhysicalSortExpr {
expr: Arc::clone(&exprs[idx]),
options,
},
idx,
))
}
SortProperties::Unordered => None,
}
})
.collect::<Vec<_>>();
// We reached a fixed point, exit.
if ordered_exprs.is_empty() {
break;
}
// Remove indices that have an ordering from `search_indices`, and
// treat ordered expressions as constants in subsequent iterations.
// We can do this because the "next" key only matters in a lexicographical
// ordering when the keys to its left have the same values.
//
// Note that these expressions are not properly "constants". This is just
// an implementation strategy confined to this function.
for (PhysicalSortExpr { expr, .. }, idx) in &ordered_exprs {
eq_properties =
eq_properties.add_constants(std::iter::once(ConstExpr::from(expr)));
search_indices.shift_remove(idx);
}
// Add new ordered section to the state.
result.extend(ordered_exprs);
}
result.into_iter().unzip()
}
/// This function determines whether the provided expression is constant
/// based on the known constants.
///
/// # Arguments
///
/// - `expr`: A reference to a `Arc<dyn PhysicalExpr>` representing the
/// expression to be checked.
///
/// # Returns
///
/// Returns `true` if the expression is constant according to equivalence
/// group, `false` otherwise.
pub fn is_expr_constant(&self, expr: &Arc<dyn PhysicalExpr>) -> bool {
// As an example, assume that we know columns `a` and `b` are constant.
// Then, `a`, `b` and `a + b` will all return `true` whereas `c` will
// return `false`.
let const_exprs = self
.constants
.iter()
.map(|const_expr| Arc::clone(const_expr.expr()));
let normalized_constants = self.eq_group.normalize_exprs(const_exprs);
let normalized_expr = self.eq_group.normalize_expr(Arc::clone(expr));
is_constant_recurse(&normalized_constants, &normalized_expr)
}
/// Retrieves the properties for a given physical expression.
///
/// This function constructs an [`ExprProperties`] object for the given
/// expression, which encapsulates information about the expression's
/// properties, including its [`SortProperties`] and [`Interval`].
///
/// # Parameters
///
/// - `expr`: An `Arc<dyn PhysicalExpr>` representing the physical expression
/// for which ordering information is sought.
///
/// # Returns
///
/// Returns an [`ExprProperties`] object containing the ordering and range
/// information for the given expression.
pub fn get_expr_properties(&self, expr: Arc<dyn PhysicalExpr>) -> ExprProperties {
ExprPropertiesNode::new_unknown(expr)
.transform_up(|expr| update_properties(expr, self))
.data()
.map(|node| node.data)
.unwrap_or(ExprProperties::new_unknown())
}
/// Transforms this `EquivalenceProperties` into a new `EquivalenceProperties`
/// by mapping columns in the original schema to columns in the new schema
/// by index.
pub fn with_new_schema(self, schema: SchemaRef) -> Result<Self> {
// The new schema and the original schema is aligned when they have the
// same number of columns, and fields at the same index have the same
// type in both schemas.
let schemas_aligned = (self.schema.fields.len() == schema.fields.len())
&& self
.schema
.fields
.iter()
.zip(schema.fields.iter())
.all(|(lhs, rhs)| lhs.data_type().eq(rhs.data_type()));
if !schemas_aligned {
// Rewriting equivalence properties in terms of new schema is not
// safe when schemas are not aligned:
return plan_err!(
"Cannot rewrite old_schema:{:?} with new schema: {:?}",
self.schema,
schema
);
}
// Rewrite constants according to new schema:
let new_constants = self
.constants
.into_iter()
.map(|const_expr| {
let across_partitions = const_expr.across_partitions();
let new_const_expr = with_new_schema(const_expr.owned_expr(), &schema)?;
Ok(ConstExpr::new(new_const_expr)
.with_across_partitions(across_partitions))
})
.collect::<Result<Vec<_>>>()?;
// Rewrite orderings according to new schema:
let mut new_orderings = vec![];
for ordering in self.oeq_class.orderings {
let new_ordering = ordering
.into_iter()
.map(|mut sort_expr| {
sort_expr.expr = with_new_schema(sort_expr.expr, &schema)?;
Ok(sort_expr)
})
.collect::<Result<_>>()?;
new_orderings.push(new_ordering);
}
// Rewrite equivalence classes according to the new schema:
let mut eq_classes = vec![];
for eq_class in self.eq_group.classes {
let new_eq_exprs = eq_class
.into_vec()
.into_iter()
.map(|expr| with_new_schema(expr, &schema))
.collect::<Result<_>>()?;
eq_classes.push(EquivalenceClass::new(new_eq_exprs));
}
// Construct the resulting equivalence properties:
let mut result = EquivalenceProperties::new(schema);
result.constants = new_constants;
result.add_new_orderings(new_orderings);
result.add_equivalence_group(EquivalenceGroup::new(eq_classes));
Ok(result)
}
}
/// Calculates the properties of a given [`ExprPropertiesNode`].
///
/// Order information can be retrieved as:
/// - If it is a leaf node, we directly find the order of the node by looking
/// at the given sort expression and equivalence properties if it is a `Column`
/// leaf, or we mark it as unordered. In the case of a `Literal` leaf, we mark
/// it as singleton so that it can cooperate with all ordered columns.
/// - If it is an intermediate node, the children states matter. Each `PhysicalExpr`
/// and operator has its own rules on how to propagate the children orderings.
/// However, before we engage in recursion, we check whether this intermediate
/// node directly matches with the sort expression. If there is a match, the
/// sort expression emerges at that node immediately, discarding the recursive
/// result coming from its children.
///
/// Range information is calculated as:
/// - If it is a `Literal` node, we set the range as a point value. If it is a
/// `Column` node, we set the datatype of the range, but cannot give an interval
/// for the range, yet.
/// - If it is an intermediate node, the children states matter. Each `PhysicalExpr`
/// and operator has its own rules on how to propagate the children range.
fn update_properties(
mut node: ExprPropertiesNode,
eq_properties: &EquivalenceProperties,
) -> Result<Transformed<ExprPropertiesNode>> {
// First, try to gather the information from the children:
if !node.expr.children().is_empty() {
// We have an intermediate (non-leaf) node, account for its children:
let children_props = node.children.iter().map(|c| c.data.clone()).collect_vec();
node.data = node.expr.get_properties(&children_props)?;
} else if node.expr.as_any().is::<Literal>() {
// We have a Literal, which is one of the two possible leaf node types:
node.data = node.expr.get_properties(&[])?;
} else if node.expr.as_any().is::<Column>() {
// We have a Column, which is the other possible leaf node type:
node.data.range =
Interval::make_unbounded(&node.expr.data_type(eq_properties.schema())?)?
}
// Now, check what we know about orderings:
let normalized_expr = eq_properties
.eq_group
.normalize_expr(Arc::clone(&node.expr));
if eq_properties.is_expr_constant(&normalized_expr) {
node.data.sort_properties = SortProperties::Singleton;
} else if let Some(options) = eq_properties
.normalized_oeq_class()
.get_options(&normalized_expr)
{
node.data.sort_properties = SortProperties::Ordered(options);
}
Ok(Transformed::yes(node))
}
/// This function determines whether the provided expression is constant
/// based on the known constants.
///
/// # Arguments
///
/// - `constants`: A `&[Arc<dyn PhysicalExpr>]` containing expressions known to
/// be a constant.
/// - `expr`: A reference to a `Arc<dyn PhysicalExpr>` representing the expression
/// to check.
///
/// # Returns
///
/// Returns `true` if the expression is constant according to equivalence
/// group, `false` otherwise.
fn is_constant_recurse(
constants: &[Arc<dyn PhysicalExpr>],
expr: &Arc<dyn PhysicalExpr>,
) -> bool {
if physical_exprs_contains(constants, expr) || expr.as_any().is::<Literal>() {
return true;
}
let children = expr.children();
!children.is_empty() && children.iter().all(|c| is_constant_recurse(constants, c))
}
/// This function examines whether a referring expression directly refers to a
/// given referred expression or if any of its children in the expression tree
/// refer to the specified expression.
///
/// # Parameters
///
/// - `referring_expr`: A reference to the referring expression (`Arc<dyn PhysicalExpr>`).
/// - `referred_expr`: A reference to the referred expression (`Arc<dyn PhysicalExpr>`)
///
/// # Returns
///
/// A boolean value indicating whether `referring_expr` refers (needs it to evaluate its result)
/// `referred_expr` or not.
fn expr_refers(
referring_expr: &Arc<dyn PhysicalExpr>,
referred_expr: &Arc<dyn PhysicalExpr>,
) -> bool {
referring_expr.eq(referred_expr)
|| referring_expr
.children()
.iter()
.any(|child| expr_refers(child, referred_expr))
}
/// This function analyzes the dependency map to collect referred dependencies for
/// a given source expression.
///
/// # Parameters
///
/// - `dependency_map`: A reference to the `DependencyMap` where each
/// `PhysicalSortExpr` is associated with a `DependencyNode`.
/// - `source`: A reference to the source expression (`Arc<dyn PhysicalExpr>`)
/// for which relevant dependencies need to be identified.
///
/// # Returns
///
/// A `Vec<Dependencies>` containing the dependencies for the given source
/// expression. These dependencies are expressions that are referred to by
/// the source expression based on the provided dependency map.
fn referred_dependencies(
dependency_map: &DependencyMap,
source: &Arc<dyn PhysicalExpr>,
) -> Vec<Dependencies> {
// Associate `PhysicalExpr`s with `PhysicalSortExpr`s that contain them:
let mut expr_to_sort_exprs = IndexMap::<ExprWrapper, Dependencies>::new();
for sort_expr in dependency_map
.keys()
.filter(|sort_expr| expr_refers(source, &sort_expr.expr))
{
let key = ExprWrapper(Arc::clone(&sort_expr.expr));
expr_to_sort_exprs
.entry(key)
.or_default()
.insert(sort_expr.clone());
}
// Generate all valid dependencies for the source. For example, if the source
// is `a + b` and the map is `[a -> (a ASC, a DESC), b -> (b ASC)]`, we get
// `vec![HashSet(a ASC, b ASC), HashSet(a DESC, b ASC)]`.
expr_to_sort_exprs
.values()
.multi_cartesian_product()
.map(|referred_deps| referred_deps.into_iter().cloned().collect())
.collect()
}
/// This function retrieves the dependencies of the given relevant sort expression
/// from the given dependency map. It then constructs prefix orderings by recursively
/// analyzing the dependencies and include them in the orderings.
///
/// # Parameters
///
/// - `relevant_sort_expr`: A reference to the relevant sort expression
/// (`PhysicalSortExpr`) for which prefix orderings are to be constructed.
/// - `dependency_map`: A reference to the `DependencyMap` containing dependencies.
///
/// # Returns
///
/// A vector of prefix orderings (`Vec<LexOrdering>`) based on the given relevant
/// sort expression and its dependencies.
fn construct_prefix_orderings(
relevant_sort_expr: &PhysicalSortExpr,
dependency_map: &DependencyMap,
) -> Vec<LexOrdering> {
dependency_map[relevant_sort_expr]
.dependencies
.iter()
.flat_map(|dep| construct_orderings(dep, dependency_map))
.collect()
}
/// Given a set of relevant dependencies (`relevant_deps`) and a map of dependencies
/// (`dependency_map`), this function generates all possible prefix orderings
/// based on the given dependencies.
///
/// # Parameters
///
/// * `dependencies` - A reference to the dependencies.
/// * `dependency_map` - A reference to the map of dependencies for expressions.
///
/// # Returns
///
/// A vector of lexical orderings (`Vec<LexOrdering>`) representing all valid orderings
/// based on the given dependencies.
fn generate_dependency_orderings(
dependencies: &Dependencies,
dependency_map: &DependencyMap,
) -> Vec<LexOrdering> {
// Construct all the valid prefix orderings for each expression appearing
// in the projection:
let relevant_prefixes = dependencies
.iter()
.flat_map(|dep| {
let prefixes = construct_prefix_orderings(dep, dependency_map);
(!prefixes.is_empty()).then_some(prefixes)
})
.collect::<Vec<_>>();
// No dependency, dependent is a leading ordering.
if relevant_prefixes.is_empty() {
// Return an empty ordering:
return vec![vec![]];
}
// Generate all possible orderings where dependencies are satisfied for the
// current projection expression. For example, if expression is `a + b ASC`,
// and the dependency for `a ASC` is `[c ASC]`, the dependency for `b ASC`
// is `[d DESC]`, then we generate `[c ASC, d DESC, a + b ASC]` and
// `[d DESC, c ASC, a + b ASC]`.
relevant_prefixes
.into_iter()
.multi_cartesian_product()
.flat_map(|prefix_orderings| {
prefix_orderings
.iter()
.permutations(prefix_orderings.len())
.map(|prefixes| prefixes.into_iter().flatten().cloned().collect())
.collect::<Vec<_>>()
})
.collect()
}
/// This function examines the given expression and its properties to determine
/// the ordering properties of the expression. The range knowledge is not utilized
/// yet in the scope of this function.
///
/// # Parameters
///
/// - `expr`: A reference to the source expression (`Arc<dyn PhysicalExpr>`) for
/// which ordering properties need to be determined.
/// - `dependencies`: A reference to `Dependencies`, containing sort expressions
/// referred to by `expr`.
/// - `schema``: A reference to the schema which the `expr` columns refer.
///
/// # Returns
///
/// A `SortProperties` indicating the ordering information of the given expression.
fn get_expr_properties(
expr: &Arc<dyn PhysicalExpr>,
dependencies: &Dependencies,
schema: &SchemaRef,
) -> Result<ExprProperties> {
if let Some(column_order) = dependencies.iter().find(|&order| expr.eq(&order.expr)) {
// If exact match is found, return its ordering.
Ok(ExprProperties {
sort_properties: SortProperties::Ordered(column_order.options),
range: Interval::make_unbounded(&expr.data_type(schema)?)?,
})
} else if expr.as_any().downcast_ref::<Column>().is_some() {
Ok(ExprProperties {
sort_properties: SortProperties::Unordered,
range: Interval::make_unbounded(&expr.data_type(schema)?)?,
})
} else if let Some(literal) = expr.as_any().downcast_ref::<Literal>() {
Ok(ExprProperties {
sort_properties: SortProperties::Singleton,
range: Interval::try_new(literal.value().clone(), literal.value().clone())?,
})
} else {
// Find orderings of its children
let child_states = expr
.children()
.iter()
.map(|child| get_expr_properties(child, dependencies, schema))
.collect::<Result<Vec<_>>>()?;
// Calculate expression ordering using ordering of its children.
expr.get_properties(&child_states)
}
}
/// Represents a node in the dependency map used to construct projected orderings.
///
/// A `DependencyNode` contains information about a particular sort expression,
/// including its target sort expression and a set of dependencies on other sort
/// expressions.
///
/// # Fields
///
/// - `target_sort_expr`: An optional `PhysicalSortExpr` representing the target
/// sort expression associated with the node. It is `None` if the sort expression
/// cannot be projected.
/// - `dependencies`: A [`Dependencies`] containing dependencies on other sort
/// expressions that are referred to by the target sort expression.
#[derive(Debug, Clone, PartialEq, Eq)]
struct DependencyNode {
target_sort_expr: Option<PhysicalSortExpr>,
dependencies: Dependencies,
}
impl DependencyNode {
// Insert dependency to the state (if exists).
fn insert_dependency(&mut self, dependency: Option<&PhysicalSortExpr>) {
if let Some(dep) = dependency {
self.dependencies.insert(dep.clone());
}
}
}
// Using `IndexMap` and `IndexSet` makes sure to generate consistent results across different executions for the same query.
// We could have used `HashSet`, `HashMap` in place of them without any loss of functionality.
// As an example, if existing orderings are `[a ASC, b ASC]`, `[c ASC]` for output ordering
// both `[a ASC, b ASC, c ASC]` and `[c ASC, a ASC, b ASC]` are valid (e.g. concatenated version of the alternative orderings).
// When using `HashSet`, `HashMap` it is not guaranteed to generate consistent result, among the possible 2 results in the example above.
type DependencyMap = IndexMap<PhysicalSortExpr, DependencyNode>;
type Dependencies = IndexSet<PhysicalSortExpr>;
/// This function recursively analyzes the dependencies of the given sort
/// expression within the given dependency map to construct lexicographical
/// orderings that include the sort expression and its dependencies.
///
/// # Parameters
///
/// - `referred_sort_expr`: A reference to the sort expression (`PhysicalSortExpr`)
/// for which lexicographical orderings satisfying its dependencies are to be
/// constructed.
/// - `dependency_map`: A reference to the `DependencyMap` that contains
/// dependencies for different `PhysicalSortExpr`s.
///
/// # Returns
///
/// A vector of lexicographical orderings (`Vec<LexOrdering>`) based on the given
/// sort expression and its dependencies.
fn construct_orderings(
referred_sort_expr: &PhysicalSortExpr,
dependency_map: &DependencyMap,
) -> Vec<LexOrdering> {
// We are sure that `referred_sort_expr` is inside `dependency_map`.
let node = &dependency_map[referred_sort_expr];
// Since we work on intermediate nodes, we are sure `val.target_sort_expr`
// exists.
let target_sort_expr = node.target_sort_expr.clone().unwrap();
if node.dependencies.is_empty() {
vec![vec![target_sort_expr]]
} else {
node.dependencies
.iter()
.flat_map(|dep| {
let mut orderings = construct_orderings(dep, dependency_map);
for ordering in orderings.iter_mut() {
ordering.push(target_sort_expr.clone())
}
orderings
})
.collect()
}
}
/// Calculate ordering equivalence properties for the given join operation.
pub fn join_equivalence_properties(
left: EquivalenceProperties,
right: EquivalenceProperties,
join_type: &JoinType,
join_schema: SchemaRef,
maintains_input_order: &[bool],
probe_side: Option<JoinSide>,
on: &[(PhysicalExprRef, PhysicalExprRef)],
) -> EquivalenceProperties {
let left_size = left.schema.fields.len();
let mut result = EquivalenceProperties::new(join_schema);
result.add_equivalence_group(left.eq_group().join(
right.eq_group(),
join_type,
left_size,
on,
));
let EquivalenceProperties {
constants: left_constants,
oeq_class: left_oeq_class,
..
} = left;
let EquivalenceProperties {
constants: right_constants,
oeq_class: mut right_oeq_class,
..
} = right;
match maintains_input_order {
[true, false] => {
// In this special case, right side ordering can be prefixed with
// the left side ordering.
if let (Some(JoinSide::Left), JoinType::Inner) = (probe_side, join_type) {
updated_right_ordering_equivalence_class(
&mut right_oeq_class,
join_type,
left_size,
);
// Right side ordering equivalence properties should be prepended
// with those of the left side while constructing output ordering
// equivalence properties since stream side is the left side.
//
// For example, if the right side ordering equivalences contain
// `b ASC`, and the left side ordering equivalences contain `a ASC`,
// then we should add `a ASC, b ASC` to the ordering equivalences
// of the join output.
let out_oeq_class = left_oeq_class.join_suffix(&right_oeq_class);
result.add_ordering_equivalence_class(out_oeq_class);
} else {
result.add_ordering_equivalence_class(left_oeq_class);
}
}
[false, true] => {
updated_right_ordering_equivalence_class(
&mut right_oeq_class,
join_type,
left_size,
);
// In this special case, left side ordering can be prefixed with
// the right side ordering.
if let (Some(JoinSide::Right), JoinType::Inner) = (probe_side, join_type) {
// Left side ordering equivalence properties should be prepended
// with those of the right side while constructing output ordering
// equivalence properties since stream side is the right side.
//
// For example, if the left side ordering equivalences contain
// `a ASC`, and the right side ordering equivalences contain `b ASC`,
// then we should add `b ASC, a ASC` to the ordering equivalences
// of the join output.
let out_oeq_class = right_oeq_class.join_suffix(&left_oeq_class);
result.add_ordering_equivalence_class(out_oeq_class);
} else {
result.add_ordering_equivalence_class(right_oeq_class);
}
}
[false, false] => {}
[true, true] => unreachable!("Cannot maintain ordering of both sides"),
_ => unreachable!("Join operators can not have more than two children"),
}
match join_type {
JoinType::LeftAnti | JoinType::LeftSemi => {
result = result.add_constants(left_constants);
}
JoinType::RightAnti | JoinType::RightSemi => {
result = result.add_constants(right_constants);
}
_ => {}
}
result
}
/// In the context of a join, update the right side `OrderingEquivalenceClass`
/// so that they point to valid indices in the join output schema.
///
/// To do so, we increment column indices by the size of the left table when
/// join schema consists of a combination of the left and right schemas. This
/// is the case for `Inner`, `Left`, `Full` and `Right` joins. For other cases,
/// indices do not change.
fn updated_right_ordering_equivalence_class(
right_oeq_class: &mut OrderingEquivalenceClass,
join_type: &JoinType,
left_size: usize,
) {
if matches!(
join_type,
JoinType::Inner | JoinType::Left | JoinType::Full | JoinType::Right
) {
right_oeq_class.add_offset(left_size);
}
}
/// Wrapper struct for `Arc<dyn PhysicalExpr>` to use them as keys in a hash map.
#[derive(Debug, Clone)]
struct ExprWrapper(Arc<dyn PhysicalExpr>);
impl PartialEq<Self> for ExprWrapper {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl Eq for ExprWrapper {}
impl Hash for ExprWrapper {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.hash(state);
}
}
/// Calculates the union (in the sense of `UnionExec`) `EquivalenceProperties`
/// of `lhs` and `rhs` according to the schema of `lhs`.
fn calculate_union_binary(
lhs: EquivalenceProperties,
mut rhs: EquivalenceProperties,
) -> Result<EquivalenceProperties> {
// TODO: In some cases, we should be able to preserve some equivalence
// classes. Add support for such cases.
// Harmonize the schema of the rhs with the schema of the lhs (which is the accumulator schema):
if !rhs.schema.eq(&lhs.schema) {
rhs = rhs.with_new_schema(Arc::clone(&lhs.schema))?;
}
// First, calculate valid constants for the union. A quantity is constant
// after the union if it is constant in both sides.
let constants = lhs
.constants()
.iter()
.filter(|const_expr| const_exprs_contains(rhs.constants(), const_expr.expr()))
.map(|const_expr| {
// TODO: When both sides' constants are valid across partitions,
// the union's constant should also be valid if values are
// the same. However, we do not have the capability to
// check this yet.
ConstExpr::new(Arc::clone(const_expr.expr())).with_across_partitions(false)
})
.collect();
// Next, calculate valid orderings for the union by searching for prefixes
// in both sides.
let mut orderings = vec![];
for mut ordering in lhs.normalized_oeq_class().orderings {
// Progressively shorten the ordering to search for a satisfied prefix:
while !rhs.ordering_satisfy(&ordering) {
ordering.pop();
}
// There is a non-trivial satisfied prefix, add it as a valid ordering:
if !ordering.is_empty() {
orderings.push(ordering);
}
}
for mut ordering in rhs.normalized_oeq_class().orderings {
// Progressively shorten the ordering to search for a satisfied prefix:
while !lhs.ordering_satisfy(&ordering) {
ordering.pop();
}
// There is a non-trivial satisfied prefix, add it as a valid ordering:
if !ordering.is_empty() {
orderings.push(ordering);
}
}
let mut eq_properties = EquivalenceProperties::new(lhs.schema);
eq_properties.constants = constants;
eq_properties.add_new_orderings(orderings);
Ok(eq_properties)
}
/// Calculates the union (in the sense of `UnionExec`) `EquivalenceProperties`
/// of the given `EquivalenceProperties` in `eqps` according to the given
/// output `schema` (which need not be the same with those of `lhs` and `rhs`
/// as details such as nullability may be different).
pub fn calculate_union(
eqps: Vec<EquivalenceProperties>,
schema: SchemaRef,
) -> Result<EquivalenceProperties> {
// TODO: In some cases, we should be able to preserve some equivalence
// classes. Add support for such cases.
let mut init = eqps[0].clone();
// Harmonize the schema of the init with the schema of the union:
if !init.schema.eq(&schema) {
init = init.with_new_schema(schema)?;
}
eqps.into_iter()
.skip(1)
.try_fold(init, calculate_union_binary)
}
#[cfg(test)]
mod tests {
use std::ops::Not;
use super::*;
use crate::equivalence::add_offset_to_expr;
use crate::equivalence::tests::{
convert_to_orderings, convert_to_sort_exprs, convert_to_sort_reqs,
create_random_schema, create_test_params, create_test_schema,
generate_table_for_eq_properties, is_table_same_after_sort, output_schema,
};
use crate::expressions::{col, BinaryExpr, Column};
use crate::utils::tests::TestScalarUDF;
use arrow::datatypes::{DataType, Field, Schema};
use arrow_schema::{Fields, TimeUnit};
use datafusion_common::DFSchema;
use datafusion_expr::{Operator, ScalarUDF};
#[test]
fn project_equivalence_properties_test() -> Result<()> {
let input_schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Int64, true),
Field::new("b", DataType::Int64, true),
Field::new("c", DataType::Int64, true),
]));
let input_properties = EquivalenceProperties::new(Arc::clone(&input_schema));
let col_a = col("a", &input_schema)?;
// a as a1, a as a2, a as a3, a as a3
let proj_exprs = vec![
(Arc::clone(&col_a), "a1".to_string()),
(Arc::clone(&col_a), "a2".to_string()),
(Arc::clone(&col_a), "a3".to_string()),
(Arc::clone(&col_a), "a4".to_string()),
];
let projection_mapping = ProjectionMapping::try_new(&proj_exprs, &input_schema)?;
let out_schema = output_schema(&projection_mapping, &input_schema)?;
// a as a1, a as a2, a as a3, a as a3
let proj_exprs = vec![
(Arc::clone(&col_a), "a1".to_string()),
(Arc::clone(&col_a), "a2".to_string()),
(Arc::clone(&col_a), "a3".to_string()),
(Arc::clone(&col_a), "a4".to_string()),
];
let projection_mapping = ProjectionMapping::try_new(&proj_exprs, &input_schema)?;
// a as a1, a as a2, a as a3, a as a3
let col_a1 = &col("a1", &out_schema)?;
let col_a2 = &col("a2", &out_schema)?;
let col_a3 = &col("a3", &out_schema)?;
let col_a4 = &col("a4", &out_schema)?;
let out_properties = input_properties.project(&projection_mapping, out_schema);
// At the output a1=a2=a3=a4
assert_eq!(out_properties.eq_group().len(), 1);
let eq_class = &out_properties.eq_group().classes[0];
assert_eq!(eq_class.len(), 4);
assert!(eq_class.contains(col_a1));
assert!(eq_class.contains(col_a2));
assert!(eq_class.contains(col_a3));
assert!(eq_class.contains(col_a4));
Ok(())
}
#[test]
fn test_join_equivalence_properties() -> Result<()> {
let schema = create_test_schema()?;
let col_a = &col("a", &schema)?;
let col_b = &col("b", &schema)?;
let col_c = &col("c", &schema)?;
let offset = schema.fields.len();
let col_a2 = &add_offset_to_expr(Arc::clone(col_a), offset);
let col_b2 = &add_offset_to_expr(Arc::clone(col_b), offset);
let option_asc = SortOptions {
descending: false,
nulls_first: false,
};
let test_cases = vec![
// ------- TEST CASE 1 --------
// [a ASC], [b ASC]
(
// [a ASC], [b ASC]
vec![vec![(col_a, option_asc)], vec![(col_b, option_asc)]],
// [a ASC], [b ASC]
vec![vec![(col_a, option_asc)], vec![(col_b, option_asc)]],
// expected [a ASC, a2 ASC], [a ASC, b2 ASC], [b ASC, a2 ASC], [b ASC, b2 ASC]
vec![
vec![(col_a, option_asc), (col_a2, option_asc)],
vec![(col_a, option_asc), (col_b2, option_asc)],
vec![(col_b, option_asc), (col_a2, option_asc)],
vec![(col_b, option_asc), (col_b2, option_asc)],
],
),
// ------- TEST CASE 2 --------
// [a ASC], [b ASC]
(
// [a ASC], [b ASC], [c ASC]
vec![
vec![(col_a, option_asc)],
vec![(col_b, option_asc)],
vec![(col_c, option_asc)],
],
// [a ASC], [b ASC]
vec![vec![(col_a, option_asc)], vec![(col_b, option_asc)]],
// expected [a ASC, a2 ASC], [a ASC, b2 ASC], [b ASC, a2 ASC], [b ASC, b2 ASC], [c ASC, a2 ASC], [c ASC, b2 ASC]
vec![
vec![(col_a, option_asc), (col_a2, option_asc)],
vec![(col_a, option_asc), (col_b2, option_asc)],
vec![(col_b, option_asc), (col_a2, option_asc)],
vec![(col_b, option_asc), (col_b2, option_asc)],
vec![(col_c, option_asc), (col_a2, option_asc)],
vec![(col_c, option_asc), (col_b2, option_asc)],
],
),
];
for (left_orderings, right_orderings, expected) in test_cases {
let mut left_eq_properties = EquivalenceProperties::new(Arc::clone(&schema));
let mut right_eq_properties = EquivalenceProperties::new(Arc::clone(&schema));
let left_orderings = convert_to_orderings(&left_orderings);
let right_orderings = convert_to_orderings(&right_orderings);
let expected = convert_to_orderings(&expected);
left_eq_properties.add_new_orderings(left_orderings);
right_eq_properties.add_new_orderings(right_orderings);
let join_eq = join_equivalence_properties(
left_eq_properties,
right_eq_properties,
&JoinType::Inner,
Arc::new(Schema::empty()),
&[true, false],
Some(JoinSide::Left),
&[],
);
let orderings = &join_eq.oeq_class.orderings;
let err_msg = format!("expected: {:?}, actual:{:?}", expected, orderings);
assert_eq!(
join_eq.oeq_class.orderings.len(),
expected.len(),
"{}",
err_msg
);
for ordering in orderings {
assert!(
expected.contains(ordering),
"{}, ordering: {:?}",
err_msg,
ordering
);
}
}
Ok(())
}
#[test]
fn test_expr_consists_of_constants() -> Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Int32, true),
Field::new("c", DataType::Int32, true),
Field::new("d", DataType::Int32, true),
Field::new("ts", DataType::Timestamp(TimeUnit::Nanosecond, None), true),
]));
let col_a = col("a", &schema)?;
let col_b = col("b", &schema)?;
let col_d = col("d", &schema)?;
let b_plus_d = Arc::new(BinaryExpr::new(
Arc::clone(&col_b),
Operator::Plus,
Arc::clone(&col_d),
)) as Arc<dyn PhysicalExpr>;
let constants = vec![Arc::clone(&col_a), Arc::clone(&col_b)];
let expr = Arc::clone(&b_plus_d);
assert!(!is_constant_recurse(&constants, &expr));
let constants = vec![Arc::clone(&col_a), Arc::clone(&col_b), Arc::clone(&col_d)];
let expr = Arc::clone(&b_plus_d);
assert!(is_constant_recurse(&constants, &expr));
Ok(())
}
#[test]
fn test_get_updated_right_ordering_equivalence_properties() -> Result<()> {
let join_type = JoinType::Inner;
// Join right child schema
let child_fields: Fields = ["x", "y", "z", "w"]
.into_iter()
.map(|name| Field::new(name, DataType::Int32, true))
.collect();
let child_schema = Schema::new(child_fields);
let col_x = &col("x", &child_schema)?;
let col_y = &col("y", &child_schema)?;
let col_z = &col("z", &child_schema)?;
let col_w = &col("w", &child_schema)?;
let option_asc = SortOptions {
descending: false,
nulls_first: false,
};
// [x ASC, y ASC], [z ASC, w ASC]
let orderings = vec![
vec![(col_x, option_asc), (col_y, option_asc)],
vec![(col_z, option_asc), (col_w, option_asc)],
];
let orderings = convert_to_orderings(&orderings);
// Right child ordering equivalences
let mut right_oeq_class = OrderingEquivalenceClass::new(orderings);
let left_columns_len = 4;
let fields: Fields = ["a", "b", "c", "d", "x", "y", "z", "w"]
.into_iter()
.map(|name| Field::new(name, DataType::Int32, true))
.collect();
// Join Schema
let schema = Schema::new(fields);
let col_a = &col("a", &schema)?;
let col_d = &col("d", &schema)?;
let col_x = &col("x", &schema)?;
let col_y = &col("y", &schema)?;
let col_z = &col("z", &schema)?;
let col_w = &col("w", &schema)?;
let mut join_eq_properties = EquivalenceProperties::new(Arc::new(schema));
// a=x and d=w
join_eq_properties.add_equal_conditions(col_a, col_x)?;
join_eq_properties.add_equal_conditions(col_d, col_w)?;
updated_right_ordering_equivalence_class(
&mut right_oeq_class,
&join_type,
left_columns_len,
);
join_eq_properties.add_ordering_equivalence_class(right_oeq_class);
let result = join_eq_properties.oeq_class().clone();
// [x ASC, y ASC], [z ASC, w ASC]
let orderings = vec![
vec![(col_x, option_asc), (col_y, option_asc)],
vec![(col_z, option_asc), (col_w, option_asc)],
];
let orderings = convert_to_orderings(&orderings);
let expected = OrderingEquivalenceClass::new(orderings);
assert_eq!(result, expected);
Ok(())
}
#[test]
fn test_normalize_ordering_equivalence_classes() -> Result<()> {
let sort_options = SortOptions::default();
let schema = Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Int32, true),
Field::new("c", DataType::Int32, true),
]);
let col_a_expr = col("a", &schema)?;
let col_b_expr = col("b", &schema)?;
let col_c_expr = col("c", &schema)?;
let mut eq_properties = EquivalenceProperties::new(Arc::new(schema.clone()));
eq_properties.add_equal_conditions(&col_a_expr, &col_c_expr)?;
let others = vec![
vec![PhysicalSortExpr {
expr: Arc::clone(&col_b_expr),
options: sort_options,
}],
vec![PhysicalSortExpr {
expr: Arc::clone(&col_c_expr),
options: sort_options,
}],
];
eq_properties.add_new_orderings(others);
let mut expected_eqs = EquivalenceProperties::new(Arc::new(schema));
expected_eqs.add_new_orderings([
vec![PhysicalSortExpr {
expr: Arc::clone(&col_b_expr),
options: sort_options,
}],
vec![PhysicalSortExpr {
expr: Arc::clone(&col_c_expr),
options: sort_options,
}],
]);
let oeq_class = eq_properties.oeq_class().clone();
let expected = expected_eqs.oeq_class();
assert!(oeq_class.eq(expected));
Ok(())
}
#[test]
fn test_get_indices_of_matching_sort_exprs_with_order_eq() -> Result<()> {
let sort_options = SortOptions::default();
let sort_options_not = SortOptions::default().not();
let schema = Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Int32, true),
]);
let col_a = &col("a", &schema)?;
let col_b = &col("b", &schema)?;
let required_columns = [Arc::clone(col_b), Arc::clone(col_a)];
let mut eq_properties = EquivalenceProperties::new(Arc::new(schema));
eq_properties.add_new_orderings([vec![
PhysicalSortExpr {
expr: Arc::new(Column::new("b", 1)),
options: sort_options_not,
},
PhysicalSortExpr {
expr: Arc::new(Column::new("a", 0)),
options: sort_options,
},
]]);
let (result, idxs) = eq_properties.find_longest_permutation(&required_columns);
assert_eq!(idxs, vec![0, 1]);
assert_eq!(
result,
vec![
PhysicalSortExpr {
expr: Arc::clone(col_b),
options: sort_options_not
},
PhysicalSortExpr {
expr: Arc::clone(col_a),
options: sort_options
}
]
);
let schema = Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Int32, true),
Field::new("c", DataType::Int32, true),
]);
let col_a = &col("a", &schema)?;
let col_b = &col("b", &schema)?;
let required_columns = [Arc::clone(col_b), Arc::clone(col_a)];
let mut eq_properties = EquivalenceProperties::new(Arc::new(schema));
eq_properties.add_new_orderings([
vec![PhysicalSortExpr {
expr: Arc::new(Column::new("c", 2)),
options: sort_options,
}],
vec![
PhysicalSortExpr {
expr: Arc::new(Column::new("b", 1)),
options: sort_options_not,
},
PhysicalSortExpr {
expr: Arc::new(Column::new("a", 0)),
options: sort_options,
},
],
]);
let (result, idxs) = eq_properties.find_longest_permutation(&required_columns);
assert_eq!(idxs, vec![0, 1]);
assert_eq!(
result,
vec![
PhysicalSortExpr {
expr: Arc::clone(col_b),
options: sort_options_not
},
PhysicalSortExpr {
expr: Arc::clone(col_a),
options: sort_options
}
]
);
let required_columns = [
Arc::new(Column::new("b", 1)) as _,
Arc::new(Column::new("a", 0)) as _,
];
let schema = Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Int32, true),
Field::new("c", DataType::Int32, true),
]);
let mut eq_properties = EquivalenceProperties::new(Arc::new(schema));
// not satisfied orders
eq_properties.add_new_orderings([vec![
PhysicalSortExpr {
expr: Arc::new(Column::new("b", 1)),
options: sort_options_not,
},
PhysicalSortExpr {
expr: Arc::new(Column::new("c", 2)),
options: sort_options,
},
PhysicalSortExpr {
expr: Arc::new(Column::new("a", 0)),
options: sort_options,
},
]]);
let (_, idxs) = eq_properties.find_longest_permutation(&required_columns);
assert_eq!(idxs, vec![0]);
Ok(())
}
#[test]
fn test_update_properties() -> Result<()> {
let schema = Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Int32, true),
Field::new("c", DataType::Int32, true),
Field::new("d", DataType::Int32, true),
]);
let mut eq_properties = EquivalenceProperties::new(Arc::new(schema.clone()));
let col_a = &col("a", &schema)?;
let col_b = &col("b", &schema)?;
let col_c = &col("c", &schema)?;
let col_d = &col("d", &schema)?;
let option_asc = SortOptions {
descending: false,
nulls_first: false,
};
// b=a (e.g they are aliases)
eq_properties.add_equal_conditions(col_b, col_a)?;
// [b ASC], [d ASC]
eq_properties.add_new_orderings(vec![
vec![PhysicalSortExpr {
expr: Arc::clone(col_b),
options: option_asc,
}],
vec![PhysicalSortExpr {
expr: Arc::clone(col_d),
options: option_asc,
}],
]);
let test_cases = vec![
// d + b
(
Arc::new(BinaryExpr::new(
Arc::clone(col_d),
Operator::Plus,
Arc::clone(col_b),
)) as Arc<dyn PhysicalExpr>,
SortProperties::Ordered(option_asc),
),
// b
(Arc::clone(col_b), SortProperties::Ordered(option_asc)),
// a
(Arc::clone(col_a), SortProperties::Ordered(option_asc)),
// a + c
(
Arc::new(BinaryExpr::new(
Arc::clone(col_a),
Operator::Plus,
Arc::clone(col_c),
)),
SortProperties::Unordered,
),
];
for (expr, expected) in test_cases {
let leading_orderings = eq_properties
.oeq_class()
.iter()
.flat_map(|ordering| ordering.first().cloned())
.collect::<Vec<_>>();
let expr_props = eq_properties.get_expr_properties(Arc::clone(&expr));
let err_msg = format!(
"expr:{:?}, expected: {:?}, actual: {:?}, leading_orderings: {leading_orderings:?}",
expr, expected, expr_props.sort_properties
);
assert_eq!(expr_props.sort_properties, expected, "{}", err_msg);
}
Ok(())
}
#[test]
fn test_find_longest_permutation_random() -> Result<()> {
const N_RANDOM_SCHEMA: usize = 100;
const N_ELEMENTS: usize = 125;
const N_DISTINCT: usize = 5;
for seed in 0..N_RANDOM_SCHEMA {
// Create a random schema with random properties
let (test_schema, eq_properties) = create_random_schema(seed as u64)?;
// Generate a data that satisfies properties given
let table_data_with_properties =
generate_table_for_eq_properties(&eq_properties, N_ELEMENTS, N_DISTINCT)?;
let test_fun = ScalarUDF::new_from_impl(TestScalarUDF::new());
let floor_a = crate::udf::create_physical_expr(
&test_fun,
&[col("a", &test_schema)?],
&test_schema,
&[],
&DFSchema::empty(),
)?;
let a_plus_b = Arc::new(BinaryExpr::new(
col("a", &test_schema)?,
Operator::Plus,
col("b", &test_schema)?,
)) as Arc<dyn PhysicalExpr>;
let exprs = [
col("a", &test_schema)?,
col("b", &test_schema)?,
col("c", &test_schema)?,
col("d", &test_schema)?,
col("e", &test_schema)?,
col("f", &test_schema)?,
floor_a,
a_plus_b,
];
for n_req in 0..=exprs.len() {
for exprs in exprs.iter().combinations(n_req) {
let exprs = exprs.into_iter().cloned().collect::<Vec<_>>();
let (ordering, indices) =
eq_properties.find_longest_permutation(&exprs);
// Make sure that find_longest_permutation return values are consistent
let ordering2 = indices
.iter()
.zip(ordering.iter())
.map(|(&idx, sort_expr)| PhysicalSortExpr {
expr: Arc::clone(&exprs[idx]),
options: sort_expr.options,
})
.collect::<Vec<_>>();
assert_eq!(
ordering, ordering2,
"indices and lexicographical ordering do not match"
);
let err_msg = format!(
"Error in test case ordering:{:?}, eq_properties.oeq_class: {:?}, eq_properties.eq_group: {:?}, eq_properties.constants: {:?}",
ordering, eq_properties.oeq_class, eq_properties.eq_group, eq_properties.constants
);
assert_eq!(ordering.len(), indices.len(), "{}", err_msg);
// Since ordered section satisfies schema, we expect
// that result will be same after sort (e.g sort was unnecessary).
assert!(
is_table_same_after_sort(
ordering.clone(),
table_data_with_properties.clone(),
)?,
"{}",
err_msg
);
}
}
}
Ok(())
}
#[test]
fn test_find_longest_permutation() -> Result<()> {
// Schema satisfies following orderings:
// [a ASC], [d ASC, b ASC], [e DESC, f ASC, g ASC]
// and
// Column [a=c] (e.g they are aliases).
// At below we add [d ASC, h DESC] also, for test purposes
let (test_schema, mut eq_properties) = create_test_params()?;
let col_a = &col("a", &test_schema)?;
let col_b = &col("b", &test_schema)?;
let col_c = &col("c", &test_schema)?;
let col_d = &col("d", &test_schema)?;
let col_e = &col("e", &test_schema)?;
let col_f = &col("f", &test_schema)?;
let col_h = &col("h", &test_schema)?;
// a + d
let a_plus_d = Arc::new(BinaryExpr::new(
Arc::clone(col_a),
Operator::Plus,
Arc::clone(col_d),
)) as Arc<dyn PhysicalExpr>;
let option_asc = SortOptions {
descending: false,
nulls_first: false,
};
let option_desc = SortOptions {
descending: true,
nulls_first: true,
};
// [d ASC, h DESC] also satisfies schema.
eq_properties.add_new_orderings([vec![
PhysicalSortExpr {
expr: Arc::clone(col_d),
options: option_asc,
},
PhysicalSortExpr {
expr: Arc::clone(col_h),
options: option_desc,
},
]]);
let test_cases = vec![
// TEST CASE 1
(vec![col_a], vec![(col_a, option_asc)]),
// TEST CASE 2
(vec![col_c], vec![(col_c, option_asc)]),
// TEST CASE 3
(
vec![col_d, col_e, col_b],
vec![
(col_d, option_asc),
(col_e, option_desc),
(col_b, option_asc),
],
),
// TEST CASE 4
(vec![col_b], vec![]),
// TEST CASE 5
(vec![col_d], vec![(col_d, option_asc)]),
// TEST CASE 5
(vec![&a_plus_d], vec![(&a_plus_d, option_asc)]),
// TEST CASE 6
(
vec![col_b, col_d],
vec![(col_d, option_asc), (col_b, option_asc)],
),
// TEST CASE 6
(
vec![col_c, col_e],
vec![(col_c, option_asc), (col_e, option_desc)],
),
// TEST CASE 7
(
vec![col_d, col_h, col_e, col_f, col_b],
vec![
(col_d, option_asc),
(col_e, option_desc),
(col_h, option_desc),
(col_f, option_asc),
(col_b, option_asc),
],
),
// TEST CASE 8
(
vec![col_e, col_d, col_h, col_f, col_b],
vec![
(col_e, option_desc),
(col_d, option_asc),
(col_h, option_desc),
(col_f, option_asc),
(col_b, option_asc),
],
),
// TEST CASE 9
(
vec![col_e, col_d, col_b, col_h, col_f],
vec![
(col_e, option_desc),
(col_d, option_asc),
(col_b, option_asc),
(col_h, option_desc),
(col_f, option_asc),
],
),
];
for (exprs, expected) in test_cases {
let exprs = exprs.into_iter().cloned().collect::<Vec<_>>();
let expected = convert_to_sort_exprs(&expected);
let (actual, _) = eq_properties.find_longest_permutation(&exprs);
assert_eq!(actual, expected);
}
Ok(())
}
#[test]
fn test_find_longest_permutation2() -> Result<()> {
// Schema satisfies following orderings:
// [a ASC], [d ASC, b ASC], [e DESC, f ASC, g ASC]
// and
// Column [a=c] (e.g they are aliases).
// At below we add [d ASC, h DESC] also, for test purposes
let (test_schema, mut eq_properties) = create_test_params()?;
let col_h = &col("h", &test_schema)?;
// Add column h as constant
eq_properties = eq_properties.add_constants(vec![ConstExpr::from(col_h)]);
let test_cases = vec![
// TEST CASE 1
// ordering of the constants are treated as default ordering.
// This is the convention currently used.
(vec![col_h], vec![(col_h, SortOptions::default())]),
];
for (exprs, expected) in test_cases {
let exprs = exprs.into_iter().cloned().collect::<Vec<_>>();
let expected = convert_to_sort_exprs(&expected);
let (actual, _) = eq_properties.find_longest_permutation(&exprs);
assert_eq!(actual, expected);
}
Ok(())
}
#[test]
fn test_get_finer() -> Result<()> {
let schema = create_test_schema()?;
let col_a = &col("a", &schema)?;
let col_b = &col("b", &schema)?;
let col_c = &col("c", &schema)?;
let eq_properties = EquivalenceProperties::new(schema);
let option_asc = SortOptions {
descending: false,
nulls_first: false,
};
let option_desc = SortOptions {
descending: true,
nulls_first: true,
};
// First entry, and second entry are the physical sort requirement that are argument for get_finer_requirement.
// Third entry is the expected result.
let tests_cases = vec![
// Get finer requirement between [a Some(ASC)] and [a None, b Some(ASC)]
// result should be [a Some(ASC), b Some(ASC)]
(
vec![(col_a, Some(option_asc))],
vec![(col_a, None), (col_b, Some(option_asc))],
Some(vec![(col_a, Some(option_asc)), (col_b, Some(option_asc))]),
),
// Get finer requirement between [a Some(ASC), b Some(ASC), c Some(ASC)] and [a Some(ASC), b Some(ASC)]
// result should be [a Some(ASC), b Some(ASC), c Some(ASC)]
(
vec![
(col_a, Some(option_asc)),
(col_b, Some(option_asc)),
(col_c, Some(option_asc)),
],
vec![(col_a, Some(option_asc)), (col_b, Some(option_asc))],
Some(vec![
(col_a, Some(option_asc)),
(col_b, Some(option_asc)),
(col_c, Some(option_asc)),
]),
),
// Get finer requirement between [a Some(ASC), b Some(ASC)] and [a Some(ASC), b Some(DESC)]
// result should be None
(
vec![(col_a, Some(option_asc)), (col_b, Some(option_asc))],
vec![(col_a, Some(option_asc)), (col_b, Some(option_desc))],
None,
),
];
for (lhs, rhs, expected) in tests_cases {
let lhs = convert_to_sort_reqs(&lhs);
let rhs = convert_to_sort_reqs(&rhs);
let expected = expected.map(|expected| convert_to_sort_reqs(&expected));
let finer = eq_properties.get_finer_requirement(&lhs, &rhs);
assert_eq!(finer, expected)
}
Ok(())
}
#[test]
fn test_normalize_sort_reqs() -> Result<()> {
// Schema satisfies following properties
// a=c
// and following orderings are valid
// [a ASC], [d ASC, b ASC], [e DESC, f ASC, g ASC]
let (test_schema, eq_properties) = create_test_params()?;
let col_a = &col("a", &test_schema)?;
let col_b = &col("b", &test_schema)?;
let col_c = &col("c", &test_schema)?;
let col_d = &col("d", &test_schema)?;
let col_e = &col("e", &test_schema)?;
let col_f = &col("f", &test_schema)?;
let option_asc = SortOptions {
descending: false,
nulls_first: false,
};
let option_desc = SortOptions {
descending: true,
nulls_first: true,
};
// First element in the tuple stores vector of requirement, second element is the expected return value for ordering_satisfy function
let requirements = vec![
(
vec![(col_a, Some(option_asc))],
vec![(col_a, Some(option_asc))],
),
(
vec![(col_a, Some(option_desc))],
vec![(col_a, Some(option_desc))],
),
(vec![(col_a, None)], vec![(col_a, None)]),
// Test whether equivalence works as expected
(
vec![(col_c, Some(option_asc))],
vec![(col_a, Some(option_asc))],
),
(vec![(col_c, None)], vec![(col_a, None)]),
// Test whether ordering equivalence works as expected
(
vec![(col_d, Some(option_asc)), (col_b, Some(option_asc))],
vec![(col_d, Some(option_asc)), (col_b, Some(option_asc))],
),
(
vec![(col_d, None), (col_b, None)],
vec![(col_d, None), (col_b, None)],
),
(
vec![(col_e, Some(option_desc)), (col_f, Some(option_asc))],
vec![(col_e, Some(option_desc)), (col_f, Some(option_asc))],
),
// We should be able to normalize in compatible requirements also (not exactly equal)
(
vec![(col_e, Some(option_desc)), (col_f, None)],
vec![(col_e, Some(option_desc)), (col_f, None)],
),
(
vec![(col_e, None), (col_f, None)],
vec![(col_e, None), (col_f, None)],
),
];
for (reqs, expected_normalized) in requirements.into_iter() {
let req = convert_to_sort_reqs(&reqs);
let expected_normalized = convert_to_sort_reqs(&expected_normalized);
assert_eq!(
eq_properties.normalize_sort_requirements(&req),
expected_normalized
);
}
Ok(())
}
#[test]
fn test_schema_normalize_sort_requirement_with_equivalence() -> Result<()> {
let option1 = SortOptions {
descending: false,
nulls_first: false,
};
// Assume that column a and c are aliases.
let (test_schema, eq_properties) = create_test_params()?;
let col_a = &col("a", &test_schema)?;
let col_c = &col("c", &test_schema)?;
let col_d = &col("d", &test_schema)?;
// Test cases for equivalence normalization
// First entry in the tuple is PhysicalSortRequirement, second entry in the tuple is
// expected PhysicalSortRequirement after normalization.
let test_cases = vec![
(vec![(col_a, Some(option1))], vec![(col_a, Some(option1))]),
// In the normalized version column c should be replace with column a
(vec![(col_c, Some(option1))], vec![(col_a, Some(option1))]),
(vec![(col_c, None)], vec![(col_a, None)]),
(vec![(col_d, Some(option1))], vec![(col_d, Some(option1))]),
];
for (reqs, expected) in test_cases.into_iter() {
let reqs = convert_to_sort_reqs(&reqs);
let expected = convert_to_sort_reqs(&expected);
let normalized = eq_properties.normalize_sort_requirements(&reqs);
assert!(
expected.eq(&normalized),
"error in test: reqs: {reqs:?}, expected: {expected:?}, normalized: {normalized:?}"
);
}
Ok(())
}
#[test]
fn test_eliminate_redundant_monotonic_sorts() -> Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Date32, true),
Field::new("b", DataType::Utf8, true),
Field::new("c", DataType::Timestamp(TimeUnit::Nanosecond, None), true),
]));
let base_properties = EquivalenceProperties::new(Arc::clone(&schema))
.with_reorder(
["a", "b", "c"]
.into_iter()
.map(|c| {
col(c, schema.as_ref()).map(|expr| PhysicalSortExpr {
expr,
options: SortOptions {
descending: false,
nulls_first: true,
},
})
})
.collect::<Result<Vec<_>>>()?,
);
struct TestCase {
name: &'static str,
constants: Vec<Arc<dyn PhysicalExpr>>,
equal_conditions: Vec<[Arc<dyn PhysicalExpr>; 2]>,
sort_columns: &'static [&'static str],
should_satisfy_ordering: bool,
}
let col_a = col("a", schema.as_ref())?;
let col_b = col("b", schema.as_ref())?;
let col_c = col("c", schema.as_ref())?;
let cast_c = Arc::new(CastExpr::new(col_c, DataType::Date32, None));
let cases = vec![
TestCase {
name: "(a, b, c) -> (c)",
// b is constant, so it should be removed from the sort order
constants: vec![Arc::clone(&col_b)],
equal_conditions: vec![[
Arc::clone(&cast_c) as Arc<dyn PhysicalExpr>,
Arc::clone(&col_a),
]],
sort_columns: &["c"],
should_satisfy_ordering: true,
},
// Same test with above test, where equality order is swapped.
// Algorithm shouldn't depend on this order.
TestCase {
name: "(a, b, c) -> (c)",
// b is constant, so it should be removed from the sort order
constants: vec![col_b],
equal_conditions: vec![[
Arc::clone(&col_a),
Arc::clone(&cast_c) as Arc<dyn PhysicalExpr>,
]],
sort_columns: &["c"],
should_satisfy_ordering: true,
},
TestCase {
name: "not ordered because (b) is not constant",
// b is not constant anymore
constants: vec![],
// a and c are still compatible, but this is irrelevant since the original ordering is (a, b, c)
equal_conditions: vec![[
Arc::clone(&cast_c) as Arc<dyn PhysicalExpr>,
Arc::clone(&col_a),
]],
sort_columns: &["c"],
should_satisfy_ordering: false,
},
];
for case in cases {
// Construct the equivalence properties in different orders
// to exercise different code paths
// (The resulting properties _should_ be the same)
for properties in [
// Equal conditions before constants
{
let mut properties = base_properties.clone();
for [left, right] in &case.equal_conditions {
properties.add_equal_conditions(left, right)?
}
properties.add_constants(
case.constants.iter().cloned().map(ConstExpr::from),
)
},
// Constants before equal conditions
{
let mut properties = base_properties.clone().add_constants(
case.constants.iter().cloned().map(ConstExpr::from),
);
for [left, right] in &case.equal_conditions {
properties.add_equal_conditions(left, right)?
}
properties
},
] {
let sort = case
.sort_columns
.iter()
.map(|&name| {
col(name, &schema).map(|col| PhysicalSortExpr {
expr: col,
options: SortOptions::default(),
})
})
.collect::<Result<Vec<_>>>()?;
assert_eq!(
properties.ordering_satisfy(&sort),
case.should_satisfy_ordering,
"failed test '{}'",
case.name
);
}
}
Ok(())
}
fn append_fields(schema: &SchemaRef, text: &str) -> SchemaRef {
Arc::new(Schema::new(
schema
.fields()
.iter()
.map(|field| {
Field::new(
// Annotate name with `text`:
format!("{}{}", field.name(), text),
field.data_type().clone(),
field.is_nullable(),
)
})
.collect::<Vec<_>>(),
))
}
#[tokio::test]
async fn test_union_equivalence_properties_multi_children() -> Result<()> {
let schema = create_test_schema()?;
let schema2 = append_fields(&schema, "1");
let schema3 = append_fields(&schema, "2");
let test_cases = vec![
// --------- TEST CASE 1 ----------
(
vec![
// Children 1
(
// Orderings
vec![vec!["a", "b", "c"]],
Arc::clone(&schema),
),
// Children 2
(
// Orderings
vec![vec!["a1", "b1", "c1"]],
Arc::clone(&schema2),
),
// Children 3
(
// Orderings
vec![vec!["a2", "b2"]],
Arc::clone(&schema3),
),
],
// Expected
vec![vec!["a", "b"]],
),
// --------- TEST CASE 2 ----------
(
vec![
// Children 1
(
// Orderings
vec![vec!["a", "b", "c"]],
Arc::clone(&schema),
),
// Children 2
(
// Orderings
vec![vec!["a1", "b1", "c1"]],
Arc::clone(&schema2),
),
// Children 3
(
// Orderings
vec![vec!["a2", "b2", "c2"]],
Arc::clone(&schema3),
),
],
// Expected
vec![vec!["a", "b", "c"]],
),
// --------- TEST CASE 3 ----------
(
vec![
// Children 1
(
// Orderings
vec![vec!["a", "b"]],
Arc::clone(&schema),
),
// Children 2
(
// Orderings
vec![vec!["a1", "b1", "c1"]],
Arc::clone(&schema2),
),
// Children 3
(
// Orderings
vec![vec!["a2", "b2", "c2"]],
Arc::clone(&schema3),
),
],
// Expected
vec![vec!["a", "b"]],
),
// --------- TEST CASE 4 ----------
(
vec![
// Children 1
(
// Orderings
vec![vec!["a", "b"]],
Arc::clone(&schema),
),
// Children 2
(
// Orderings
vec![vec!["a1", "b1"]],
Arc::clone(&schema2),
),
// Children 3
(
// Orderings
vec![vec!["b2", "c2"]],
Arc::clone(&schema3),
),
],
// Expected
vec![],
),
// --------- TEST CASE 5 ----------
(
vec![
// Children 1
(
// Orderings
vec![vec!["a", "b"], vec!["c"]],
Arc::clone(&schema),
),
// Children 2
(
// Orderings
vec![vec!["a1", "b1"], vec!["c1"]],
Arc::clone(&schema2),
),
],
// Expected
vec![vec!["a", "b"], vec!["c"]],
),
];
for (children, expected) in test_cases {
let children_eqs = children
.iter()
.map(|(orderings, schema)| {
let orderings = orderings
.iter()
.map(|ordering| {
ordering
.iter()
.map(|name| PhysicalSortExpr {
expr: col(name, schema).unwrap(),
options: SortOptions::default(),
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
EquivalenceProperties::new_with_orderings(
Arc::clone(schema),
&orderings,
)
})
.collect::<Vec<_>>();
let actual = calculate_union(children_eqs, Arc::clone(&schema))?;
let expected_ordering = expected
.into_iter()
.map(|ordering| {
ordering
.into_iter()
.map(|name| PhysicalSortExpr {
expr: col(name, &schema).unwrap(),
options: SortOptions::default(),
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
let expected = EquivalenceProperties::new_with_orderings(
Arc::clone(&schema),
&expected_ordering,
);
assert_eq_properties_same(
&actual,
&expected,
format!("expected: {:?}, actual: {:?}", expected, actual),
);
}
Ok(())
}
#[tokio::test]
async fn test_union_equivalence_properties_binary() -> Result<()> {
let schema = create_test_schema()?;
let schema2 = append_fields(&schema, "1");
let col_a = &col("a", &schema)?;
let col_b = &col("b", &schema)?;
let col_c = &col("c", &schema)?;
let col_a1 = &col("a1", &schema2)?;
let col_b1 = &col("b1", &schema2)?;
let options = SortOptions::default();
let options_desc = !SortOptions::default();
let test_cases = [
//-----------TEST CASE 1----------//
(
(
// First child orderings
vec![
// [a ASC]
(vec![(col_a, options)]),
],
// First child constants
vec![col_b, col_c],
Arc::clone(&schema),
),
(
// Second child orderings
vec![
// [b ASC]
(vec![(col_b, options)]),
],
// Second child constants
vec![col_a, col_c],
Arc::clone(&schema),
),
(
// Union expected orderings
vec![
// [a ASC]
vec![(col_a, options)],
// [b ASC]
vec![(col_b, options)],
],
// Union
vec![col_c],
),
),
//-----------TEST CASE 2----------//
// Meet ordering between [a ASC], [a ASC, b ASC] should be [a ASC]
(
(
// First child orderings
vec![
// [a ASC]
vec![(col_a, options)],
],
// No constant
vec![],
Arc::clone(&schema),
),
(
// Second child orderings
vec![
// [a ASC, b ASC]
vec![(col_a, options), (col_b, options)],
],
// No constant
vec![],
Arc::clone(&schema),
),
(
// Union orderings
vec![
// [a ASC]
vec![(col_a, options)],
],
// No constant
vec![],
),
),
//-----------TEST CASE 3----------//
// Meet ordering between [a ASC], [a DESC] should be []
(
(
// First child orderings
vec![
// [a ASC]
vec![(col_a, options)],
],
// No constant
vec![],
Arc::clone(&schema),
),
(
// Second child orderings
vec![
// [a DESC]
vec![(col_a, options_desc)],
],
// No constant
vec![],
Arc::clone(&schema),
),
(
// Union doesn't have any ordering
vec![],
// No constant
vec![],
),
),
//-----------TEST CASE 4----------//
// Meet ordering between [a ASC], [a1 ASC, b1 ASC] should be [a ASC]
// Where a, and a1 ath the same index for their corresponding schemas.
(
(
// First child orderings
vec![
// [a ASC]
vec![(col_a, options)],
],
// No constant
vec![],
Arc::clone(&schema),
),
(
// Second child orderings
vec![
// [a1 ASC, b1 ASC]
vec![(col_a1, options), (col_b1, options)],
],
// No constant
vec![],
Arc::clone(&schema2),
),
(
// Union orderings
vec![
// [a ASC]
vec![(col_a, options)],
],
// No constant
vec![],
),
),
];
for (
test_idx,
(
(first_child_orderings, first_child_constants, first_schema),
(second_child_orderings, second_child_constants, second_schema),
(union_orderings, union_constants),
),
) in test_cases.iter().enumerate()
{
let first_orderings = first_child_orderings
.iter()
.map(|ordering| convert_to_sort_exprs(ordering))
.collect::<Vec<_>>();
let first_constants = first_child_constants
.iter()
.map(|expr| ConstExpr::new(Arc::clone(expr)))
.collect::<Vec<_>>();
let mut lhs = EquivalenceProperties::new(Arc::clone(first_schema));
lhs = lhs.add_constants(first_constants);
lhs.add_new_orderings(first_orderings);
let second_orderings = second_child_orderings
.iter()
.map(|ordering| convert_to_sort_exprs(ordering))
.collect::<Vec<_>>();
let second_constants = second_child_constants
.iter()
.map(|expr| ConstExpr::new(Arc::clone(expr)))
.collect::<Vec<_>>();
let mut rhs = EquivalenceProperties::new(Arc::clone(second_schema));
rhs = rhs.add_constants(second_constants);
rhs.add_new_orderings(second_orderings);
let union_expected_orderings = union_orderings
.iter()
.map(|ordering| convert_to_sort_exprs(ordering))
.collect::<Vec<_>>();
let union_constants = union_constants
.iter()
.map(|expr| ConstExpr::new(Arc::clone(expr)))
.collect::<Vec<_>>();
let mut union_expected_eq = EquivalenceProperties::new(Arc::clone(&schema));
union_expected_eq = union_expected_eq.add_constants(union_constants);
union_expected_eq.add_new_orderings(union_expected_orderings);
let actual_union_eq = calculate_union_binary(lhs, rhs)?;
let err_msg = format!(
"Error in test id: {:?}, test case: {:?}",
test_idx, test_cases[test_idx]
);
assert_eq_properties_same(&actual_union_eq, &union_expected_eq, err_msg);
}
Ok(())
}
fn assert_eq_properties_same(
lhs: &EquivalenceProperties,
rhs: &EquivalenceProperties,
err_msg: String,
) {
// Check whether constants are same
let lhs_constants = lhs.constants();
let rhs_constants = rhs.constants();
assert_eq!(lhs_constants.len(), rhs_constants.len(), "{}", err_msg);
for rhs_constant in rhs_constants {
assert!(
const_exprs_contains(lhs_constants, rhs_constant.expr()),
"{}",
err_msg
);
}
// Check whether orderings are same.
let lhs_orderings = lhs.oeq_class();
let rhs_orderings = &rhs.oeq_class.orderings;
assert_eq!(lhs_orderings.len(), rhs_orderings.len(), "{}", err_msg);
for rhs_ordering in rhs_orderings {
assert!(lhs_orderings.contains(rhs_ordering), "{}", err_msg);
}
}
}