1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::sync::Arc;
use super::{add_offset_to_expr, collapse_lex_req, ProjectionMapping};
use crate::{
expressions::Column, physical_expr::deduplicate_physical_exprs,
physical_exprs_bag_equal, physical_exprs_contains, LexOrdering, LexOrderingRef,
LexRequirement, LexRequirementRef, PhysicalExpr, PhysicalExprRef, PhysicalSortExpr,
PhysicalSortRequirement,
};
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::JoinType;
#[derive(Debug, Clone)]
/// A structure representing a expression known to be constant in a physical execution plan.
///
/// The `ConstExpr` struct encapsulates an expression that is constant during the execution
/// of a query. For example if a predicate like `A = 5` applied earlier in the plan `A` would
/// be known constant
///
/// # Fields
///
/// - `expr`: Constant expression for a node in the physical plan.
///
/// - `across_partitions`: A boolean flag indicating whether the constant expression is
/// valid across partitions. If set to `true`, the constant expression has same value for all partitions.
/// If set to `false`, the constant expression may have different values for different partitions.
///
/// # Example
///
/// ```rust
/// # use datafusion_physical_expr::ConstExpr;
/// # use datafusion_physical_expr_common::expressions::lit;
/// let col = lit(5);
/// // Create a constant expression from a physical expression ref
/// let const_expr = ConstExpr::from(&col);
/// // create a constant expression from a physical expression
/// let const_expr = ConstExpr::from(col);
/// ```
pub struct ConstExpr {
expr: Arc<dyn PhysicalExpr>,
across_partitions: bool,
}
impl ConstExpr {
/// Create a new constant expression from a physical expression.
///
/// Note you can also use `ConstExpr::from` to create a constant expression
/// from a reference as well
pub fn new(expr: Arc<dyn PhysicalExpr>) -> Self {
Self {
expr,
// By default, assume constant expressions are not same across partitions.
across_partitions: false,
}
}
pub fn with_across_partitions(mut self, across_partitions: bool) -> Self {
self.across_partitions = across_partitions;
self
}
pub fn across_partitions(&self) -> bool {
self.across_partitions
}
pub fn expr(&self) -> &Arc<dyn PhysicalExpr> {
&self.expr
}
pub fn owned_expr(self) -> Arc<dyn PhysicalExpr> {
self.expr
}
pub fn map<F>(&self, f: F) -> Option<Self>
where
F: Fn(&Arc<dyn PhysicalExpr>) -> Option<Arc<dyn PhysicalExpr>>,
{
let maybe_expr = f(&self.expr);
maybe_expr.map(|expr| Self {
expr,
across_partitions: self.across_partitions,
})
}
}
impl From<Arc<dyn PhysicalExpr>> for ConstExpr {
fn from(expr: Arc<dyn PhysicalExpr>) -> Self {
Self::new(expr)
}
}
impl From<&Arc<dyn PhysicalExpr>> for ConstExpr {
fn from(expr: &Arc<dyn PhysicalExpr>) -> Self {
Self::new(Arc::clone(expr))
}
}
/// Checks whether `expr` is among in the `const_exprs`.
pub fn const_exprs_contains(
const_exprs: &[ConstExpr],
expr: &Arc<dyn PhysicalExpr>,
) -> bool {
const_exprs
.iter()
.any(|const_expr| const_expr.expr.eq(expr))
}
/// An `EquivalenceClass` is a set of [`Arc<dyn PhysicalExpr>`]s that are known
/// to have the same value for all tuples in a relation. These are generated by
/// equality predicates (e.g. `a = b`), typically equi-join conditions and
/// equality conditions in filters.
///
/// Two `EquivalenceClass`es are equal if they contains the same expressions in
/// without any ordering.
#[derive(Debug, Clone)]
pub struct EquivalenceClass {
/// The expressions in this equivalence class. The order doesn't
/// matter for equivalence purposes
///
/// TODO: use a HashSet for this instead of a Vec
exprs: Vec<Arc<dyn PhysicalExpr>>,
}
impl PartialEq for EquivalenceClass {
/// Returns true if other is equal in the sense
/// of bags (multi-sets), disregarding their orderings.
fn eq(&self, other: &Self) -> bool {
physical_exprs_bag_equal(&self.exprs, &other.exprs)
}
}
impl EquivalenceClass {
/// Create a new empty equivalence class
pub fn new_empty() -> Self {
Self { exprs: vec![] }
}
// Create a new equivalence class from a pre-existing `Vec`
pub fn new(mut exprs: Vec<Arc<dyn PhysicalExpr>>) -> Self {
deduplicate_physical_exprs(&mut exprs);
Self { exprs }
}
/// Return the inner vector of expressions
pub fn into_vec(self) -> Vec<Arc<dyn PhysicalExpr>> {
self.exprs
}
/// Return the "canonical" expression for this class (the first element)
/// if any
fn canonical_expr(&self) -> Option<Arc<dyn PhysicalExpr>> {
self.exprs.first().cloned()
}
/// Insert the expression into this class, meaning it is known to be equal to
/// all other expressions in this class
pub fn push(&mut self, expr: Arc<dyn PhysicalExpr>) {
if !self.contains(&expr) {
self.exprs.push(expr);
}
}
/// Inserts all the expressions from other into this class
pub fn extend(&mut self, other: Self) {
for expr in other.exprs {
// use push so entries are deduplicated
self.push(expr);
}
}
/// Returns true if this equivalence class contains t expression
pub fn contains(&self, expr: &Arc<dyn PhysicalExpr>) -> bool {
physical_exprs_contains(&self.exprs, expr)
}
/// Returns true if this equivalence class has any entries in common with `other`
pub fn contains_any(&self, other: &Self) -> bool {
self.exprs.iter().any(|e| other.contains(e))
}
/// return the number of items in this class
pub fn len(&self) -> usize {
self.exprs.len()
}
/// return true if this class is empty
pub fn is_empty(&self) -> bool {
self.exprs.is_empty()
}
/// Iterate over all elements in this class, in some arbitrary order
pub fn iter(&self) -> impl Iterator<Item = &Arc<dyn PhysicalExpr>> {
self.exprs.iter()
}
/// Return a new equivalence class that have the specified offset added to
/// each expression (used when schemas are appended such as in joins)
pub fn with_offset(&self, offset: usize) -> Self {
let new_exprs = self
.exprs
.iter()
.cloned()
.map(|e| add_offset_to_expr(e, offset))
.collect();
Self::new(new_exprs)
}
}
/// An `EquivalenceGroup` is a collection of `EquivalenceClass`es where each
/// class represents a distinct equivalence class in a relation.
#[derive(Debug, Clone)]
pub struct EquivalenceGroup {
pub classes: Vec<EquivalenceClass>,
}
impl EquivalenceGroup {
/// Creates an empty equivalence group.
pub fn empty() -> Self {
Self { classes: vec![] }
}
/// Creates an equivalence group from the given equivalence classes.
pub fn new(classes: Vec<EquivalenceClass>) -> Self {
let mut result = Self { classes };
result.remove_redundant_entries();
result
}
/// Returns how many equivalence classes there are in this group.
pub fn len(&self) -> usize {
self.classes.len()
}
/// Checks whether this equivalence group is empty.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns an iterator over the equivalence classes in this group.
pub fn iter(&self) -> impl Iterator<Item = &EquivalenceClass> {
self.classes.iter()
}
/// Adds the equality `left` = `right` to this equivalence group.
/// New equality conditions often arise after steps like `Filter(a = b)`,
/// `Alias(a, a as b)` etc.
pub fn add_equal_conditions(
&mut self,
left: &Arc<dyn PhysicalExpr>,
right: &Arc<dyn PhysicalExpr>,
) {
let mut first_class = None;
let mut second_class = None;
for (idx, cls) in self.classes.iter().enumerate() {
if cls.contains(left) {
first_class = Some(idx);
}
if cls.contains(right) {
second_class = Some(idx);
}
}
match (first_class, second_class) {
(Some(mut first_idx), Some(mut second_idx)) => {
// If the given left and right sides belong to different classes,
// we should unify/bridge these classes.
if first_idx != second_idx {
// By convention, make sure `second_idx` is larger than `first_idx`.
if first_idx > second_idx {
(first_idx, second_idx) = (second_idx, first_idx);
}
// Remove the class at `second_idx` and merge its values with
// the class at `first_idx`. The convention above makes sure
// that `first_idx` is still valid after removing `second_idx`.
let other_class = self.classes.swap_remove(second_idx);
self.classes[first_idx].extend(other_class);
}
}
(Some(group_idx), None) => {
// Right side is new, extend left side's class:
self.classes[group_idx].push(Arc::clone(right));
}
(None, Some(group_idx)) => {
// Left side is new, extend right side's class:
self.classes[group_idx].push(Arc::clone(left));
}
(None, None) => {
// None of the expressions is among existing classes.
// Create a new equivalence class and extend the group.
self.classes.push(EquivalenceClass::new(vec![
Arc::clone(left),
Arc::clone(right),
]));
}
}
}
/// Removes redundant entries from this group.
fn remove_redundant_entries(&mut self) {
// Remove duplicate entries from each equivalence class:
self.classes.retain_mut(|cls| {
// Keep groups that have at least two entries as singleton class is
// meaningless (i.e. it contains no non-trivial information):
cls.len() > 1
});
// Unify/bridge groups that have common expressions:
self.bridge_classes()
}
/// This utility function unifies/bridges classes that have common expressions.
/// For example, assume that we have [`EquivalenceClass`]es `[a, b]` and `[b, c]`.
/// Since both classes contain `b`, columns `a`, `b` and `c` are actually all
/// equal and belong to one class. This utility converts merges such classes.
fn bridge_classes(&mut self) {
let mut idx = 0;
while idx < self.classes.len() {
let mut next_idx = idx + 1;
let start_size = self.classes[idx].len();
while next_idx < self.classes.len() {
if self.classes[idx].contains_any(&self.classes[next_idx]) {
let extension = self.classes.swap_remove(next_idx);
self.classes[idx].extend(extension);
} else {
next_idx += 1;
}
}
if self.classes[idx].len() > start_size {
continue;
}
idx += 1;
}
}
/// Extends this equivalence group with the `other` equivalence group.
pub fn extend(&mut self, other: Self) {
self.classes.extend(other.classes);
self.remove_redundant_entries();
}
/// Normalizes the given physical expression according to this group.
/// The expression is replaced with the first expression in the equivalence
/// class it matches with (if any).
pub fn normalize_expr(&self, expr: Arc<dyn PhysicalExpr>) -> Arc<dyn PhysicalExpr> {
Arc::clone(&expr)
.transform(|expr| {
for cls in self.iter() {
if cls.contains(&expr) {
return Ok(Transformed::yes(cls.canonical_expr().unwrap()));
}
}
Ok(Transformed::no(expr))
})
.data()
.unwrap_or(expr)
}
/// Normalizes the given sort expression according to this group.
/// The underlying physical expression is replaced with the first expression
/// in the equivalence class it matches with (if any). If the underlying
/// expression does not belong to any equivalence class in this group, returns
/// the sort expression as is.
pub fn normalize_sort_expr(
&self,
mut sort_expr: PhysicalSortExpr,
) -> PhysicalSortExpr {
sort_expr.expr = self.normalize_expr(sort_expr.expr);
sort_expr
}
/// Normalizes the given sort requirement according to this group.
/// The underlying physical expression is replaced with the first expression
/// in the equivalence class it matches with (if any). If the underlying
/// expression does not belong to any equivalence class in this group, returns
/// the given sort requirement as is.
pub fn normalize_sort_requirement(
&self,
mut sort_requirement: PhysicalSortRequirement,
) -> PhysicalSortRequirement {
sort_requirement.expr = self.normalize_expr(sort_requirement.expr);
sort_requirement
}
/// This function applies the `normalize_expr` function for all expressions
/// in `exprs` and returns the corresponding normalized physical expressions.
pub fn normalize_exprs(
&self,
exprs: impl IntoIterator<Item = Arc<dyn PhysicalExpr>>,
) -> Vec<Arc<dyn PhysicalExpr>> {
exprs
.into_iter()
.map(|expr| self.normalize_expr(expr))
.collect()
}
/// This function applies the `normalize_sort_expr` function for all sort
/// expressions in `sort_exprs` and returns the corresponding normalized
/// sort expressions.
pub fn normalize_sort_exprs(&self, sort_exprs: LexOrderingRef) -> LexOrdering {
// Convert sort expressions to sort requirements:
let sort_reqs = PhysicalSortRequirement::from_sort_exprs(sort_exprs.iter());
// Normalize the requirements:
let normalized_sort_reqs = self.normalize_sort_requirements(&sort_reqs);
// Convert sort requirements back to sort expressions:
PhysicalSortRequirement::to_sort_exprs(normalized_sort_reqs)
}
/// This function applies the `normalize_sort_requirement` function for all
/// requirements in `sort_reqs` and returns the corresponding normalized
/// sort requirements.
pub fn normalize_sort_requirements(
&self,
sort_reqs: LexRequirementRef,
) -> LexRequirement {
collapse_lex_req(
sort_reqs
.iter()
.map(|sort_req| self.normalize_sort_requirement(sort_req.clone()))
.collect(),
)
}
/// Projects `expr` according to the given projection mapping.
/// If the resulting expression is invalid after projection, returns `None`.
pub fn project_expr(
&self,
mapping: &ProjectionMapping,
expr: &Arc<dyn PhysicalExpr>,
) -> Option<Arc<dyn PhysicalExpr>> {
// First, we try to project expressions with an exact match. If we are
// unable to do this, we consult equivalence classes.
if let Some(target) = mapping.target_expr(expr) {
// If we match the source, we can project directly:
return Some(target);
} else {
// If the given expression is not inside the mapping, try to project
// expressions considering the equivalence classes.
for (source, target) in mapping.iter() {
// If we match an equivalent expression to `source`, then we can
// project. For example, if we have the mapping `(a as a1, a + c)`
// and the equivalence class `(a, b)`, expression `b` projects to `a1`.
if self
.get_equivalence_class(source)
.map_or(false, |group| group.contains(expr))
{
return Some(Arc::clone(target));
}
}
}
// Project a non-leaf expression by projecting its children.
let children = expr.children();
if children.is_empty() {
// Leaf expression should be inside mapping.
return None;
}
children
.into_iter()
.map(|child| self.project_expr(mapping, child))
.collect::<Option<Vec<_>>>()
.map(|children| Arc::clone(expr).with_new_children(children).unwrap())
}
/// Projects this equivalence group according to the given projection mapping.
pub fn project(&self, mapping: &ProjectionMapping) -> Self {
let projected_classes = self.iter().filter_map(|cls| {
let new_class = cls
.iter()
.filter_map(|expr| self.project_expr(mapping, expr))
.collect::<Vec<_>>();
(new_class.len() > 1).then_some(EquivalenceClass::new(new_class))
});
// TODO: Convert the algorithm below to a version that uses `HashMap`.
// once `Arc<dyn PhysicalExpr>` can be stored in `HashMap`.
// See issue: https://github.com/apache/datafusion/issues/8027
let mut new_classes = vec![];
for (source, target) in mapping.iter() {
if new_classes.is_empty() {
new_classes.push((source, vec![Arc::clone(target)]));
}
if let Some((_, values)) =
new_classes.iter_mut().find(|(key, _)| key.eq(source))
{
if !physical_exprs_contains(values, target) {
values.push(Arc::clone(target));
}
}
}
// Only add equivalence classes with at least two members as singleton
// equivalence classes are meaningless.
let new_classes = new_classes
.into_iter()
.filter_map(|(_, values)| (values.len() > 1).then_some(values))
.map(EquivalenceClass::new);
let classes = projected_classes.chain(new_classes).collect();
Self::new(classes)
}
/// Returns the equivalence class containing `expr`. If no equivalence class
/// contains `expr`, returns `None`.
fn get_equivalence_class(
&self,
expr: &Arc<dyn PhysicalExpr>,
) -> Option<&EquivalenceClass> {
self.iter().find(|cls| cls.contains(expr))
}
/// Combine equivalence groups of the given join children.
pub fn join(
&self,
right_equivalences: &Self,
join_type: &JoinType,
left_size: usize,
on: &[(PhysicalExprRef, PhysicalExprRef)],
) -> Self {
match join_type {
JoinType::Inner | JoinType::Left | JoinType::Full | JoinType::Right => {
let mut result = Self::new(
self.iter()
.cloned()
.chain(
right_equivalences
.iter()
.map(|cls| cls.with_offset(left_size)),
)
.collect(),
);
// In we have an inner join, expressions in the "on" condition
// are equal in the resulting table.
if join_type == &JoinType::Inner {
for (lhs, rhs) in on.iter() {
let new_lhs = Arc::clone(lhs) as _;
// Rewrite rhs to point to the right side of the join:
let new_rhs = Arc::clone(rhs)
.transform(|expr| {
if let Some(column) =
expr.as_any().downcast_ref::<Column>()
{
let new_column = Arc::new(Column::new(
column.name(),
column.index() + left_size,
))
as _;
return Ok(Transformed::yes(new_column));
}
Ok(Transformed::no(expr))
})
.data()
.unwrap();
result.add_equal_conditions(&new_lhs, &new_rhs);
}
}
result
}
JoinType::LeftSemi | JoinType::LeftAnti => self.clone(),
JoinType::RightSemi | JoinType::RightAnti => right_equivalences.clone(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::equivalence::tests::create_test_params;
use crate::expressions::{lit, Literal};
use datafusion_common::{Result, ScalarValue};
#[test]
fn test_bridge_groups() -> Result<()> {
// First entry in the tuple is argument, second entry is the bridged result
let test_cases = vec![
// ------- TEST CASE 1 -----------//
(
vec![vec![1, 2, 3], vec![2, 4, 5], vec![11, 12, 9], vec![7, 6, 5]],
// Expected is compared with set equality. Order of the specific results may change.
vec![vec![1, 2, 3, 4, 5, 6, 7], vec![9, 11, 12]],
),
// ------- TEST CASE 2 -----------//
(
vec![vec![1, 2, 3], vec![3, 4, 5], vec![9, 8, 7], vec![7, 6, 5]],
// Expected
vec![vec![1, 2, 3, 4, 5, 6, 7, 8, 9]],
),
];
for (entries, expected) in test_cases {
let entries = entries
.into_iter()
.map(|entry| entry.into_iter().map(lit).collect::<Vec<_>>())
.map(EquivalenceClass::new)
.collect::<Vec<_>>();
let expected = expected
.into_iter()
.map(|entry| entry.into_iter().map(lit).collect::<Vec<_>>())
.map(EquivalenceClass::new)
.collect::<Vec<_>>();
let mut eq_groups = EquivalenceGroup::new(entries.clone());
eq_groups.bridge_classes();
let eq_groups = eq_groups.classes;
let err_msg = format!(
"error in test entries: {:?}, expected: {:?}, actual:{:?}",
entries, expected, eq_groups
);
assert_eq!(eq_groups.len(), expected.len(), "{}", err_msg);
for idx in 0..eq_groups.len() {
assert_eq!(&eq_groups[idx], &expected[idx], "{}", err_msg);
}
}
Ok(())
}
#[test]
fn test_remove_redundant_entries_eq_group() -> Result<()> {
let entries = [
EquivalenceClass::new(vec![lit(1), lit(1), lit(2)]),
// This group is meaningless should be removed
EquivalenceClass::new(vec![lit(3), lit(3)]),
EquivalenceClass::new(vec![lit(4), lit(5), lit(6)]),
];
// Given equivalences classes are not in succinct form.
// Expected form is the most plain representation that is functionally same.
let expected = [
EquivalenceClass::new(vec![lit(1), lit(2)]),
EquivalenceClass::new(vec![lit(4), lit(5), lit(6)]),
];
let mut eq_groups = EquivalenceGroup::new(entries.to_vec());
eq_groups.remove_redundant_entries();
let eq_groups = eq_groups.classes;
assert_eq!(eq_groups.len(), expected.len());
assert_eq!(eq_groups.len(), 2);
assert_eq!(eq_groups[0], expected[0]);
assert_eq!(eq_groups[1], expected[1]);
Ok(())
}
#[test]
fn test_schema_normalize_expr_with_equivalence() -> Result<()> {
let col_a = &Column::new("a", 0);
let col_b = &Column::new("b", 1);
let col_c = &Column::new("c", 2);
// Assume that column a and c are aliases.
let (_test_schema, eq_properties) = create_test_params()?;
let col_a_expr = Arc::new(col_a.clone()) as Arc<dyn PhysicalExpr>;
let col_b_expr = Arc::new(col_b.clone()) as Arc<dyn PhysicalExpr>;
let col_c_expr = Arc::new(col_c.clone()) as Arc<dyn PhysicalExpr>;
// Test cases for equivalence normalization,
// First entry in the tuple is argument, second entry is expected result after normalization.
let expressions = vec![
// Normalized version of the column a and c should go to a
// (by convention all the expressions inside equivalence class are mapped to the first entry
// in this case a is the first entry in the equivalence class.)
(&col_a_expr, &col_a_expr),
(&col_c_expr, &col_a_expr),
// Cannot normalize column b
(&col_b_expr, &col_b_expr),
];
let eq_group = eq_properties.eq_group();
for (expr, expected_eq) in expressions {
assert!(
expected_eq.eq(&eq_group.normalize_expr(Arc::clone(expr))),
"error in test: expr: {expr:?}"
);
}
Ok(())
}
#[test]
fn test_contains_any() {
let lit_true = Arc::new(Literal::new(ScalarValue::Boolean(Some(true))))
as Arc<dyn PhysicalExpr>;
let lit_false = Arc::new(Literal::new(ScalarValue::Boolean(Some(false))))
as Arc<dyn PhysicalExpr>;
let lit2 =
Arc::new(Literal::new(ScalarValue::Int32(Some(2)))) as Arc<dyn PhysicalExpr>;
let lit1 =
Arc::new(Literal::new(ScalarValue::Int32(Some(1)))) as Arc<dyn PhysicalExpr>;
let col_b_expr = Arc::new(Column::new("b", 1)) as Arc<dyn PhysicalExpr>;
let cls1 =
EquivalenceClass::new(vec![Arc::clone(&lit_true), Arc::clone(&lit_false)]);
let cls2 =
EquivalenceClass::new(vec![Arc::clone(&lit_true), Arc::clone(&col_b_expr)]);
let cls3 = EquivalenceClass::new(vec![Arc::clone(&lit2), Arc::clone(&lit1)]);
// lit_true is common
assert!(cls1.contains_any(&cls2));
// there is no common entry
assert!(!cls1.contains_any(&cls3));
assert!(!cls2.contains_any(&cls3));
}
}