datafusion_physical_expr/expressions/
column.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Physical column reference: [`Column`]

use std::any::Any;
use std::hash::{Hash, Hasher};
use std::sync::Arc;

use arrow::{
    datatypes::{DataType, Schema},
    record_batch::RecordBatch,
};
use arrow_schema::SchemaRef;
use datafusion_common::tree_node::{Transformed, TreeNode};
use datafusion_common::{internal_err, plan_err, Result};
use datafusion_expr::ColumnarValue;

use crate::physical_expr::{down_cast_any_ref, PhysicalExpr};

/// Represents the column at a given index in a RecordBatch
///
/// This is a physical expression that represents a column at a given index in an
/// arrow [`Schema`] / [`RecordBatch`].
///
/// Unlike the [logical `Expr::Column`], this expression is always resolved by schema index,
/// even though it does have a name. This is because the physical plan is always
/// resolved to a specific schema and there is no concept of "relation"
///
/// # Example:
///  If the schema is `a`, `b`, `c` the `Column` for `b` would be represented by
///  index 1, since `b` is the second colum in the schema.
///
/// ```
/// # use datafusion_physical_expr::expressions::Column;
/// # use arrow::datatypes::{DataType, Field, Schema};
/// // Schema with columns a, b, c
/// let schema = Schema::new(vec![
///    Field::new("a", DataType::Int32, false),
///    Field::new("b", DataType::Int32, false),
///    Field::new("c", DataType::Int32, false),
/// ]);
///
/// // reference to column b is index 1
/// let column_b = Column::new_with_schema("b", &schema).unwrap();
/// assert_eq!(column_b.index(), 1);
///
/// // reference to column c is index 2
/// let column_c = Column::new_with_schema("c", &schema).unwrap();
/// assert_eq!(column_c.index(), 2);
/// ```
/// [logical `Expr::Column`]: https://docs.rs/datafusion/latest/datafusion/logical_expr/enum.Expr.html#variant.Column
#[derive(Debug, Hash, PartialEq, Eq, Clone)]
pub struct Column {
    /// The name of the column (used for debugging and display purposes)
    name: String,
    /// The index of the column in its schema
    index: usize,
}

impl Column {
    /// Create a new column expression which references the
    /// column with the given index in the schema.
    pub fn new(name: &str, index: usize) -> Self {
        Self {
            name: name.to_owned(),
            index,
        }
    }

    /// Create a new column expression which references the
    /// column with the given name in the schema
    pub fn new_with_schema(name: &str, schema: &Schema) -> Result<Self> {
        Ok(Column::new(name, schema.index_of(name)?))
    }

    /// Get the column's name
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Get the column's schema index
    pub fn index(&self) -> usize {
        self.index
    }
}

impl std::fmt::Display for Column {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}@{}", self.name, self.index)
    }
}

impl PhysicalExpr for Column {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    /// Get the data type of this expression, given the schema of the input
    fn data_type(&self, input_schema: &Schema) -> Result<DataType> {
        self.bounds_check(input_schema)?;
        Ok(input_schema.field(self.index).data_type().clone())
    }

    /// Decide whether this expression is nullable, given the schema of the input
    fn nullable(&self, input_schema: &Schema) -> Result<bool> {
        self.bounds_check(input_schema)?;
        Ok(input_schema.field(self.index).is_nullable())
    }

    /// Evaluate the expression
    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
        self.bounds_check(batch.schema().as_ref())?;
        Ok(ColumnarValue::Array(Arc::clone(batch.column(self.index))))
    }

    fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>> {
        vec![]
    }

    fn with_new_children(
        self: Arc<Self>,
        _children: Vec<Arc<dyn PhysicalExpr>>,
    ) -> Result<Arc<dyn PhysicalExpr>> {
        Ok(self)
    }

    fn dyn_hash(&self, state: &mut dyn Hasher) {
        let mut s = state;
        self.hash(&mut s);
    }
}

impl PartialEq<dyn Any> for Column {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| self == x)
            .unwrap_or(false)
    }
}

impl Column {
    fn bounds_check(&self, input_schema: &Schema) -> Result<()> {
        if self.index < input_schema.fields.len() {
            Ok(())
        } else {
            internal_err!(
                "PhysicalExpr Column references column '{}' at index {} (zero-based) but input schema only has {} columns: {:?}",
                self.name,
                self.index,
                input_schema.fields.len(),
                input_schema.fields().iter().map(|f| f.name()).collect::<Vec<_>>()
            )
        }
    }
}

/// Create a column expression
pub fn col(name: &str, schema: &Schema) -> Result<Arc<dyn PhysicalExpr>> {
    Ok(Arc::new(Column::new_with_schema(name, schema)?))
}

/// Rewrites an expression according to new schema; i.e. changes the columns it
/// refers to with the column at corresponding index in the new schema. Returns
/// an error if the given schema has fewer columns than the original schema.
/// Note that the resulting expression may not be valid if data types in the
/// new schema is incompatible with expression nodes.
pub fn with_new_schema(
    expr: Arc<dyn PhysicalExpr>,
    schema: &SchemaRef,
) -> Result<Arc<dyn PhysicalExpr>> {
    Ok(expr
        .transform_up(|expr| {
            if let Some(col) = expr.as_any().downcast_ref::<Column>() {
                let idx = col.index();
                let Some(field) = schema.fields().get(idx) else {
                    return plan_err!(
                        "New schema has fewer columns than original schema"
                    );
                };
                let new_col = Column::new(field.name(), idx);
                Ok(Transformed::yes(Arc::new(new_col) as _))
            } else {
                Ok(Transformed::no(expr))
            }
        })?
        .data)
}

#[cfg(test)]
mod test {
    use super::Column;
    use crate::physical_expr::PhysicalExpr;

    use arrow::array::StringArray;
    use arrow::datatypes::{DataType, Field, Schema};
    use arrow::record_batch::RecordBatch;
    use datafusion_common::Result;

    use std::sync::Arc;

    #[test]
    fn out_of_bounds_data_type() {
        let schema = Schema::new(vec![Field::new("foo", DataType::Utf8, true)]);
        let col = Column::new("id", 9);
        let error = col.data_type(&schema).expect_err("error").strip_backtrace();
        assert!("Internal error: PhysicalExpr Column references column 'id' at index 9 (zero-based) \
            but input schema only has 1 columns: [\"foo\"].\nThis was likely caused by a bug in \
            DataFusion's code and we would welcome that you file an bug report in our issue tracker".starts_with(&error))
    }

    #[test]
    fn out_of_bounds_nullable() {
        let schema = Schema::new(vec![Field::new("foo", DataType::Utf8, true)]);
        let col = Column::new("id", 9);
        let error = col.nullable(&schema).expect_err("error").strip_backtrace();
        assert!("Internal error: PhysicalExpr Column references column 'id' at index 9 (zero-based) \
            but input schema only has 1 columns: [\"foo\"].\nThis was likely caused by a bug in \
            DataFusion's code and we would welcome that you file an bug report in our issue tracker".starts_with(&error))
    }

    #[test]
    fn out_of_bounds_evaluate() -> Result<()> {
        let schema = Schema::new(vec![Field::new("foo", DataType::Utf8, true)]);
        let data: StringArray = vec!["data"].into();
        let batch = RecordBatch::try_new(Arc::new(schema), vec![Arc::new(data)])?;
        let col = Column::new("id", 9);
        let error = col.evaluate(&batch).expect_err("error").strip_backtrace();
        assert!("Internal error: PhysicalExpr Column references column 'id' at index 9 (zero-based) \
            but input schema only has 1 columns: [\"foo\"].\nThis was likely caused by a bug in \
            DataFusion's code and we would welcome that you file an bug report in our issue tracker".starts_with(&error));
        Ok(())
    }
}