datafusion_physical_expr/utils/
guarantee.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`LiteralGuarantee`] predicate analysis to determine if a column is a
//! constant.

use crate::utils::split_disjunction;
use crate::{split_conjunction, PhysicalExpr};
use datafusion_common::{Column, ScalarValue};
use datafusion_expr::Operator;
use std::collections::{HashMap, HashSet};
use std::fmt::{self, Display, Formatter};
use std::sync::Arc;

/// Represents a guarantee that must be true for a boolean expression to
/// evaluate to `true`.
///
/// The guarantee takes the form of a column and a set of literal (constant)
/// [`ScalarValue`]s. For the expression to evaluate to `true`, the column *must
/// satisfy* the guarantee(s).
///
/// To satisfy the guarantee, depending on [`Guarantee`], the values in the
/// column must either:
///
/// 1. be ONLY one of that set
/// 2. NOT be ANY of that set
///
/// # Uses `LiteralGuarantee`s
///
/// `LiteralGuarantee`s can be used to simplify filter expressions and skip data
/// files (e.g. row groups in parquet files) by proving expressions can not
/// possibly evaluate to `true`. For example, if we have a guarantee that `a`
/// must be in (`1`) for a filter to evaluate to `true`, then we can skip any
/// partition where we know that `a` never has the value of `1`.
///
/// **Important**: If a `LiteralGuarantee` is not satisfied, the relevant
/// expression is *guaranteed* to evaluate to `false` or `null`. **However**,
/// the opposite does not hold. Even if all `LiteralGuarantee`s are satisfied,
/// that does **not** guarantee that the predicate will actually evaluate to
/// `true`: it may still evaluate to `true`, `false` or `null`.
///
/// # Creating `LiteralGuarantee`s
///
/// Use [`LiteralGuarantee::analyze`] to extract literal guarantees from a
/// filter predicate.
///
/// # Details
/// A guarantee can be one of two forms:
///
/// 1. The column must be one the values for the predicate to be `true`. If the
///    column takes on any other value, the predicate can not evaluate to `true`.
///    For example,
///    `(a = 1)`, `(a = 1 OR a = 2)` or `a IN (1, 2, 3)`
///
/// 2. The column must NOT be one of the values for the predicate to be `true`.
///    If the column can ONLY take one of these values, the predicate can not
///    evaluate to `true`. For example,
///    `(a != 1)`, `(a != 1 AND a != 2)` or `a NOT IN (1, 2, 3)`
#[derive(Debug, Clone, PartialEq)]
pub struct LiteralGuarantee {
    pub column: Column,
    pub guarantee: Guarantee,
    pub literals: HashSet<ScalarValue>,
}

/// What is guaranteed about the values for a [`LiteralGuarantee`]?
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Guarantee {
    /// Guarantee that the expression is `true` if `column` is one of the values. If
    /// `column` is not one of the values, the expression can not be `true`.
    In,
    /// Guarantee that the expression is `true` if `column` is not ANY of the
    /// values. If `column` only takes one of these values, the expression can
    /// not be `true`.
    NotIn,
}

impl LiteralGuarantee {
    /// Create a new instance of the guarantee if the provided operator is
    /// supported. Returns None otherwise. See [`LiteralGuarantee::analyze`] to
    /// create these structures from an predicate (boolean expression).
    fn new<'a>(
        column_name: impl Into<String>,
        guarantee: Guarantee,
        literals: impl IntoIterator<Item = &'a ScalarValue>,
    ) -> Self {
        let literals: HashSet<_> = literals.into_iter().cloned().collect();

        Self {
            column: Column::from_name(column_name),
            guarantee,
            literals,
        }
    }

    /// Return a list of [`LiteralGuarantee`]s that must be satisfied for `expr`
    /// to evaluate to `true`.
    ///
    /// If more than one `LiteralGuarantee` is returned, they must **all** hold
    /// for the expression to possibly be `true`. If any is not satisfied, the
    /// expression is guaranteed to be `null` or `false`.
    ///
    /// # Notes:
    /// 1. `expr` must be a boolean expression or inlist expression.
    /// 2. `expr` is not simplified prior to analysis.
    pub fn analyze(expr: &Arc<dyn PhysicalExpr>) -> Vec<LiteralGuarantee> {
        // split conjunction: <expr> AND <expr> AND ...
        split_conjunction(expr)
            .into_iter()
            // for an `AND` conjunction to be true, all terms individually must be true
            .fold(GuaranteeBuilder::new(), |builder, expr| {
                if let Some(cel) = ColOpLit::try_new(expr) {
                    return builder.aggregate_conjunct(cel);
                } else if let Some(inlist) = expr
                    .as_any()
                    .downcast_ref::<crate::expressions::InListExpr>()
                {
                    // Only support single-column inlist currently, multi-column inlist is not supported
                    let col = inlist
                        .expr()
                        .as_any()
                        .downcast_ref::<crate::expressions::Column>();
                    let Some(col) = col else {
                        return builder;
                    };

                    let literals = inlist
                        .list()
                        .iter()
                        .map(|e| e.as_any().downcast_ref::<crate::expressions::Literal>())
                        .collect::<Option<Vec<_>>>();
                    let Some(literals) = literals else {
                        return builder;
                    };

                    let guarantee = if inlist.negated() {
                        Guarantee::NotIn
                    } else {
                        Guarantee::In
                    };

                    builder.aggregate_multi_conjunct(
                        col,
                        guarantee,
                        literals.iter().map(|e| e.value()),
                    )
                } else {
                    // split disjunction: <expr> OR <expr> OR ...
                    let disjunctions = split_disjunction(expr);

                    // We are trying to add a guarantee that a column must be
                    // in/not in a particular set of values for the expression
                    // to evaluate to true.
                    //
                    // A disjunction is true, if at least one of the terms is be
                    // true.
                    //
                    // Thus, we can infer a guarantee if all terms are of the
                    // form `(col <op> literal) OR (col <op> literal) OR ...`.
                    //
                    // For example, we can infer that `a = 1 OR a = 2 OR a = 3`
                    // is guaranteed to be true ONLY if a is in (`1`, `2` or `3`).
                    //
                    // However, for something like  `a = 1 OR a = 2 OR a < 0` we
                    // **can't** guarantee that the predicate is only true if a
                    // is in (`1`, `2`), as it could also be true if `a` were less
                    // than zero.
                    let terms = disjunctions
                        .iter()
                        .filter_map(|expr| ColOpLit::try_new(expr))
                        .collect::<Vec<_>>();

                    if terms.is_empty() {
                        return builder;
                    }

                    // if not all terms are of the form (col <op> literal),
                    // can't infer any guarantees
                    if terms.len() != disjunctions.len() {
                        return builder;
                    }

                    // if all terms are 'col <op> literal' with the same column
                    // and operation we can infer any guarantees
                    //
                    // For those like (a != foo AND (a != bar OR a != baz)).
                    // We can't combine the (a != bar OR a != baz) part, but
                    // it also doesn't invalidate our knowledge that a !=
                    // foo is required for the expression to be true.
                    // So we can only create a multi value guarantee for `=`
                    // (or a single value). (e.g. ignore `a != foo OR a != bar`)
                    let first_term = &terms[0];
                    if terms.iter().all(|term| {
                        term.col.name() == first_term.col.name()
                            && term.guarantee == Guarantee::In
                    }) {
                        builder.aggregate_multi_conjunct(
                            first_term.col,
                            Guarantee::In,
                            terms.iter().map(|term| term.lit.value()),
                        )
                    } else {
                        // can't infer anything
                        builder
                    }
                }
            })
            .build()
    }
}

impl Display for LiteralGuarantee {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let mut sorted_literals: Vec<_> =
            self.literals.iter().map(|lit| lit.to_string()).collect();
        sorted_literals.sort();
        match self.guarantee {
            Guarantee::In => write!(
                f,
                "{} in ({})",
                self.column.name,
                sorted_literals.join(", ")
            ),
            Guarantee::NotIn => write!(
                f,
                "{} not in ({})",
                self.column.name,
                sorted_literals.join(", ")
            ),
        }
    }
}

/// Combines conjuncts (aka terms `AND`ed together) into [`LiteralGuarantee`]s,
/// preserving insert order
#[derive(Debug, Default)]
struct GuaranteeBuilder<'a> {
    /// List of guarantees that have been created so far
    /// if we have determined a subsequent conjunct invalidates a guarantee
    /// e.g. `a = foo AND a = bar` then the relevant guarantee will be None
    guarantees: Vec<Option<LiteralGuarantee>>,

    /// Key is the (column name, guarantee type)
    /// Value is the index into `guarantees`
    map: HashMap<(&'a crate::expressions::Column, Guarantee), usize>,
}

impl<'a> GuaranteeBuilder<'a> {
    fn new() -> Self {
        Default::default()
    }

    /// Aggregate a new single `AND col <op> literal` term to this builder
    /// combining with existing guarantees if possible.
    ///
    /// # Examples
    /// * `AND (a = 1)`: `a` is guaranteed to be 1
    /// * `AND (a != 1)`: a is guaranteed to not be 1
    fn aggregate_conjunct(self, col_op_lit: ColOpLit<'a>) -> Self {
        self.aggregate_multi_conjunct(
            col_op_lit.col,
            col_op_lit.guarantee,
            [col_op_lit.lit.value()],
        )
    }

    /// Aggregates a new single column, multi literal term to this builder
    /// combining with previously known guarantees if possible.
    ///
    /// # Examples
    /// For the following examples, we can guarantee the expression is `true` if:
    /// * `AND (a = 1 OR a = 2 OR a = 3)`: a is in (1, 2, or 3)
    /// * `AND (a IN (1,2,3))`: a is in (1, 2, or 3)
    /// * `AND (a != 1 OR a != 2 OR a != 3)`: a is not in (1, 2, or 3)
    /// * `AND (a NOT IN (1,2,3))`: a is not in (1, 2, or 3)
    fn aggregate_multi_conjunct(
        mut self,
        col: &'a crate::expressions::Column,
        guarantee: Guarantee,
        new_values: impl IntoIterator<Item = &'a ScalarValue>,
    ) -> Self {
        let key = (col, guarantee);
        if let Some(index) = self.map.get(&key) {
            // already have a guarantee for this column
            let entry = &mut self.guarantees[*index];

            let Some(existing) = entry else {
                // determined the previous guarantee for this column has been
                // invalidated, nothing to do
                return self;
            };

            // Combine conjuncts if we have `a != foo AND a != bar`. `a = foo
            // AND a = bar` doesn't make logical sense so we don't optimize this
            // case
            match existing.guarantee {
                // knew that the column could not be a set of values
                //
                // For example, if we previously had `a != 5` and now we see
                // another `AND a != 6` we know that a must not be either 5 or 6
                // for the expression to be true
                Guarantee::NotIn => {
                    let new_values: HashSet<_> = new_values.into_iter().collect();
                    existing.literals.extend(new_values.into_iter().cloned());
                }
                Guarantee::In => {
                    let intersection = new_values
                        .into_iter()
                        .filter(|new_value| existing.literals.contains(*new_value))
                        .collect::<Vec<_>>();
                    // for an In guarantee, if the intersection is not empty,  we can extend the guarantee
                    // e.g. `a IN (1,2,3) AND a IN (2,3,4)` is `a IN (2,3)`
                    // otherwise, we invalidate the guarantee
                    // e.g. `a IN (1,2,3) AND a IN (4,5,6)` is `a IN ()`, which is invalid
                    if !intersection.is_empty() {
                        existing.literals = intersection.into_iter().cloned().collect();
                    } else {
                        // at least one was not, so invalidate the guarantee
                        *entry = None;
                    }
                }
            }
        } else {
            // This is a new guarantee
            let new_values: HashSet<_> = new_values.into_iter().collect();

            let guarantee = LiteralGuarantee::new(col.name(), guarantee, new_values);
            // add it to the list of guarantees
            self.guarantees.push(Some(guarantee));
            self.map.insert(key, self.guarantees.len() - 1);
        }

        self
    }

    /// Return all guarantees that have been created so far
    fn build(self) -> Vec<LiteralGuarantee> {
        // filter out any guarantees that have been invalidated
        self.guarantees.into_iter().flatten().collect()
    }
}

/// Represents a single `col [not]in literal` expression
struct ColOpLit<'a> {
    col: &'a crate::expressions::Column,
    guarantee: Guarantee,
    lit: &'a crate::expressions::Literal,
}

impl<'a> ColOpLit<'a> {
    /// Returns Some(ColEqLit) if the expression is either:
    /// 1. `col <op> literal`
    /// 2. `literal <op> col`
    /// 3. operator is `=` or `!=`
    ///
    /// Returns None otherwise
    fn try_new(expr: &'a Arc<dyn PhysicalExpr>) -> Option<Self> {
        let binary_expr = expr
            .as_any()
            .downcast_ref::<crate::expressions::BinaryExpr>()?;

        let (left, op, right) = (
            binary_expr.left().as_any(),
            binary_expr.op(),
            binary_expr.right().as_any(),
        );
        let guarantee = match op {
            Operator::Eq => Guarantee::In,
            Operator::NotEq => Guarantee::NotIn,
            _ => return None,
        };
        // col <op> literal
        if let (Some(col), Some(lit)) = (
            left.downcast_ref::<crate::expressions::Column>(),
            right.downcast_ref::<crate::expressions::Literal>(),
        ) {
            Some(Self {
                col,
                guarantee,
                lit,
            })
        }
        // literal <op> col
        else if let (Some(lit), Some(col)) = (
            left.downcast_ref::<crate::expressions::Literal>(),
            right.downcast_ref::<crate::expressions::Column>(),
        ) {
            Some(Self {
                col,
                guarantee,
                lit,
            })
        } else {
            None
        }
    }
}

#[cfg(test)]
mod test {
    use std::sync::OnceLock;

    use super::*;
    use crate::planner::logical2physical;

    use arrow_schema::{DataType, Field, Schema, SchemaRef};
    use datafusion_expr::expr_fn::*;
    use datafusion_expr::{lit, Expr};

    use itertools::Itertools;

    #[test]
    fn test_literal() {
        // a single literal offers no guarantee
        test_analyze(lit(true), vec![])
    }

    #[test]
    fn test_single() {
        // a = "foo"
        test_analyze(col("a").eq(lit("foo")), vec![in_guarantee("a", ["foo"])]);
        // "foo" = a
        test_analyze(lit("foo").eq(col("a")), vec![in_guarantee("a", ["foo"])]);
        // a != "foo"
        test_analyze(
            col("a").not_eq(lit("foo")),
            vec![not_in_guarantee("a", ["foo"])],
        );
        // "foo" != a
        test_analyze(
            lit("foo").not_eq(col("a")),
            vec![not_in_guarantee("a", ["foo"])],
        );
    }

    #[test]
    fn test_conjunction_single_column() {
        // b = 1 AND b = 2. This is impossible. Ideally this expression could be simplified to false
        test_analyze(col("b").eq(lit(1)).and(col("b").eq(lit(2))), vec![]);
        // b = 1 AND b != 2 . In theory, this could be simplified to `b = 1`.
        test_analyze(
            col("b").eq(lit(1)).and(col("b").not_eq(lit(2))),
            vec![
                // can only be true of b is 1 and b is not 2 (even though it is redundant)
                in_guarantee("b", [1]),
                not_in_guarantee("b", [2]),
            ],
        );
        // b != 1 AND b = 2. In theory, this could be simplified to `b = 2`.
        test_analyze(
            col("b").not_eq(lit(1)).and(col("b").eq(lit(2))),
            vec![
                // can only be true of b is not 1 and b is 2 (even though it is redundant)
                not_in_guarantee("b", [1]),
                in_guarantee("b", [2]),
            ],
        );
        // b != 1 AND b != 2
        test_analyze(
            col("b").not_eq(lit(1)).and(col("b").not_eq(lit(2))),
            vec![not_in_guarantee("b", [1, 2])],
        );
        // b != 1 AND b != 2 and b != 3
        test_analyze(
            col("b")
                .not_eq(lit(1))
                .and(col("b").not_eq(lit(2)))
                .and(col("b").not_eq(lit(3))),
            vec![not_in_guarantee("b", [1, 2, 3])],
        );
        // b != 1 AND b = 2 and b != 3. Can only be true if b is 2 and b is not in (1, 3)
        test_analyze(
            col("b")
                .not_eq(lit(1))
                .and(col("b").eq(lit(2)))
                .and(col("b").not_eq(lit(3))),
            vec![not_in_guarantee("b", [1, 3]), in_guarantee("b", [2])],
        );
        // b != 1 AND b != 2 and b = 3 (in theory could determine b = 3)
        test_analyze(
            col("b")
                .not_eq(lit(1))
                .and(col("b").not_eq(lit(2)))
                .and(col("b").eq(lit(3))),
            vec![not_in_guarantee("b", [1, 2]), in_guarantee("b", [3])],
        );
        // b != 1 AND b != 2 and b > 3 (to be true, b can't be either 1 or 2
        test_analyze(
            col("b")
                .not_eq(lit(1))
                .and(col("b").not_eq(lit(2)))
                .and(col("b").gt(lit(3))),
            vec![not_in_guarantee("b", [1, 2])],
        );
    }

    #[test]
    fn test_conjunction_multi_column() {
        // a = "foo" AND b = 1
        test_analyze(
            col("a").eq(lit("foo")).and(col("b").eq(lit(1))),
            vec![
                // should find both column guarantees
                in_guarantee("a", ["foo"]),
                in_guarantee("b", [1]),
            ],
        );
        // a != "foo" AND b != 1
        test_analyze(
            col("a").not_eq(lit("foo")).and(col("b").not_eq(lit(1))),
            // should find both column guarantees
            vec![not_in_guarantee("a", ["foo"]), not_in_guarantee("b", [1])],
        );
        // a = "foo" AND a = "bar"
        test_analyze(
            col("a").eq(lit("foo")).and(col("a").eq(lit("bar"))),
            // this predicate is impossible ( can't be both foo and bar),
            vec![],
        );
        // a = "foo" AND b != "bar"
        test_analyze(
            col("a").eq(lit("foo")).and(col("a").not_eq(lit("bar"))),
            vec![in_guarantee("a", ["foo"]), not_in_guarantee("a", ["bar"])],
        );
        // a != "foo" AND a != "bar"
        test_analyze(
            col("a").not_eq(lit("foo")).and(col("a").not_eq(lit("bar"))),
            // know it isn't "foo" or "bar"
            vec![not_in_guarantee("a", ["foo", "bar"])],
        );
        // a != "foo" AND a != "bar" and a != "baz"
        test_analyze(
            col("a")
                .not_eq(lit("foo"))
                .and(col("a").not_eq(lit("bar")))
                .and(col("a").not_eq(lit("baz"))),
            // know it isn't "foo" or "bar" or "baz"
            vec![not_in_guarantee("a", ["foo", "bar", "baz"])],
        );
        // a = "foo" AND a = "foo"
        let expr = col("a").eq(lit("foo"));
        test_analyze(expr.clone().and(expr), vec![in_guarantee("a", ["foo"])]);
        // b > 5 AND b = 10 (should get an b = 10 guarantee)
        test_analyze(
            col("b").gt(lit(5)).and(col("b").eq(lit(10))),
            vec![in_guarantee("b", [10])],
        );
        // b > 10 AND b = 10 (this is impossible)
        test_analyze(
            col("b").gt(lit(10)).and(col("b").eq(lit(10))),
            vec![
                //  if b isn't 10, it can not be true (though the expression actually can never be true)
                in_guarantee("b", [10]),
            ],
        );
        // a != "foo" and (a != "bar" OR a != "baz")
        test_analyze(
            col("a")
                .not_eq(lit("foo"))
                .and(col("a").not_eq(lit("bar")).or(col("a").not_eq(lit("baz")))),
            // a is not foo (we can't represent other knowledge about a)
            vec![not_in_guarantee("a", ["foo"])],
        );
    }

    #[test]
    fn test_conjunction_and_disjunction_single_column() {
        // b != 1 AND (b > 2)
        test_analyze(
            col("b").not_eq(lit(1)).and(col("b").gt(lit(2))),
            vec![
                // for the expression to be true, b can not be one
                not_in_guarantee("b", [1]),
            ],
        );

        // b = 1 AND (b = 2 OR b = 3). Could be simplified to false.
        test_analyze(
            col("b")
                .eq(lit(1))
                .and(col("b").eq(lit(2)).or(col("b").eq(lit(3)))),
            vec![
                // in theory, b must be 1 and one of 2,3 for this expression to be true
                // which is a logical contradiction
            ],
        );
    }

    #[test]
    fn test_disjunction_single_column() {
        // b = 1 OR b = 2
        test_analyze(
            col("b").eq(lit(1)).or(col("b").eq(lit(2))),
            vec![in_guarantee("b", [1, 2])],
        );
        // b != 1 OR b = 2
        test_analyze(col("b").not_eq(lit(1)).or(col("b").eq(lit(2))), vec![]);
        // b = 1 OR b != 2
        test_analyze(col("b").eq(lit(1)).or(col("b").not_eq(lit(2))), vec![]);
        // b != 1 OR b != 2
        test_analyze(col("b").not_eq(lit(1)).or(col("b").not_eq(lit(2))), vec![]);
        // b != 1 OR b != 2 OR b = 3 -- in theory could guarantee that b = 3
        test_analyze(
            col("b")
                .not_eq(lit(1))
                .or(col("b").not_eq(lit(2)))
                .or(lit("b").eq(lit(3))),
            vec![],
        );
        // b = 1 OR b = 2 OR b = 3
        test_analyze(
            col("b")
                .eq(lit(1))
                .or(col("b").eq(lit(2)))
                .or(col("b").eq(lit(3))),
            vec![in_guarantee("b", [1, 2, 3])],
        );
        // b = 1 OR b = 2 OR b > 3 -- can't guarantee that the expression is only true if a is in (1, 2)
        test_analyze(
            col("b")
                .eq(lit(1))
                .or(col("b").eq(lit(2)))
                .or(lit("b").eq(lit(3))),
            vec![],
        );
    }

    #[test]
    fn test_disjunction_multi_column() {
        // a = "foo" OR b = 1
        test_analyze(
            col("a").eq(lit("foo")).or(col("b").eq(lit(1))),
            // no can't have a single column guarantee (if a = "foo" then b != 1) etc
            vec![],
        );
        // a != "foo" OR b != 1
        test_analyze(
            col("a").not_eq(lit("foo")).or(col("b").not_eq(lit(1))),
            // No single column guarantee
            vec![],
        );
        // a = "foo" OR a = "bar"
        test_analyze(
            col("a").eq(lit("foo")).or(col("a").eq(lit("bar"))),
            vec![in_guarantee("a", ["foo", "bar"])],
        );
        // a = "foo" OR a = "foo"
        test_analyze(
            col("a").eq(lit("foo")).or(col("a").eq(lit("foo"))),
            vec![in_guarantee("a", ["foo"])],
        );
        // a != "foo" OR a != "bar"
        test_analyze(
            col("a").not_eq(lit("foo")).or(col("a").not_eq(lit("bar"))),
            // can't represent knowledge about a in this case
            vec![],
        );
        // a = "foo" OR a = "bar" OR a = "baz"
        test_analyze(
            col("a")
                .eq(lit("foo"))
                .or(col("a").eq(lit("bar")))
                .or(col("a").eq(lit("baz"))),
            vec![in_guarantee("a", ["foo", "bar", "baz"])],
        );
        // (a = "foo" OR a = "bar") AND (a = "baz)"
        test_analyze(
            (col("a").eq(lit("foo")).or(col("a").eq(lit("bar"))))
                .and(col("a").eq(lit("baz"))),
            // this could potentially be represented as 2 constraints with a more
            // sophisticated analysis
            vec![],
        );
        // (a = "foo" OR a = "bar") AND (b = 1)
        test_analyze(
            (col("a").eq(lit("foo")).or(col("a").eq(lit("bar"))))
                .and(col("b").eq(lit(1))),
            vec![in_guarantee("a", ["foo", "bar"]), in_guarantee("b", [1])],
        );
        // (a = "foo" OR a = "bar") OR (b = 1)
        test_analyze(
            col("a")
                .eq(lit("foo"))
                .or(col("a").eq(lit("bar")))
                .or(col("b").eq(lit(1))),
            // can't represent knowledge about a or b in this case
            vec![],
        );
    }

    #[test]
    fn test_single_inlist() {
        // b IN (1, 2, 3)
        test_analyze(
            col("b").in_list(vec![lit(1), lit(2), lit(3)], false),
            vec![in_guarantee("b", [1, 2, 3])],
        );
        // b NOT IN (1, 2, 3)
        test_analyze(
            col("b").in_list(vec![lit(1), lit(2), lit(3)], true),
            vec![not_in_guarantee("b", [1, 2, 3])],
        );
        // b IN (1,2,3,4...24)
        test_analyze(
            col("b").in_list((1..25).map(lit).collect_vec(), false),
            vec![in_guarantee("b", 1..25)],
        );
    }

    #[test]
    fn test_inlist_conjunction() {
        // b IN (1, 2, 3) AND b IN (2, 3, 4)
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], false)
                .and(col("b").in_list(vec![lit(2), lit(3), lit(4)], false)),
            vec![in_guarantee("b", [2, 3])],
        );
        // b NOT IN (1, 2, 3) AND b IN (2, 3, 4)
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], true)
                .and(col("b").in_list(vec![lit(2), lit(3), lit(4)], false)),
            vec![
                not_in_guarantee("b", [1, 2, 3]),
                in_guarantee("b", [2, 3, 4]),
            ],
        );
        // b NOT IN (1, 2, 3) AND b NOT IN (2, 3, 4)
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], true)
                .and(col("b").in_list(vec![lit(2), lit(3), lit(4)], true)),
            vec![not_in_guarantee("b", [1, 2, 3, 4])],
        );
        // b IN (1, 2, 3) AND b = 4
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], false)
                .and(col("b").eq(lit(4))),
            vec![],
        );
        // b IN (1, 2, 3) AND b = 2
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], false)
                .and(col("b").eq(lit(2))),
            vec![in_guarantee("b", [2])],
        );
        // b IN (1, 2, 3) AND b != 2
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], false)
                .and(col("b").not_eq(lit(2))),
            vec![in_guarantee("b", [1, 2, 3]), not_in_guarantee("b", [2])],
        );
        // b NOT IN (1, 2, 3) AND b != 4
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], true)
                .and(col("b").not_eq(lit(4))),
            vec![not_in_guarantee("b", [1, 2, 3, 4])],
        );
        // b NOT IN (1, 2, 3) AND b != 2
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], true)
                .and(col("b").not_eq(lit(2))),
            vec![not_in_guarantee("b", [1, 2, 3])],
        );
    }

    #[test]
    fn test_inlist_with_disjunction() {
        // b IN (1, 2, 3) AND (b = 3 OR b = 4)
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], false)
                .and(col("b").eq(lit(3)).or(col("b").eq(lit(4)))),
            vec![in_guarantee("b", [3])],
        );
        // b IN (1, 2, 3) AND (b = 4 OR b = 5)
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], false)
                .and(col("b").eq(lit(4)).or(col("b").eq(lit(5)))),
            vec![],
        );
        // b NOT IN (1, 2, 3) AND (b = 3 OR b = 4)
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], true)
                .and(col("b").eq(lit(3)).or(col("b").eq(lit(4)))),
            vec![not_in_guarantee("b", [1, 2, 3]), in_guarantee("b", [3, 4])],
        );
        // b IN (1, 2, 3) OR b = 2
        // TODO this should be in_guarantee("b", [1, 2, 3]) but currently we don't support to anylize this kind of disjunction. Only `ColOpLit OR ColOpLit` is supported.
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], false)
                .or(col("b").eq(lit(2))),
            vec![],
        );
        // b IN (1, 2, 3) OR b != 3
        test_analyze(
            col("b")
                .in_list(vec![lit(1), lit(2), lit(3)], false)
                .or(col("b").not_eq(lit(3))),
            vec![],
        );
    }

    /// Tests that analyzing expr results in the expected guarantees
    fn test_analyze(expr: Expr, expected: Vec<LiteralGuarantee>) {
        println!("Begin analyze of {expr}");
        let schema = schema();
        let physical_expr = logical2physical(&expr, &schema);

        let actual = LiteralGuarantee::analyze(&physical_expr);
        assert_eq!(
            expected, actual,
            "expr: {expr}\
               \n\nexpected: {expected:#?}\
               \n\nactual: {actual:#?}\
               \n\nexpr: {expr:#?}\
               \n\nphysical_expr: {physical_expr:#?}"
        );
    }

    /// Guarantee that the expression is true if the column is one of the specified values
    fn in_guarantee<'a, I, S>(column: &str, literals: I) -> LiteralGuarantee
    where
        I: IntoIterator<Item = S>,
        S: Into<ScalarValue> + 'a,
    {
        let literals: Vec<_> = literals.into_iter().map(|s| s.into()).collect();
        LiteralGuarantee::new(column, Guarantee::In, literals.iter())
    }

    /// Guarantee that the expression is true if the column is NOT any of the specified values
    fn not_in_guarantee<'a, I, S>(column: &str, literals: I) -> LiteralGuarantee
    where
        I: IntoIterator<Item = S>,
        S: Into<ScalarValue> + 'a,
    {
        let literals: Vec<_> = literals.into_iter().map(|s| s.into()).collect();
        LiteralGuarantee::new(column, Guarantee::NotIn, literals.iter())
    }

    // Schema for testing
    fn schema() -> SchemaRef {
        Arc::clone(SCHEMA.get_or_init(|| {
            Arc::new(Schema::new(vec![
                Field::new("a", DataType::Utf8, false),
                Field::new("b", DataType::Int32, false),
            ]))
        }))
    }

    static SCHEMA: OnceLock<SchemaRef> = OnceLock::new();
}