datafusion_physical_expr/window/window_expr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::any::Any;
use std::fmt::Debug;
use std::ops::Range;
use std::sync::Arc;
use crate::{LexOrderingRef, PhysicalExpr};
use arrow::array::{new_empty_array, Array, ArrayRef};
use arrow::compute::kernels::sort::SortColumn;
use arrow::compute::SortOptions;
use arrow::datatypes::Field;
use arrow::record_batch::RecordBatch;
use datafusion_common::utils::compare_rows;
use datafusion_common::{internal_err, DataFusionError, Result, ScalarValue};
use datafusion_expr::window_state::{
PartitionBatchState, WindowAggState, WindowFrameContext, WindowFrameStateGroups,
};
use datafusion_expr::{Accumulator, PartitionEvaluator, WindowFrame, WindowFrameBound};
use indexmap::IndexMap;
/// Common trait for [window function] implementations
///
/// # Aggregate Window Expressions
///
/// These expressions take the form
///
/// ```text
/// OVER({ROWS | RANGE| GROUPS} BETWEEN UNBOUNDED PRECEDING AND ...)
/// ```
///
/// For example, cumulative window frames uses `PlainAggregateWindowExpr`.
///
/// # Non Aggregate Window Expressions
///
/// The expressions have the form
///
/// ```text
/// OVER({ROWS | RANGE| GROUPS} BETWEEN M {PRECEDING| FOLLOWING} AND ...)
/// ```
///
/// For example, sliding window frames use [`SlidingAggregateWindowExpr`].
///
/// [window function]: https://en.wikipedia.org/wiki/Window_function_(SQL)
/// [`PlainAggregateWindowExpr`]: crate::window::PlainAggregateWindowExpr
/// [`SlidingAggregateWindowExpr`]: crate::window::SlidingAggregateWindowExpr
pub trait WindowExpr: Send + Sync + Debug {
/// Returns the window expression as [`Any`] so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// The field of the final result of this window function.
fn field(&self) -> Result<Field>;
/// Human readable name such as `"MIN(c2)"` or `"RANK()"`. The default
/// implementation returns placeholder text.
fn name(&self) -> &str {
"WindowExpr: default name"
}
/// Expressions that are passed to the WindowAccumulator.
/// Functions which take a single input argument, such as `sum`, return a single [`datafusion_expr::expr::Expr`],
/// others (e.g. `cov`) return many.
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>>;
/// Evaluate the window function arguments against the batch and return
/// array ref, normally the resulting `Vec` is a single element one.
fn evaluate_args(&self, batch: &RecordBatch) -> Result<Vec<ArrayRef>> {
self.expressions()
.iter()
.map(|e| {
e.evaluate(batch)
.and_then(|v| v.into_array(batch.num_rows()))
})
.collect()
}
/// Evaluate the window function values against the batch
fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef>;
/// Evaluate the window function against the batch. This function facilitates
/// stateful, bounded-memory implementations.
fn evaluate_stateful(
&self,
_partition_batches: &PartitionBatches,
_window_agg_state: &mut PartitionWindowAggStates,
) -> Result<()> {
internal_err!("evaluate_stateful is not implemented for {}", self.name())
}
/// Expressions that's from the window function's partition by clause, empty if absent
fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>];
/// Expressions that's from the window function's order by clause, empty if absent
fn order_by(&self) -> LexOrderingRef;
/// Get order by columns, empty if absent
fn order_by_columns(&self, batch: &RecordBatch) -> Result<Vec<SortColumn>> {
self.order_by()
.iter()
.map(|e| e.evaluate_to_sort_column(batch))
.collect::<Result<Vec<SortColumn>>>()
}
/// Get the window frame of this [WindowExpr].
fn get_window_frame(&self) -> &Arc<WindowFrame>;
/// Return a flag indicating whether this [WindowExpr] can run with
/// bounded memory.
fn uses_bounded_memory(&self) -> bool;
/// Get the reverse expression of this [WindowExpr].
fn get_reverse_expr(&self) -> Option<Arc<dyn WindowExpr>>;
/// Returns all expressions used in the [`WindowExpr`].
/// These expressions are (1) function arguments, (2) partition by expressions, (3) order by expressions.
fn all_expressions(&self) -> WindowPhysicalExpressions {
let args = self.expressions();
let partition_by_exprs = self.partition_by().to_vec();
let order_by_exprs = self
.order_by()
.iter()
.map(|sort_expr| Arc::clone(&sort_expr.expr))
.collect::<Vec<_>>();
WindowPhysicalExpressions {
args,
partition_by_exprs,
order_by_exprs,
}
}
/// Rewrites [`WindowExpr`], with new expressions given. The argument should be consistent
/// with the return value of the [`WindowExpr::all_expressions`] method.
/// Returns `Some(Arc<dyn WindowExpr>)` if re-write is supported, otherwise returns `None`.
fn with_new_expressions(
&self,
_args: Vec<Arc<dyn PhysicalExpr>>,
_partition_bys: Vec<Arc<dyn PhysicalExpr>>,
_order_by_exprs: Vec<Arc<dyn PhysicalExpr>>,
) -> Option<Arc<dyn WindowExpr>> {
None
}
}
/// Stores the physical expressions used inside the `WindowExpr`.
pub struct WindowPhysicalExpressions {
/// Window function arguments
pub args: Vec<Arc<dyn PhysicalExpr>>,
/// PARTITION BY expressions
pub partition_by_exprs: Vec<Arc<dyn PhysicalExpr>>,
/// ORDER BY expressions
pub order_by_exprs: Vec<Arc<dyn PhysicalExpr>>,
}
/// Extension trait that adds common functionality to [`AggregateWindowExpr`]s
pub trait AggregateWindowExpr: WindowExpr {
/// Get the accumulator for the window expression. Note that distinct
/// window expressions may return distinct accumulators; e.g. sliding
/// (non-sliding) expressions will return sliding (normal) accumulators.
fn get_accumulator(&self) -> Result<Box<dyn Accumulator>>;
/// Given current range and the last range, calculates the accumulator
/// result for the range of interest.
fn get_aggregate_result_inside_range(
&self,
last_range: &Range<usize>,
cur_range: &Range<usize>,
value_slice: &[ArrayRef],
accumulator: &mut Box<dyn Accumulator>,
) -> Result<ScalarValue>;
/// Evaluates the window function against the batch.
fn aggregate_evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
let mut accumulator = self.get_accumulator()?;
let mut last_range = Range { start: 0, end: 0 };
let sort_options: Vec<SortOptions> =
self.order_by().iter().map(|o| o.options).collect();
let mut window_frame_ctx =
WindowFrameContext::new(Arc::clone(self.get_window_frame()), sort_options);
self.get_result_column(
&mut accumulator,
batch,
None,
&mut last_range,
&mut window_frame_ctx,
0,
false,
)
}
/// Statefully evaluates the window function against the batch. Maintains
/// state so that it can work incrementally over multiple chunks.
fn aggregate_evaluate_stateful(
&self,
partition_batches: &PartitionBatches,
window_agg_state: &mut PartitionWindowAggStates,
) -> Result<()> {
let field = self.field()?;
let out_type = field.data_type();
for (partition_row, partition_batch_state) in partition_batches.iter() {
if !window_agg_state.contains_key(partition_row) {
let accumulator = self.get_accumulator()?;
window_agg_state.insert(
partition_row.clone(),
WindowState {
state: WindowAggState::new(out_type)?,
window_fn: WindowFn::Aggregate(accumulator),
},
);
};
let window_state =
window_agg_state.get_mut(partition_row).ok_or_else(|| {
DataFusionError::Execution("Cannot find state".to_string())
})?;
let accumulator = match &mut window_state.window_fn {
WindowFn::Aggregate(accumulator) => accumulator,
_ => unreachable!(),
};
let state = &mut window_state.state;
let record_batch = &partition_batch_state.record_batch;
let most_recent_row = partition_batch_state.most_recent_row.as_ref();
// If there is no window state context, initialize it.
let window_frame_ctx = state.window_frame_ctx.get_or_insert_with(|| {
let sort_options: Vec<SortOptions> =
self.order_by().iter().map(|o| o.options).collect();
WindowFrameContext::new(Arc::clone(self.get_window_frame()), sort_options)
});
let out_col = self.get_result_column(
accumulator,
record_batch,
most_recent_row,
// Start search from the last range
&mut state.window_frame_range,
window_frame_ctx,
state.last_calculated_index,
!partition_batch_state.is_end,
)?;
state.update(&out_col, partition_batch_state)?;
}
Ok(())
}
/// Calculates the window expression result for the given record batch.
/// Assumes that `record_batch` belongs to a single partition.
#[allow(clippy::too_many_arguments)]
fn get_result_column(
&self,
accumulator: &mut Box<dyn Accumulator>,
record_batch: &RecordBatch,
most_recent_row: Option<&RecordBatch>,
last_range: &mut Range<usize>,
window_frame_ctx: &mut WindowFrameContext,
mut idx: usize,
not_end: bool,
) -> Result<ArrayRef> {
let values = self.evaluate_args(record_batch)?;
let order_bys = get_orderby_values(self.order_by_columns(record_batch)?);
let most_recent_row_order_bys = most_recent_row
.map(|batch| self.order_by_columns(batch))
.transpose()?
.map(get_orderby_values);
// We iterate on each row to perform a running calculation.
let length = values[0].len();
let mut row_wise_results: Vec<ScalarValue> = vec![];
let is_causal = self.get_window_frame().is_causal();
while idx < length {
// Start search from the last_range. This squeezes searched range.
let cur_range =
window_frame_ctx.calculate_range(&order_bys, last_range, length, idx)?;
// Exit if the range is non-causal and extends all the way:
if cur_range.end == length
&& !is_causal
&& not_end
&& !is_end_bound_safe(
window_frame_ctx,
&order_bys,
most_recent_row_order_bys.as_deref(),
self.order_by(),
idx,
)?
{
break;
}
let value = self.get_aggregate_result_inside_range(
last_range,
&cur_range,
&values,
accumulator,
)?;
// Update last range
*last_range = cur_range;
row_wise_results.push(value);
idx += 1;
}
if row_wise_results.is_empty() {
let field = self.field()?;
let out_type = field.data_type();
Ok(new_empty_array(out_type))
} else {
ScalarValue::iter_to_array(row_wise_results)
}
}
}
/// Determines whether the end bound calculation for a window frame context is
/// safe, meaning that the end bound stays the same, regardless of future data,
/// based on the current sort expressions and ORDER BY columns. This function
/// delegates work to specific functions for each frame type.
///
/// # Parameters
///
/// * `window_frame_ctx`: The context of the window frame being evaluated.
/// * `order_bys`: A slice of `ArrayRef` representing the ORDER BY columns.
/// * `most_recent_order_bys`: An optional reference to the most recent ORDER BY
/// columns.
/// * `sort_exprs`: Defines the lexicographical ordering in question.
/// * `idx`: The current index in the window frame.
///
/// # Returns
///
/// A `Result` which is `Ok(true)` if the end bound is safe, `Ok(false)` otherwise.
pub(crate) fn is_end_bound_safe(
window_frame_ctx: &WindowFrameContext,
order_bys: &[ArrayRef],
most_recent_order_bys: Option<&[ArrayRef]>,
sort_exprs: LexOrderingRef,
idx: usize,
) -> Result<bool> {
if sort_exprs.is_empty() {
// Early return if no sort expressions are present:
return Ok(false);
}
match window_frame_ctx {
WindowFrameContext::Rows(window_frame) => {
is_end_bound_safe_for_rows(&window_frame.end_bound)
}
WindowFrameContext::Range { window_frame, .. } => is_end_bound_safe_for_range(
&window_frame.end_bound,
&order_bys[0],
most_recent_order_bys.map(|items| &items[0]),
&sort_exprs[0].options,
idx,
),
WindowFrameContext::Groups {
window_frame,
state,
} => is_end_bound_safe_for_groups(
&window_frame.end_bound,
state,
&order_bys[0],
most_recent_order_bys.map(|items| &items[0]),
&sort_exprs[0].options,
),
}
}
/// For row-based window frames, determines whether the end bound calculation
/// is safe, which is trivially the case for `Preceding` and `CurrentRow` bounds.
/// For 'Following' bounds, it compares the bound value to zero to ensure that
/// it doesn't extend beyond the current row.
///
/// # Parameters
///
/// * `end_bound`: Reference to the window frame bound in question.
///
/// # Returns
///
/// A `Result` indicating whether the end bound is safe for row-based window frames.
fn is_end_bound_safe_for_rows(end_bound: &WindowFrameBound) -> Result<bool> {
if let WindowFrameBound::Following(value) = end_bound {
let zero = ScalarValue::new_zero(&value.data_type());
Ok(zero.map(|zero| value.eq(&zero)).unwrap_or(false))
} else {
Ok(true)
}
}
/// For row-based window frames, determines whether the end bound calculation
/// is safe by comparing it against specific values (zero, current row). It uses
/// the `is_row_ahead` helper function to determine if the current row is ahead
/// of the most recent row based on the ORDER BY column and sorting options.
///
/// # Parameters
///
/// * `end_bound`: Reference to the window frame bound in question.
/// * `orderby_col`: Reference to the column used for ordering.
/// * `most_recent_ob_col`: Optional reference to the most recent order-by column.
/// * `sort_options`: The sorting options used in the window frame.
/// * `idx`: The current index in the window frame.
///
/// # Returns
///
/// A `Result` indicating whether the end bound is safe for range-based window frames.
fn is_end_bound_safe_for_range(
end_bound: &WindowFrameBound,
orderby_col: &ArrayRef,
most_recent_ob_col: Option<&ArrayRef>,
sort_options: &SortOptions,
idx: usize,
) -> Result<bool> {
match end_bound {
WindowFrameBound::Preceding(value) => {
let zero = ScalarValue::new_zero(&value.data_type())?;
if value.eq(&zero) {
is_row_ahead(orderby_col, most_recent_ob_col, sort_options)
} else {
Ok(true)
}
}
WindowFrameBound::CurrentRow => {
is_row_ahead(orderby_col, most_recent_ob_col, sort_options)
}
WindowFrameBound::Following(delta) => {
let Some(most_recent_ob_col) = most_recent_ob_col else {
return Ok(false);
};
let most_recent_row_value =
ScalarValue::try_from_array(most_recent_ob_col, 0)?;
let current_row_value = ScalarValue::try_from_array(orderby_col, idx)?;
if sort_options.descending {
current_row_value
.sub(delta)
.map(|value| value > most_recent_row_value)
} else {
current_row_value
.add(delta)
.map(|value| most_recent_row_value > value)
}
}
}
}
/// For group-based window frames, determines whether the end bound calculation
/// is safe by considering the group offset and whether the current row is ahead
/// of the most recent row in terms of sorting. It checks if the end bound is
/// within the bounds of the current group based on group end indices.
///
/// # Parameters
///
/// * `end_bound`: Reference to the window frame bound in question.
/// * `state`: The state of the window frame for group calculations.
/// * `orderby_col`: Reference to the column used for ordering.
/// * `most_recent_ob_col`: Optional reference to the most recent order-by column.
/// * `sort_options`: The sorting options used in the window frame.
///
/// # Returns
///
/// A `Result` indicating whether the end bound is safe for group-based window frames.
fn is_end_bound_safe_for_groups(
end_bound: &WindowFrameBound,
state: &WindowFrameStateGroups,
orderby_col: &ArrayRef,
most_recent_ob_col: Option<&ArrayRef>,
sort_options: &SortOptions,
) -> Result<bool> {
match end_bound {
WindowFrameBound::Preceding(value) => {
let zero = ScalarValue::new_zero(&value.data_type())?;
if value.eq(&zero) {
is_row_ahead(orderby_col, most_recent_ob_col, sort_options)
} else {
Ok(true)
}
}
WindowFrameBound::CurrentRow => {
is_row_ahead(orderby_col, most_recent_ob_col, sort_options)
}
WindowFrameBound::Following(ScalarValue::UInt64(Some(offset))) => {
let delta = state.group_end_indices.len() - state.current_group_idx;
if delta == (*offset as usize) + 1 {
is_row_ahead(orderby_col, most_recent_ob_col, sort_options)
} else {
Ok(false)
}
}
_ => Ok(false),
}
}
/// This utility function checks whether `current_cols` is ahead of the `old_cols`
/// in terms of `sort_options`.
fn is_row_ahead(
old_col: &ArrayRef,
current_col: Option<&ArrayRef>,
sort_options: &SortOptions,
) -> Result<bool> {
let Some(current_col) = current_col else {
return Ok(false);
};
if old_col.is_empty() || current_col.is_empty() {
return Ok(false);
}
let last_value = ScalarValue::try_from_array(old_col, old_col.len() - 1)?;
let current_value = ScalarValue::try_from_array(current_col, 0)?;
let cmp = compare_rows(&[current_value], &[last_value], &[*sort_options])?;
Ok(cmp.is_gt())
}
/// Get order by expression results inside `order_by_columns`.
pub(crate) fn get_orderby_values(order_by_columns: Vec<SortColumn>) -> Vec<ArrayRef> {
order_by_columns.into_iter().map(|s| s.values).collect()
}
#[derive(Debug)]
pub enum WindowFn {
Builtin(Box<dyn PartitionEvaluator>),
Aggregate(Box<dyn Accumulator>),
}
/// Tag to differentiate special use cases of the NTH_VALUE built-in window function.
#[derive(Debug, Copy, Clone)]
pub enum NthValueKind {
First,
Last,
Nth(i64),
}
#[derive(Debug, Clone)]
pub struct NthValueState {
// In certain cases, we can finalize the result early. Consider this usage:
// ```
// FIRST_VALUE(increasing_col) OVER window AS my_first_value
// WINDOW (ORDER BY ts ASC ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING) AS window
// ```
// The result will always be the first entry in the table. We can store such
// early-finalizing results and then just reuse them as necessary. This opens
// opportunities to prune our datasets.
pub finalized_result: Option<ScalarValue>,
pub kind: NthValueKind,
}
/// Key for IndexMap for each unique partition
///
/// For instance, if window frame is `OVER(PARTITION BY a,b)`,
/// PartitionKey would consist of unique `[a,b]` pairs
pub type PartitionKey = Vec<ScalarValue>;
#[derive(Debug)]
pub struct WindowState {
pub state: WindowAggState,
pub window_fn: WindowFn,
}
pub type PartitionWindowAggStates = IndexMap<PartitionKey, WindowState>;
/// The IndexMap (i.e. an ordered HashMap) where record batches are separated for each partition.
pub type PartitionBatches = IndexMap<PartitionKey, PartitionBatchState>;
#[cfg(test)]
mod tests {
use std::sync::Arc;
use crate::window::window_expr::is_row_ahead;
use arrow_array::{ArrayRef, Float64Array};
use arrow_schema::SortOptions;
use datafusion_common::Result;
#[test]
fn test_is_row_ahead() -> Result<()> {
let old_values: ArrayRef =
Arc::new(Float64Array::from(vec![5.0, 7.0, 8.0, 9., 10.]));
let new_values1: ArrayRef = Arc::new(Float64Array::from(vec![11.0]));
let new_values2: ArrayRef = Arc::new(Float64Array::from(vec![10.0]));
assert!(is_row_ahead(
&old_values,
Some(&new_values1),
&SortOptions {
descending: false,
nulls_first: false
}
)?);
assert!(!is_row_ahead(
&old_values,
Some(&new_values2),
&SortOptions {
descending: false,
nulls_first: false
}
)?);
Ok(())
}
}