datafusion_physical_expr/expressions/
is_not_null.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! IS NOT NULL expression
19
20use std::hash::Hash;
21use std::{any::Any, sync::Arc};
22
23use crate::PhysicalExpr;
24use arrow::{
25    datatypes::{DataType, Schema},
26    record_batch::RecordBatch,
27};
28use datafusion_common::Result;
29use datafusion_common::ScalarValue;
30use datafusion_expr::ColumnarValue;
31
32/// IS NOT NULL expression
33#[derive(Debug, Eq)]
34pub struct IsNotNullExpr {
35    /// The input expression
36    arg: Arc<dyn PhysicalExpr>,
37}
38
39// Manually derive PartialEq and Hash to work around https://github.com/rust-lang/rust/issues/78808
40impl PartialEq for IsNotNullExpr {
41    fn eq(&self, other: &Self) -> bool {
42        self.arg.eq(&other.arg)
43    }
44}
45
46impl Hash for IsNotNullExpr {
47    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
48        self.arg.hash(state);
49    }
50}
51
52impl IsNotNullExpr {
53    /// Create new not expression
54    pub fn new(arg: Arc<dyn PhysicalExpr>) -> Self {
55        Self { arg }
56    }
57
58    /// Get the input expression
59    pub fn arg(&self) -> &Arc<dyn PhysicalExpr> {
60        &self.arg
61    }
62}
63
64impl std::fmt::Display for IsNotNullExpr {
65    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
66        write!(f, "{} IS NOT NULL", self.arg)
67    }
68}
69
70impl PhysicalExpr for IsNotNullExpr {
71    /// Return a reference to Any that can be used for downcasting
72    fn as_any(&self) -> &dyn Any {
73        self
74    }
75
76    fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
77        Ok(DataType::Boolean)
78    }
79
80    fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
81        Ok(false)
82    }
83
84    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
85        let arg = self.arg.evaluate(batch)?;
86        match arg {
87            ColumnarValue::Array(array) => {
88                let is_not_null = arrow::compute::is_not_null(&array)?;
89                Ok(ColumnarValue::Array(Arc::new(is_not_null)))
90            }
91            ColumnarValue::Scalar(scalar) => Ok(ColumnarValue::Scalar(
92                ScalarValue::Boolean(Some(!scalar.is_null())),
93            )),
94        }
95    }
96
97    fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>> {
98        vec![&self.arg]
99    }
100
101    fn with_new_children(
102        self: Arc<Self>,
103        children: Vec<Arc<dyn PhysicalExpr>>,
104    ) -> Result<Arc<dyn PhysicalExpr>> {
105        Ok(Arc::new(IsNotNullExpr::new(Arc::clone(&children[0]))))
106    }
107}
108
109/// Create an IS NOT NULL expression
110pub fn is_not_null(arg: Arc<dyn PhysicalExpr>) -> Result<Arc<dyn PhysicalExpr>> {
111    Ok(Arc::new(IsNotNullExpr::new(arg)))
112}
113
114#[cfg(test)]
115mod tests {
116    use super::*;
117    use crate::expressions::col;
118    use arrow::array::{
119        Array, BooleanArray, Float64Array, Int32Array, StringArray, UnionArray,
120    };
121    use arrow::buffer::ScalarBuffer;
122    use arrow::datatypes::*;
123    use datafusion_common::cast::as_boolean_array;
124
125    #[test]
126    fn is_not_null_op() -> Result<()> {
127        let schema = Schema::new(vec![Field::new("a", DataType::Utf8, true)]);
128        let a = StringArray::from(vec![Some("foo"), None]);
129        let expr = is_not_null(col("a", &schema)?).unwrap();
130        let batch = RecordBatch::try_new(Arc::new(schema), vec![Arc::new(a)])?;
131
132        // expression: "a is not null"
133        let result = expr
134            .evaluate(&batch)?
135            .into_array(batch.num_rows())
136            .expect("Failed to convert to array");
137        let result =
138            as_boolean_array(&result).expect("failed to downcast to BooleanArray");
139
140        let expected = &BooleanArray::from(vec![true, false]);
141
142        assert_eq!(expected, result);
143
144        Ok(())
145    }
146
147    #[test]
148    fn union_is_not_null_op() {
149        // union of [{A=1}, {A=}, {B=1.1}, {B=1.2}, {B=}]
150        let int_array = Int32Array::from(vec![Some(1), None, None, None, None]);
151        let float_array =
152            Float64Array::from(vec![None, None, Some(1.1), Some(1.2), None]);
153        let type_ids = [0, 0, 1, 1, 1].into_iter().collect::<ScalarBuffer<i8>>();
154
155        let children = vec![Arc::new(int_array) as Arc<dyn Array>, Arc::new(float_array)];
156
157        let union_fields: UnionFields = [
158            (0, Arc::new(Field::new("A", DataType::Int32, true))),
159            (1, Arc::new(Field::new("B", DataType::Float64, true))),
160        ]
161        .into_iter()
162        .collect();
163
164        let array =
165            UnionArray::try_new(union_fields.clone(), type_ids, None, children).unwrap();
166
167        let field = Field::new(
168            "my_union",
169            DataType::Union(union_fields, UnionMode::Sparse),
170            true,
171        );
172
173        let schema = Schema::new(vec![field]);
174        let expr = is_not_null(col("my_union", &schema).unwrap()).unwrap();
175        let batch =
176            RecordBatch::try_new(Arc::new(schema), vec![Arc::new(array)]).unwrap();
177
178        // expression: "a is not null"
179        let actual = expr
180            .evaluate(&batch)
181            .unwrap()
182            .into_array(batch.num_rows())
183            .expect("Failed to convert to array");
184        let actual = as_boolean_array(&actual).unwrap();
185
186        let expected = &BooleanArray::from(vec![true, false, true, true, false]);
187
188        assert_eq!(expected, actual);
189    }
190}