datafusion_physical_expr/intervals/cp_solver.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! Constraint propagator/solver for custom [`PhysicalExpr`] graphs.
19//!
20//! The constraint propagator/solver in DataFusion uses interval arithmetic to
21//! perform mathematical operations on intervals, which represent a range of
22//! possible values rather than a single point value. This allows for the
23//! propagation of ranges through mathematical operations, and can be used to
24//! compute bounds for a complicated expression. The key idea is that by
25//! breaking down a complicated expression into simpler terms, and then
26//! combining the bounds for those simpler terms, one can obtain bounds for the
27//! overall expression.
28//!
29//! This way of using interval arithmetic to compute bounds for a complex
30//! expression by combining the bounds for the constituent terms within the
31//! original expression allows us to reason about the range of possible values
32//! of the expression. This information later can be used in range pruning of
33//! the provably unnecessary parts of `RecordBatch`es.
34//!
35//! # Example
36//!
37//! For example, consider a mathematical expression such as `x^2 + y = 4` \[1\].
38//! Since this expression would be a binary tree in [`PhysicalExpr`] notation,
39//! this type of an hierarchical computation is well-suited for a graph based
40//! implementation. In such an implementation, an equation system `f(x) = 0` is
41//! represented by a directed acyclic expression graph (DAEG).
42//!
43//! In order to use interval arithmetic to compute bounds for this expression,
44//! one would first determine intervals that represent the possible values of
45//! `x` and `y`` Let's say that the interval for `x` is `[1, 2]` and the interval
46//! for `y` is `[-3, 1]`. In the chart below, you can see how the computation
47//! takes place.
48//!
49//! # References
50//!
51//! 1. Kabak, Mehmet Ozan. Analog Circuit Start-Up Behavior Analysis: An Interval
52//! Arithmetic Based Approach, Chapter 4. Stanford University, 2015.
53//! 2. Moore, Ramon E. Interval analysis. Vol. 4. Englewood Cliffs: Prentice-Hall, 1966.
54//! 3. F. Messine, "Deterministic global optimization using interval constraint
55//! propagation techniques," RAIRO-Operations Research, vol. 38, no. 04,
56//! pp. 277-293, 2004.
57//!
58//! # Illustration
59//!
60//! ## Computing bounds for an expression using interval arithmetic
61//!
62//! ```text
63//! +-----+ +-----+
64//! +----| + |----+ +----| + |----+
65//! | | | | | | | |
66//! | +-----+ | | +-----+ |
67//! | | | |
68//! +-----+ +-----+ +-----+ +-----+
69//! | 2 | | y | | 2 | [1, 4] | y |
70//! |[.] | | | |[.] | | |
71//! +-----+ +-----+ +-----+ +-----+
72//! | |
73//! | |
74//! +---+ +---+
75//! | x | [1, 2] | x | [1, 2]
76//! +---+ +---+
77//!
78//! (a) Bottom-up evaluation: Step 1 (b) Bottom up evaluation: Step 2
79//!
80//! [1 - 3, 4 + 1] = [-2, 5]
81//! +-----+ +-----+
82//! +----| + |----+ +----| + |----+
83//! | | | | | | | |
84//! | +-----+ | | +-----+ |
85//! | | | |
86//! +-----+ +-----+ +-----+ +-----+
87//! | 2 |[1, 4] | y | | 2 |[1, 4] | y |
88//! |[.] | | | |[.] | | |
89//! +-----+ +-----+ +-----+ +-----+
90//! | [-3, 1] | [-3, 1]
91//! | |
92//! +---+ +---+
93//! | x | [1, 2] | x | [1, 2]
94//! +---+ +---+
95//!
96//! (c) Bottom-up evaluation: Step 3 (d) Bottom-up evaluation: Step 4
97//! ```
98//!
99//! ## Top-down constraint propagation using inverse semantics
100//!
101//! ```text
102//! [-2, 5] ∩ [4, 4] = [4, 4] [4, 4]
103//! +-----+ +-----+
104//! +----| + |----+ +----| + |----+
105//! | | | | | | | |
106//! | +-----+ | | +-----+ |
107//! | | | |
108//! +-----+ +-----+ +-----+ +-----+
109//! | 2 | [1, 4] | y | | 2 | [1, 4] | y | [0, 1]*
110//! |[.] | | | |[.] | | |
111//! +-----+ +-----+ +-----+ +-----+
112//! | [-3, 1] |
113//! | |
114//! +---+ +---+
115//! | x | [1, 2] | x | [1, 2]
116//! +---+ +---+
117//!
118//! (a) Top-down propagation: Step 1 (b) Top-down propagation: Step 2
119//!
120//! [1 - 3, 4 + 1] = [-2, 5]
121//! +-----+ +-----+
122//! +----| + |----+ +----| + |----+
123//! | | | | | | | |
124//! | +-----+ | | +-----+ |
125//! | | | |
126//! +-----+ +-----+ +-----+ +-----+
127//! | 2 |[3, 4]** | y | | 2 |[3, 4] | y |
128//! |[.] | | | |[.] | | |
129//! +-----+ +-----+ +-----+ +-----+
130//! | [0, 1] | [-3, 1]
131//! | |
132//! +---+ +---+
133//! | x | [1, 2] | x | [sqrt(3), 2]***
134//! +---+ +---+
135//!
136//! (c) Top-down propagation: Step 3 (d) Top-down propagation: Step 4
137//!
138//! * [-3, 1] ∩ ([4, 4] - [1, 4]) = [0, 1]
139//! ** [1, 4] ∩ ([4, 4] - [0, 1]) = [3, 4]
140//! *** [1, 2] ∩ [sqrt(3), sqrt(4)] = [sqrt(3), 2]
141//! ```
142
143use std::collections::HashSet;
144use std::fmt::{Display, Formatter};
145use std::mem::{size_of, size_of_val};
146use std::sync::Arc;
147
148use super::utils::{
149 convert_duration_type_to_interval, convert_interval_type_to_duration, get_inverse_op,
150};
151use crate::expressions::Literal;
152use crate::utils::{build_dag, ExprTreeNode};
153use crate::PhysicalExpr;
154
155use arrow::datatypes::{DataType, Schema};
156use datafusion_common::{internal_err, Result};
157use datafusion_expr::interval_arithmetic::{apply_operator, satisfy_greater, Interval};
158use datafusion_expr::Operator;
159
160use petgraph::graph::NodeIndex;
161use petgraph::stable_graph::{DefaultIx, StableGraph};
162use petgraph::visit::{Bfs, Dfs, DfsPostOrder, EdgeRef};
163use petgraph::Outgoing;
164
165/// This object implements a directed acyclic expression graph (DAEG) that
166/// is used to compute ranges for expressions through interval arithmetic.
167#[derive(Clone, Debug)]
168pub struct ExprIntervalGraph {
169 graph: StableGraph<ExprIntervalGraphNode, usize>,
170 root: NodeIndex,
171}
172
173/// This object encapsulates all possible constraint propagation results.
174#[derive(PartialEq, Debug)]
175pub enum PropagationResult {
176 CannotPropagate,
177 Infeasible,
178 Success,
179}
180
181/// This is a node in the DAEG; it encapsulates a reference to the actual
182/// [`PhysicalExpr`] as well as an interval containing expression bounds.
183#[derive(Clone, Debug)]
184pub struct ExprIntervalGraphNode {
185 expr: Arc<dyn PhysicalExpr>,
186 interval: Interval,
187}
188
189impl PartialEq for ExprIntervalGraphNode {
190 fn eq(&self, other: &Self) -> bool {
191 self.expr.eq(&other.expr)
192 }
193}
194
195impl Display for ExprIntervalGraphNode {
196 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
197 write!(f, "{}", self.expr)
198 }
199}
200
201impl ExprIntervalGraphNode {
202 /// Constructs a new DAEG node with an `[-∞, ∞]` range.
203 pub fn new_unbounded(expr: Arc<dyn PhysicalExpr>, dt: &DataType) -> Result<Self> {
204 Interval::make_unbounded(dt)
205 .map(|interval| ExprIntervalGraphNode { expr, interval })
206 }
207
208 /// Constructs a new DAEG node with the given range.
209 pub fn new_with_interval(expr: Arc<dyn PhysicalExpr>, interval: Interval) -> Self {
210 ExprIntervalGraphNode { expr, interval }
211 }
212
213 /// Get the interval object representing the range of the expression.
214 pub fn interval(&self) -> &Interval {
215 &self.interval
216 }
217
218 /// This function creates a DAEG node from DataFusion's [`ExprTreeNode`]
219 /// object. Literals are created with definite, singleton intervals while
220 /// any other expression starts with an indefinite interval (`[-∞, ∞]`).
221 pub fn make_node(node: &ExprTreeNode<NodeIndex>, schema: &Schema) -> Result<Self> {
222 let expr = Arc::clone(&node.expr);
223 if let Some(literal) = expr.as_any().downcast_ref::<Literal>() {
224 let value = literal.value();
225 Interval::try_new(value.clone(), value.clone())
226 .map(|interval| Self::new_with_interval(expr, interval))
227 } else {
228 expr.data_type(schema)
229 .and_then(|dt| Self::new_unbounded(expr, &dt))
230 }
231 }
232}
233
234/// This function refines intervals `left_child` and `right_child` by applying
235/// constraint propagation through `parent` via operation. The main idea is
236/// that we can shrink ranges of variables x and y using parent interval p.
237///
238/// Assuming that x,y and p has ranges `[xL, xU]`, `[yL, yU]`, and `[pL, pU]`, we
239/// apply the following operations:
240/// - For plus operation, specifically, we would first do
241/// - `[xL, xU]` <- (`[pL, pU]` - `[yL, yU]`) ∩ `[xL, xU]`, and then
242/// - `[yL, yU]` <- (`[pL, pU]` - `[xL, xU]`) ∩ `[yL, yU]`.
243/// - For minus operation, specifically, we would first do
244/// - `[xL, xU]` <- (`[yL, yU]` + `[pL, pU]`) ∩ `[xL, xU]`, and then
245/// - `[yL, yU]` <- (`[xL, xU]` - `[pL, pU]`) ∩ `[yL, yU]`.
246/// - For multiplication operation, specifically, we would first do
247/// - `[xL, xU]` <- (`[pL, pU]` / `[yL, yU]`) ∩ `[xL, xU]`, and then
248/// - `[yL, yU]` <- (`[pL, pU]` / `[xL, xU]`) ∩ `[yL, yU]`.
249/// - For division operation, specifically, we would first do
250/// - `[xL, xU]` <- (`[yL, yU]` * `[pL, pU]`) ∩ `[xL, xU]`, and then
251/// - `[yL, yU]` <- (`[xL, xU]` / `[pL, pU]`) ∩ `[yL, yU]`.
252pub fn propagate_arithmetic(
253 op: &Operator,
254 parent: &Interval,
255 left_child: &Interval,
256 right_child: &Interval,
257) -> Result<Option<(Interval, Interval)>> {
258 let inverse_op = get_inverse_op(*op)?;
259 match (left_child.data_type(), right_child.data_type()) {
260 // If we have a child whose type is a time interval (i.e. DataType::Interval),
261 // we need special handling since timestamp differencing results in a
262 // Duration type.
263 (DataType::Timestamp(..), DataType::Interval(_)) => {
264 propagate_time_interval_at_right(
265 left_child,
266 right_child,
267 parent,
268 op,
269 &inverse_op,
270 )
271 }
272 (DataType::Interval(_), DataType::Timestamp(..)) => {
273 propagate_time_interval_at_left(
274 left_child,
275 right_child,
276 parent,
277 op,
278 &inverse_op,
279 )
280 }
281 _ => {
282 // First, propagate to the left:
283 match apply_operator(&inverse_op, parent, right_child)?
284 .intersect(left_child)?
285 {
286 // Left is feasible:
287 Some(value) => Ok(
288 // Propagate to the right using the new left.
289 propagate_right(&value, parent, right_child, op, &inverse_op)?
290 .map(|right| (value, right)),
291 ),
292 // If the left child is infeasible, short-circuit.
293 None => Ok(None),
294 }
295 }
296 }
297}
298
299/// This function refines intervals `left_child` and `right_child` by applying
300/// comparison propagation through `parent` via operation. The main idea is
301/// that we can shrink ranges of variables x and y using parent interval p.
302/// Two intervals can be ordered in 6 ways for a Gt `>` operator:
303/// ```text
304/// (1): Infeasible, short-circuit
305/// left: | ================ |
306/// right: | ======================== |
307///
308/// (2): Update both interval
309/// left: | ====================== |
310/// right: | ====================== |
311/// |
312/// V
313/// left: | ======= |
314/// right: | ======= |
315///
316/// (3): Update left interval
317/// left: | ============================== |
318/// right: | ========== |
319/// |
320/// V
321/// left: | ===================== |
322/// right: | ========== |
323///
324/// (4): Update right interval
325/// left: | ========== |
326/// right: | =========================== |
327/// |
328/// V
329/// left: | ========== |
330/// right | ================== |
331///
332/// (5): No change
333/// left: | ============================ |
334/// right: | =================== |
335///
336/// (6): No change
337/// left: | ==================== |
338/// right: | =============== |
339///
340/// -inf --------------------------------------------------------------- +inf
341/// ```
342pub fn propagate_comparison(
343 op: &Operator,
344 parent: &Interval,
345 left_child: &Interval,
346 right_child: &Interval,
347) -> Result<Option<(Interval, Interval)>> {
348 if parent == &Interval::CERTAINLY_TRUE {
349 match op {
350 Operator::Eq => left_child.intersect(right_child).map(|result| {
351 result.map(|intersection| (intersection.clone(), intersection))
352 }),
353 Operator::Gt => satisfy_greater(left_child, right_child, true),
354 Operator::GtEq => satisfy_greater(left_child, right_child, false),
355 Operator::Lt => satisfy_greater(right_child, left_child, true)
356 .map(|t| t.map(reverse_tuple)),
357 Operator::LtEq => satisfy_greater(right_child, left_child, false)
358 .map(|t| t.map(reverse_tuple)),
359 _ => internal_err!(
360 "The operator must be a comparison operator to propagate intervals"
361 ),
362 }
363 } else if parent == &Interval::CERTAINLY_FALSE {
364 match op {
365 Operator::Eq => {
366 // TODO: Propagation is not possible until we support interval sets.
367 Ok(None)
368 }
369 Operator::Gt => satisfy_greater(right_child, left_child, false),
370 Operator::GtEq => satisfy_greater(right_child, left_child, true),
371 Operator::Lt => satisfy_greater(left_child, right_child, false)
372 .map(|t| t.map(reverse_tuple)),
373 Operator::LtEq => satisfy_greater(left_child, right_child, true)
374 .map(|t| t.map(reverse_tuple)),
375 _ => internal_err!(
376 "The operator must be a comparison operator to propagate intervals"
377 ),
378 }
379 } else {
380 // Uncertainty cannot change any end-point of the intervals.
381 Ok(None)
382 }
383}
384
385impl ExprIntervalGraph {
386 pub fn try_new(expr: Arc<dyn PhysicalExpr>, schema: &Schema) -> Result<Self> {
387 // Build the full graph:
388 let (root, graph) =
389 build_dag(expr, &|node| ExprIntervalGraphNode::make_node(node, schema))?;
390 Ok(Self { graph, root })
391 }
392
393 pub fn node_count(&self) -> usize {
394 self.graph.node_count()
395 }
396
397 /// Estimate size of bytes including `Self`.
398 pub fn size(&self) -> usize {
399 let node_memory_usage = self.graph.node_count()
400 * (size_of::<ExprIntervalGraphNode>() + size_of::<NodeIndex>());
401 let edge_memory_usage =
402 self.graph.edge_count() * (size_of::<usize>() + size_of::<NodeIndex>() * 2);
403
404 size_of_val(self) + node_memory_usage + edge_memory_usage
405 }
406
407 // Sometimes, we do not want to calculate and/or propagate intervals all
408 // way down to leaf expressions. For example, assume that we have a
409 // `SymmetricHashJoin` which has a child with an output ordering like:
410 //
411 // ```text
412 // PhysicalSortExpr {
413 // expr: BinaryExpr('a', +, 'b'),
414 // sort_option: ..
415 // }
416 // ```
417 //
418 // i.e. its output order comes from a clause like `ORDER BY a + b`. In such
419 // a case, we must calculate the interval for the `BinaryExpr(a, +, b)`
420 // instead of the columns inside this `BinaryExpr`, because this interval
421 // decides whether we prune or not. Therefore, children `PhysicalExpr`s of
422 // this `BinaryExpr` may be pruned for performance. The figure below
423 // explains this example visually.
424 //
425 // Note that we just remove the nodes from the DAEG, do not make any change
426 // to the plan itself.
427 //
428 // ```text
429 //
430 // +-----+ +-----+
431 // | GT | | GT |
432 // +--------| |-------+ +--------| |-------+
433 // | +-----+ | | +-----+ |
434 // | | | |
435 // +-----+ | +-----+ |
436 // |Cast | | |Cast | |
437 // | | | --\ | | |
438 // +-----+ | ---------- +-----+ |
439 // | | --/ | |
440 // | | | |
441 // +-----+ +-----+ +-----+ +-----+
442 // +--|Plus |--+ +--|Plus |--+ |Plus | +--|Plus |--+
443 // | | | | | | | | | | | | | |
444 // Prune from here | +-----+ | | +-----+ | +-----+ | +-----+ |
445 // ------------------------------------ | | | |
446 // | | | | | |
447 // +-----+ +-----+ +-----+ +-----+ +-----+ +-----+
448 // | a | | b | | c | | 2 | | c | | 2 |
449 // | | | | | | | | | | | |
450 // +-----+ +-----+ +-----+ +-----+ +-----+ +-----+
451 //
452 // ```
453
454 /// This function associates stable node indices with [`PhysicalExpr`]s so
455 /// that we can match `Arc<dyn PhysicalExpr>` and NodeIndex objects during
456 /// membership tests.
457 pub fn gather_node_indices(
458 &mut self,
459 exprs: &[Arc<dyn PhysicalExpr>],
460 ) -> Vec<(Arc<dyn PhysicalExpr>, usize)> {
461 let graph = &self.graph;
462 let mut bfs = Bfs::new(graph, self.root);
463 // We collect the node indices (usize) of [PhysicalExpr]s in the order
464 // given by argument `exprs`. To preserve this order, we initialize each
465 // expression's node index with usize::MAX, and then find the corresponding
466 // node indices by traversing the graph.
467 let mut removals = vec![];
468 let mut expr_node_indices = exprs
469 .iter()
470 .map(|e| (Arc::clone(e), usize::MAX))
471 .collect::<Vec<_>>();
472 while let Some(node) = bfs.next(graph) {
473 // Get the plan corresponding to this node:
474 let expr = &graph[node].expr;
475 // If the current expression is among `exprs`, slate its children
476 // for removal:
477 if let Some(value) = exprs.iter().position(|e| expr.eq(e)) {
478 // Update the node index of the associated `PhysicalExpr`:
479 expr_node_indices[value].1 = node.index();
480 for edge in graph.edges_directed(node, Outgoing) {
481 // Slate the child for removal, do not remove immediately.
482 removals.push(edge.id());
483 }
484 }
485 }
486 for edge_idx in removals {
487 self.graph.remove_edge(edge_idx);
488 }
489 // Get the set of node indices reachable from the root node:
490 let connected_nodes = self.connected_nodes();
491 // Remove nodes not connected to the root node:
492 self.graph
493 .retain_nodes(|_, index| connected_nodes.contains(&index));
494 expr_node_indices
495 }
496
497 /// Returns the set of node indices reachable from the root node via a
498 /// simple depth-first search.
499 fn connected_nodes(&self) -> HashSet<NodeIndex> {
500 let mut nodes = HashSet::new();
501 let mut dfs = Dfs::new(&self.graph, self.root);
502 while let Some(node) = dfs.next(&self.graph) {
503 nodes.insert(node);
504 }
505 nodes
506 }
507
508 /// Updates intervals for all expressions in the DAEG by successive
509 /// bottom-up and top-down traversals.
510 pub fn update_ranges(
511 &mut self,
512 leaf_bounds: &mut [(usize, Interval)],
513 given_range: Interval,
514 ) -> Result<PropagationResult> {
515 self.assign_intervals(leaf_bounds);
516 let bounds = self.evaluate_bounds()?;
517 // There are three possible cases to consider:
518 // (1) given_range ⊇ bounds => Nothing to propagate
519 // (2) ∅ ⊂ (given_range ∩ bounds) ⊂ bounds => Can propagate
520 // (3) Disjoint sets => Infeasible
521 if given_range.contains(bounds)? == Interval::CERTAINLY_TRUE {
522 // First case:
523 Ok(PropagationResult::CannotPropagate)
524 } else if bounds.contains(&given_range)? != Interval::CERTAINLY_FALSE {
525 // Second case:
526 let result = self.propagate_constraints(given_range);
527 self.update_intervals(leaf_bounds);
528 result
529 } else {
530 // Third case:
531 Ok(PropagationResult::Infeasible)
532 }
533 }
534
535 /// This function assigns given ranges to expressions in the DAEG.
536 /// The argument `assignments` associates indices of sought expressions
537 /// with their corresponding new ranges.
538 pub fn assign_intervals(&mut self, assignments: &[(usize, Interval)]) {
539 for (index, interval) in assignments {
540 let node_index = NodeIndex::from(*index as DefaultIx);
541 self.graph[node_index].interval = interval.clone();
542 }
543 }
544
545 /// This function fetches ranges of expressions from the DAEG. The argument
546 /// `assignments` associates indices of sought expressions with their ranges,
547 /// which this function modifies to reflect the intervals in the DAEG.
548 pub fn update_intervals(&self, assignments: &mut [(usize, Interval)]) {
549 for (index, interval) in assignments.iter_mut() {
550 let node_index = NodeIndex::from(*index as DefaultIx);
551 *interval = self.graph[node_index].interval.clone();
552 }
553 }
554
555 /// Computes bounds for an expression using interval arithmetic via a
556 /// bottom-up traversal.
557 ///
558 /// # Examples
559 ///
560 /// ```
561 /// use arrow::datatypes::DataType;
562 /// use arrow::datatypes::Field;
563 /// use arrow::datatypes::Schema;
564 /// use datafusion_common::ScalarValue;
565 /// use datafusion_expr::interval_arithmetic::Interval;
566 /// use datafusion_expr::Operator;
567 /// use datafusion_physical_expr::expressions::{BinaryExpr, Column, Literal};
568 /// use datafusion_physical_expr::intervals::cp_solver::ExprIntervalGraph;
569 /// use datafusion_physical_expr::PhysicalExpr;
570 /// use std::sync::Arc;
571 ///
572 /// let expr = Arc::new(BinaryExpr::new(
573 /// Arc::new(Column::new("gnz", 0)),
574 /// Operator::Plus,
575 /// Arc::new(Literal::new(ScalarValue::Int32(Some(10)))),
576 /// ));
577 ///
578 /// let schema = Schema::new(vec![Field::new("gnz".to_string(), DataType::Int32, true)]);
579 ///
580 /// let mut graph = ExprIntervalGraph::try_new(expr, &schema).unwrap();
581 /// // Do it once, while constructing.
582 /// let node_indices = graph
583 /// .gather_node_indices(&[Arc::new(Column::new("gnz", 0))]);
584 /// let left_index = node_indices.get(0).unwrap().1;
585 ///
586 /// // Provide intervals for leaf variables (here, there is only one).
587 /// let intervals = vec![(
588 /// left_index,
589 /// Interval::make(Some(10), Some(20)).unwrap(),
590 /// )];
591 ///
592 /// // Evaluate bounds for the composite expression:
593 /// graph.assign_intervals(&intervals);
594 /// assert_eq!(
595 /// graph.evaluate_bounds().unwrap(),
596 /// &Interval::make(Some(20), Some(30)).unwrap(),
597 /// )
598 /// ```
599 pub fn evaluate_bounds(&mut self) -> Result<&Interval> {
600 let mut dfs = DfsPostOrder::new(&self.graph, self.root);
601 while let Some(node) = dfs.next(&self.graph) {
602 let neighbors = self.graph.neighbors_directed(node, Outgoing);
603 let mut children_intervals = neighbors
604 .map(|child| self.graph[child].interval())
605 .collect::<Vec<_>>();
606 // If the current expression is a leaf, its interval should already
607 // be set externally, just continue with the evaluation procedure:
608 if !children_intervals.is_empty() {
609 // Reverse to align with `PhysicalExpr`'s children:
610 children_intervals.reverse();
611 self.graph[node].interval =
612 self.graph[node].expr.evaluate_bounds(&children_intervals)?;
613 }
614 }
615 Ok(self.graph[self.root].interval())
616 }
617
618 /// Updates/shrinks bounds for leaf expressions using interval arithmetic
619 /// via a top-down traversal.
620 fn propagate_constraints(
621 &mut self,
622 given_range: Interval,
623 ) -> Result<PropagationResult> {
624 // Adjust the root node with the given range:
625 if let Some(interval) = self.graph[self.root].interval.intersect(given_range)? {
626 self.graph[self.root].interval = interval;
627 } else {
628 return Ok(PropagationResult::Infeasible);
629 }
630
631 let mut bfs = Bfs::new(&self.graph, self.root);
632
633 while let Some(node) = bfs.next(&self.graph) {
634 let neighbors = self.graph.neighbors_directed(node, Outgoing);
635 let mut children = neighbors.collect::<Vec<_>>();
636 // If the current expression is a leaf, its range is now final.
637 // So, just continue with the propagation procedure:
638 if children.is_empty() {
639 continue;
640 }
641 // Reverse to align with `PhysicalExpr`'s children:
642 children.reverse();
643 let children_intervals = children
644 .iter()
645 .map(|child| self.graph[*child].interval())
646 .collect::<Vec<_>>();
647 let node_interval = self.graph[node].interval();
648 let propagated_intervals = self.graph[node]
649 .expr
650 .propagate_constraints(node_interval, &children_intervals)?;
651 if let Some(propagated_intervals) = propagated_intervals {
652 for (child, interval) in children.into_iter().zip(propagated_intervals) {
653 self.graph[child].interval = interval;
654 }
655 } else {
656 // The constraint is infeasible, report:
657 return Ok(PropagationResult::Infeasible);
658 }
659 }
660 Ok(PropagationResult::Success)
661 }
662
663 /// Returns the interval associated with the node at the given `index`.
664 pub fn get_interval(&self, index: usize) -> Interval {
665 self.graph[NodeIndex::new(index)].interval.clone()
666 }
667}
668
669/// This is a subfunction of the `propagate_arithmetic` function that propagates to the right child.
670fn propagate_right(
671 left: &Interval,
672 parent: &Interval,
673 right: &Interval,
674 op: &Operator,
675 inverse_op: &Operator,
676) -> Result<Option<Interval>> {
677 match op {
678 Operator::Minus => apply_operator(op, left, parent),
679 Operator::Plus => apply_operator(inverse_op, parent, left),
680 Operator::Divide => apply_operator(op, left, parent),
681 Operator::Multiply => apply_operator(inverse_op, parent, left),
682 _ => internal_err!("Interval arithmetic does not support the operator {}", op),
683 }?
684 .intersect(right)
685}
686
687/// During the propagation of [`Interval`] values on an [`ExprIntervalGraph`],
688/// if there exists a `timestamp - timestamp` operation, the result would be
689/// of type `Duration`. However, we may encounter a situation where a time interval
690/// is involved in an arithmetic operation with a `Duration` type. This function
691/// offers special handling for such cases, where the time interval resides on
692/// the left side of the operation.
693fn propagate_time_interval_at_left(
694 left_child: &Interval,
695 right_child: &Interval,
696 parent: &Interval,
697 op: &Operator,
698 inverse_op: &Operator,
699) -> Result<Option<(Interval, Interval)>> {
700 // We check if the child's time interval(s) has a non-zero month or day field(s).
701 // If so, we return it as is without propagating. Otherwise, we first convert
702 // the time intervals to the `Duration` type, then propagate, and then convert
703 // the bounds to time intervals again.
704 let result = if let Some(duration) = convert_interval_type_to_duration(left_child) {
705 match apply_operator(inverse_op, parent, right_child)?.intersect(duration)? {
706 Some(value) => {
707 let left = convert_duration_type_to_interval(&value);
708 let right = propagate_right(&value, parent, right_child, op, inverse_op)?;
709 match (left, right) {
710 (Some(left), Some(right)) => Some((left, right)),
711 _ => None,
712 }
713 }
714 None => None,
715 }
716 } else {
717 propagate_right(left_child, parent, right_child, op, inverse_op)?
718 .map(|right| (left_child.clone(), right))
719 };
720 Ok(result)
721}
722
723/// During the propagation of [`Interval`] values on an [`ExprIntervalGraph`],
724/// if there exists a `timestamp - timestamp` operation, the result would be
725/// of type `Duration`. However, we may encounter a situation where a time interval
726/// is involved in an arithmetic operation with a `Duration` type. This function
727/// offers special handling for such cases, where the time interval resides on
728/// the right side of the operation.
729fn propagate_time_interval_at_right(
730 left_child: &Interval,
731 right_child: &Interval,
732 parent: &Interval,
733 op: &Operator,
734 inverse_op: &Operator,
735) -> Result<Option<(Interval, Interval)>> {
736 // We check if the child's time interval(s) has a non-zero month or day field(s).
737 // If so, we return it as is without propagating. Otherwise, we first convert
738 // the time intervals to the `Duration` type, then propagate, and then convert
739 // the bounds to time intervals again.
740 let result = if let Some(duration) = convert_interval_type_to_duration(right_child) {
741 match apply_operator(inverse_op, parent, &duration)?.intersect(left_child)? {
742 Some(value) => {
743 propagate_right(left_child, parent, &duration, op, inverse_op)?
744 .and_then(|right| convert_duration_type_to_interval(&right))
745 .map(|right| (value, right))
746 }
747 None => None,
748 }
749 } else {
750 apply_operator(inverse_op, parent, right_child)?
751 .intersect(left_child)?
752 .map(|value| (value, right_child.clone()))
753 };
754 Ok(result)
755}
756
757fn reverse_tuple<T, U>((first, second): (T, U)) -> (U, T) {
758 (second, first)
759}
760
761#[cfg(test)]
762mod tests {
763 use super::*;
764 use crate::expressions::{BinaryExpr, Column};
765 use crate::intervals::test_utils::gen_conjunctive_numerical_expr;
766
767 use arrow::array::types::{IntervalDayTime, IntervalMonthDayNano};
768 use arrow::datatypes::{Field, TimeUnit};
769 use datafusion_common::ScalarValue;
770
771 use itertools::Itertools;
772 use rand::rngs::StdRng;
773 use rand::{Rng, SeedableRng};
774 use rstest::*;
775
776 #[allow(clippy::too_many_arguments)]
777 fn experiment(
778 expr: Arc<dyn PhysicalExpr>,
779 exprs_with_interval: (Arc<dyn PhysicalExpr>, Arc<dyn PhysicalExpr>),
780 left_interval: Interval,
781 right_interval: Interval,
782 left_expected: Interval,
783 right_expected: Interval,
784 result: PropagationResult,
785 schema: &Schema,
786 ) -> Result<()> {
787 let col_stats = vec![
788 (Arc::clone(&exprs_with_interval.0), left_interval),
789 (Arc::clone(&exprs_with_interval.1), right_interval),
790 ];
791 let expected = vec![
792 (Arc::clone(&exprs_with_interval.0), left_expected),
793 (Arc::clone(&exprs_with_interval.1), right_expected),
794 ];
795 let mut graph = ExprIntervalGraph::try_new(expr, schema)?;
796 let expr_indexes = graph.gather_node_indices(
797 &col_stats.iter().map(|(e, _)| Arc::clone(e)).collect_vec(),
798 );
799
800 let mut col_stat_nodes = col_stats
801 .iter()
802 .zip(expr_indexes.iter())
803 .map(|((_, interval), (_, index))| (*index, interval.clone()))
804 .collect_vec();
805 let expected_nodes = expected
806 .iter()
807 .zip(expr_indexes.iter())
808 .map(|((_, interval), (_, index))| (*index, interval.clone()))
809 .collect_vec();
810
811 let exp_result =
812 graph.update_ranges(&mut col_stat_nodes[..], Interval::CERTAINLY_TRUE)?;
813 assert_eq!(exp_result, result);
814 col_stat_nodes.iter().zip(expected_nodes.iter()).for_each(
815 |((_, calculated_interval_node), (_, expected))| {
816 // NOTE: These randomized tests only check for conservative containment,
817 // not openness/closedness of endpoints.
818
819 // Calculated bounds are relaxed by 1 to cover all strict and
820 // and non-strict comparison cases since we have only closed bounds.
821 let one = ScalarValue::new_one(&expected.data_type()).unwrap();
822 assert!(
823 calculated_interval_node.lower()
824 <= &expected.lower().add(&one).unwrap(),
825 "{}",
826 format!(
827 "Calculated {} must be less than or equal {}",
828 calculated_interval_node.lower(),
829 expected.lower()
830 )
831 );
832 assert!(
833 calculated_interval_node.upper()
834 >= &expected.upper().sub(&one).unwrap(),
835 "{}",
836 format!(
837 "Calculated {} must be greater than or equal {}",
838 calculated_interval_node.upper(),
839 expected.upper()
840 )
841 );
842 },
843 );
844 Ok(())
845 }
846
847 macro_rules! generate_cases {
848 ($FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
849 fn $FUNC_NAME<const ASC: bool>(
850 expr: Arc<dyn PhysicalExpr>,
851 left_col: Arc<dyn PhysicalExpr>,
852 right_col: Arc<dyn PhysicalExpr>,
853 seed: u64,
854 expr_left: $TYPE,
855 expr_right: $TYPE,
856 ) -> Result<()> {
857 let mut r = StdRng::seed_from_u64(seed);
858
859 let (left_given, right_given, left_expected, right_expected) = if ASC {
860 let left = r.gen_range((0 as $TYPE)..(1000 as $TYPE));
861 let right = r.gen_range((0 as $TYPE)..(1000 as $TYPE));
862 (
863 (Some(left), None),
864 (Some(right), None),
865 (Some(<$TYPE>::max(left, right + expr_left)), None),
866 (Some(<$TYPE>::max(right, left + expr_right)), None),
867 )
868 } else {
869 let left = r.gen_range((0 as $TYPE)..(1000 as $TYPE));
870 let right = r.gen_range((0 as $TYPE)..(1000 as $TYPE));
871 (
872 (None, Some(left)),
873 (None, Some(right)),
874 (None, Some(<$TYPE>::min(left, right + expr_left))),
875 (None, Some(<$TYPE>::min(right, left + expr_right))),
876 )
877 };
878
879 experiment(
880 expr,
881 (left_col.clone(), right_col.clone()),
882 Interval::make(left_given.0, left_given.1).unwrap(),
883 Interval::make(right_given.0, right_given.1).unwrap(),
884 Interval::make(left_expected.0, left_expected.1).unwrap(),
885 Interval::make(right_expected.0, right_expected.1).unwrap(),
886 PropagationResult::Success,
887 &Schema::new(vec![
888 Field::new(
889 left_col.as_any().downcast_ref::<Column>().unwrap().name(),
890 DataType::$SCALAR,
891 true,
892 ),
893 Field::new(
894 right_col.as_any().downcast_ref::<Column>().unwrap().name(),
895 DataType::$SCALAR,
896 true,
897 ),
898 ]),
899 )
900 }
901 };
902 }
903 generate_cases!(generate_case_i32, i32, Int32);
904 generate_cases!(generate_case_i64, i64, Int64);
905 generate_cases!(generate_case_f32, f32, Float32);
906 generate_cases!(generate_case_f64, f64, Float64);
907
908 #[test]
909 fn testing_not_possible() -> Result<()> {
910 let left_col = Arc::new(Column::new("left_watermark", 0));
911 let right_col = Arc::new(Column::new("right_watermark", 0));
912
913 // left_watermark > right_watermark + 5
914 let left_and_1 = Arc::new(BinaryExpr::new(
915 Arc::clone(&left_col) as Arc<dyn PhysicalExpr>,
916 Operator::Plus,
917 Arc::new(Literal::new(ScalarValue::Int32(Some(5)))),
918 ));
919 let expr = Arc::new(BinaryExpr::new(
920 left_and_1,
921 Operator::Gt,
922 Arc::clone(&right_col) as Arc<dyn PhysicalExpr>,
923 ));
924 experiment(
925 expr,
926 (
927 Arc::clone(&left_col) as Arc<dyn PhysicalExpr>,
928 Arc::clone(&right_col) as Arc<dyn PhysicalExpr>,
929 ),
930 Interval::make(Some(10_i32), Some(20_i32))?,
931 Interval::make(Some(100), None)?,
932 Interval::make(Some(10), Some(20))?,
933 Interval::make(Some(100), None)?,
934 PropagationResult::Infeasible,
935 &Schema::new(vec![
936 Field::new(
937 left_col.as_any().downcast_ref::<Column>().unwrap().name(),
938 DataType::Int32,
939 true,
940 ),
941 Field::new(
942 right_col.as_any().downcast_ref::<Column>().unwrap().name(),
943 DataType::Int32,
944 true,
945 ),
946 ]),
947 )
948 }
949
950 macro_rules! integer_float_case_1 {
951 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
952 #[rstest]
953 #[test]
954 fn $TEST_FUNC_NAME(
955 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
956 seed: u64,
957 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
958 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
959 ) -> Result<()> {
960 let left_col = Arc::new(Column::new("left_watermark", 0));
961 let right_col = Arc::new(Column::new("right_watermark", 0));
962
963 // left_watermark + 1 > right_watermark + 11 AND left_watermark + 3 < right_watermark + 33
964 let expr = gen_conjunctive_numerical_expr(
965 left_col.clone(),
966 right_col.clone(),
967 (
968 Operator::Plus,
969 Operator::Plus,
970 Operator::Plus,
971 Operator::Plus,
972 ),
973 ScalarValue::$SCALAR(Some(1 as $TYPE)),
974 ScalarValue::$SCALAR(Some(11 as $TYPE)),
975 ScalarValue::$SCALAR(Some(3 as $TYPE)),
976 ScalarValue::$SCALAR(Some(33 as $TYPE)),
977 (greater_op, less_op),
978 );
979 // l > r + 10 AND r > l - 30
980 let l_gt_r = 10 as $TYPE;
981 let r_gt_l = -30 as $TYPE;
982 $GENERATE_CASE_FUNC_NAME::<true>(
983 expr.clone(),
984 left_col.clone(),
985 right_col.clone(),
986 seed,
987 l_gt_r,
988 r_gt_l,
989 )?;
990 // Descending tests
991 // r < l - 10 AND l < r + 30
992 let r_lt_l = -l_gt_r;
993 let l_lt_r = -r_gt_l;
994 $GENERATE_CASE_FUNC_NAME::<false>(
995 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
996 )
997 }
998 };
999 }
1000
1001 integer_float_case_1!(case_1_i32, generate_case_i32, i32, Int32);
1002 integer_float_case_1!(case_1_i64, generate_case_i64, i64, Int64);
1003 integer_float_case_1!(case_1_f64, generate_case_f64, f64, Float64);
1004 integer_float_case_1!(case_1_f32, generate_case_f32, f32, Float32);
1005
1006 macro_rules! integer_float_case_2 {
1007 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
1008 #[rstest]
1009 #[test]
1010 fn $TEST_FUNC_NAME(
1011 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
1012 seed: u64,
1013 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
1014 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
1015 ) -> Result<()> {
1016 let left_col = Arc::new(Column::new("left_watermark", 0));
1017 let right_col = Arc::new(Column::new("right_watermark", 0));
1018
1019 // left_watermark - 1 > right_watermark + 5 AND left_watermark + 3 < right_watermark + 10
1020 let expr = gen_conjunctive_numerical_expr(
1021 left_col.clone(),
1022 right_col.clone(),
1023 (
1024 Operator::Minus,
1025 Operator::Plus,
1026 Operator::Plus,
1027 Operator::Plus,
1028 ),
1029 ScalarValue::$SCALAR(Some(1 as $TYPE)),
1030 ScalarValue::$SCALAR(Some(5 as $TYPE)),
1031 ScalarValue::$SCALAR(Some(3 as $TYPE)),
1032 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1033 (greater_op, less_op),
1034 );
1035 // l > r + 6 AND r > l - 7
1036 let l_gt_r = 6 as $TYPE;
1037 let r_gt_l = -7 as $TYPE;
1038 $GENERATE_CASE_FUNC_NAME::<true>(
1039 expr.clone(),
1040 left_col.clone(),
1041 right_col.clone(),
1042 seed,
1043 l_gt_r,
1044 r_gt_l,
1045 )?;
1046 // Descending tests
1047 // r < l - 6 AND l < r + 7
1048 let r_lt_l = -l_gt_r;
1049 let l_lt_r = -r_gt_l;
1050 $GENERATE_CASE_FUNC_NAME::<false>(
1051 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1052 )
1053 }
1054 };
1055 }
1056
1057 integer_float_case_2!(case_2_i32, generate_case_i32, i32, Int32);
1058 integer_float_case_2!(case_2_i64, generate_case_i64, i64, Int64);
1059 integer_float_case_2!(case_2_f64, generate_case_f64, f64, Float64);
1060 integer_float_case_2!(case_2_f32, generate_case_f32, f32, Float32);
1061
1062 macro_rules! integer_float_case_3 {
1063 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
1064 #[rstest]
1065 #[test]
1066 fn $TEST_FUNC_NAME(
1067 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
1068 seed: u64,
1069 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
1070 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
1071 ) -> Result<()> {
1072 let left_col = Arc::new(Column::new("left_watermark", 0));
1073 let right_col = Arc::new(Column::new("right_watermark", 0));
1074
1075 // left_watermark - 1 > right_watermark + 5 AND left_watermark - 3 < right_watermark + 10
1076 let expr = gen_conjunctive_numerical_expr(
1077 left_col.clone(),
1078 right_col.clone(),
1079 (
1080 Operator::Minus,
1081 Operator::Plus,
1082 Operator::Minus,
1083 Operator::Plus,
1084 ),
1085 ScalarValue::$SCALAR(Some(1 as $TYPE)),
1086 ScalarValue::$SCALAR(Some(5 as $TYPE)),
1087 ScalarValue::$SCALAR(Some(3 as $TYPE)),
1088 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1089 (greater_op, less_op),
1090 );
1091 // l > r + 6 AND r > l - 13
1092 let l_gt_r = 6 as $TYPE;
1093 let r_gt_l = -13 as $TYPE;
1094 $GENERATE_CASE_FUNC_NAME::<true>(
1095 expr.clone(),
1096 left_col.clone(),
1097 right_col.clone(),
1098 seed,
1099 l_gt_r,
1100 r_gt_l,
1101 )?;
1102 // Descending tests
1103 // r < l - 6 AND l < r + 13
1104 let r_lt_l = -l_gt_r;
1105 let l_lt_r = -r_gt_l;
1106 $GENERATE_CASE_FUNC_NAME::<false>(
1107 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1108 )
1109 }
1110 };
1111 }
1112
1113 integer_float_case_3!(case_3_i32, generate_case_i32, i32, Int32);
1114 integer_float_case_3!(case_3_i64, generate_case_i64, i64, Int64);
1115 integer_float_case_3!(case_3_f64, generate_case_f64, f64, Float64);
1116 integer_float_case_3!(case_3_f32, generate_case_f32, f32, Float32);
1117
1118 macro_rules! integer_float_case_4 {
1119 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
1120 #[rstest]
1121 #[test]
1122 fn $TEST_FUNC_NAME(
1123 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
1124 seed: u64,
1125 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
1126 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
1127 ) -> Result<()> {
1128 let left_col = Arc::new(Column::new("left_watermark", 0));
1129 let right_col = Arc::new(Column::new("right_watermark", 0));
1130
1131 // left_watermark - 10 > right_watermark - 5 AND left_watermark - 30 < right_watermark - 3
1132 let expr = gen_conjunctive_numerical_expr(
1133 left_col.clone(),
1134 right_col.clone(),
1135 (
1136 Operator::Minus,
1137 Operator::Minus,
1138 Operator::Minus,
1139 Operator::Plus,
1140 ),
1141 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1142 ScalarValue::$SCALAR(Some(5 as $TYPE)),
1143 ScalarValue::$SCALAR(Some(3 as $TYPE)),
1144 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1145 (greater_op, less_op),
1146 );
1147 // l > r + 5 AND r > l - 13
1148 let l_gt_r = 5 as $TYPE;
1149 let r_gt_l = -13 as $TYPE;
1150 $GENERATE_CASE_FUNC_NAME::<true>(
1151 expr.clone(),
1152 left_col.clone(),
1153 right_col.clone(),
1154 seed,
1155 l_gt_r,
1156 r_gt_l,
1157 )?;
1158 // Descending tests
1159 // r < l - 5 AND l < r + 13
1160 let r_lt_l = -l_gt_r;
1161 let l_lt_r = -r_gt_l;
1162 $GENERATE_CASE_FUNC_NAME::<false>(
1163 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1164 )
1165 }
1166 };
1167 }
1168
1169 integer_float_case_4!(case_4_i32, generate_case_i32, i32, Int32);
1170 integer_float_case_4!(case_4_i64, generate_case_i64, i64, Int64);
1171 integer_float_case_4!(case_4_f64, generate_case_f64, f64, Float64);
1172 integer_float_case_4!(case_4_f32, generate_case_f32, f32, Float32);
1173
1174 macro_rules! integer_float_case_5 {
1175 ($TEST_FUNC_NAME:ident, $GENERATE_CASE_FUNC_NAME:ident, $TYPE:ty, $SCALAR:ident) => {
1176 #[rstest]
1177 #[test]
1178 fn $TEST_FUNC_NAME(
1179 #[values(0, 1, 2, 3, 4, 12, 32, 314, 3124, 123, 125, 211, 215, 4123)]
1180 seed: u64,
1181 #[values(Operator::Gt, Operator::GtEq)] greater_op: Operator,
1182 #[values(Operator::Lt, Operator::LtEq)] less_op: Operator,
1183 ) -> Result<()> {
1184 let left_col = Arc::new(Column::new("left_watermark", 0));
1185 let right_col = Arc::new(Column::new("right_watermark", 0));
1186
1187 // left_watermark - 10 > right_watermark - 5 AND left_watermark - 30 < right_watermark - 3
1188 let expr = gen_conjunctive_numerical_expr(
1189 left_col.clone(),
1190 right_col.clone(),
1191 (
1192 Operator::Minus,
1193 Operator::Minus,
1194 Operator::Minus,
1195 Operator::Minus,
1196 ),
1197 ScalarValue::$SCALAR(Some(10 as $TYPE)),
1198 ScalarValue::$SCALAR(Some(5 as $TYPE)),
1199 ScalarValue::$SCALAR(Some(30 as $TYPE)),
1200 ScalarValue::$SCALAR(Some(3 as $TYPE)),
1201 (greater_op, less_op),
1202 );
1203 // l > r + 5 AND r > l - 27
1204 let l_gt_r = 5 as $TYPE;
1205 let r_gt_l = -27 as $TYPE;
1206 $GENERATE_CASE_FUNC_NAME::<true>(
1207 expr.clone(),
1208 left_col.clone(),
1209 right_col.clone(),
1210 seed,
1211 l_gt_r,
1212 r_gt_l,
1213 )?;
1214 // Descending tests
1215 // r < l - 5 AND l < r + 27
1216 let r_lt_l = -l_gt_r;
1217 let l_lt_r = -r_gt_l;
1218 $GENERATE_CASE_FUNC_NAME::<false>(
1219 expr, left_col, right_col, seed, l_lt_r, r_lt_l,
1220 )
1221 }
1222 };
1223 }
1224
1225 integer_float_case_5!(case_5_i32, generate_case_i32, i32, Int32);
1226 integer_float_case_5!(case_5_i64, generate_case_i64, i64, Int64);
1227 integer_float_case_5!(case_5_f64, generate_case_f64, f64, Float64);
1228 integer_float_case_5!(case_5_f32, generate_case_f32, f32, Float32);
1229
1230 #[test]
1231 fn test_gather_node_indices_dont_remove() -> Result<()> {
1232 // Expression: a@0 + b@1 + 1 > a@0 - b@1, given a@0 + b@1.
1233 // Do not remove a@0 or b@1, only remove edges since a@0 - b@1 also
1234 // depends on leaf nodes a@0 and b@1.
1235 let left_expr = Arc::new(BinaryExpr::new(
1236 Arc::new(BinaryExpr::new(
1237 Arc::new(Column::new("a", 0)),
1238 Operator::Plus,
1239 Arc::new(Column::new("b", 1)),
1240 )),
1241 Operator::Plus,
1242 Arc::new(Literal::new(ScalarValue::Int32(Some(1)))),
1243 ));
1244
1245 let right_expr = Arc::new(BinaryExpr::new(
1246 Arc::new(Column::new("a", 0)),
1247 Operator::Minus,
1248 Arc::new(Column::new("b", 1)),
1249 ));
1250 let expr = Arc::new(BinaryExpr::new(left_expr, Operator::Gt, right_expr));
1251 let mut graph = ExprIntervalGraph::try_new(
1252 expr,
1253 &Schema::new(vec![
1254 Field::new("a", DataType::Int32, true),
1255 Field::new("b", DataType::Int32, true),
1256 ]),
1257 )
1258 .unwrap();
1259 // Define a test leaf node.
1260 let leaf_node = Arc::new(BinaryExpr::new(
1261 Arc::new(Column::new("a", 0)),
1262 Operator::Plus,
1263 Arc::new(Column::new("b", 1)),
1264 ));
1265 // Store the current node count.
1266 let prev_node_count = graph.node_count();
1267 // Gather the index of node in the expression graph that match the test leaf node.
1268 graph.gather_node_indices(&[leaf_node]);
1269 // Store the final node count.
1270 let final_node_count = graph.node_count();
1271 // Assert that the final node count is equal the previous node count.
1272 // This means we did not remove any node.
1273 assert_eq!(prev_node_count, final_node_count);
1274 Ok(())
1275 }
1276
1277 #[test]
1278 fn test_gather_node_indices_remove() -> Result<()> {
1279 // Expression: a@0 + b@1 + 1 > y@0 - z@1, given a@0 + b@1.
1280 // We expect to remove two nodes since we do not need a@ and b@.
1281 let left_expr = Arc::new(BinaryExpr::new(
1282 Arc::new(BinaryExpr::new(
1283 Arc::new(Column::new("a", 0)),
1284 Operator::Plus,
1285 Arc::new(Column::new("b", 1)),
1286 )),
1287 Operator::Plus,
1288 Arc::new(Literal::new(ScalarValue::Int32(Some(1)))),
1289 ));
1290
1291 let right_expr = Arc::new(BinaryExpr::new(
1292 Arc::new(Column::new("y", 0)),
1293 Operator::Minus,
1294 Arc::new(Column::new("z", 1)),
1295 ));
1296 let expr = Arc::new(BinaryExpr::new(left_expr, Operator::Gt, right_expr));
1297 let mut graph = ExprIntervalGraph::try_new(
1298 expr,
1299 &Schema::new(vec![
1300 Field::new("a", DataType::Int32, true),
1301 Field::new("b", DataType::Int32, true),
1302 Field::new("y", DataType::Int32, true),
1303 Field::new("z", DataType::Int32, true),
1304 ]),
1305 )
1306 .unwrap();
1307 // Define a test leaf node.
1308 let leaf_node = Arc::new(BinaryExpr::new(
1309 Arc::new(Column::new("a", 0)),
1310 Operator::Plus,
1311 Arc::new(Column::new("b", 1)),
1312 ));
1313 // Store the current node count.
1314 let prev_node_count = graph.node_count();
1315 // Gather the index of node in the expression graph that match the test leaf node.
1316 graph.gather_node_indices(&[leaf_node]);
1317 // Store the final node count.
1318 let final_node_count = graph.node_count();
1319 // Assert that the final node count is two less than the previous node
1320 // count; i.e. that we did remove two nodes.
1321 assert_eq!(prev_node_count, final_node_count + 2);
1322 Ok(())
1323 }
1324
1325 #[test]
1326 fn test_gather_node_indices_remove_one() -> Result<()> {
1327 // Expression: a@0 + b@1 + 1 > a@0 - z@1, given a@0 + b@1.
1328 // We expect to remove one nodesince we still need a@ but not b@.
1329 let left_expr = Arc::new(BinaryExpr::new(
1330 Arc::new(BinaryExpr::new(
1331 Arc::new(Column::new("a", 0)),
1332 Operator::Plus,
1333 Arc::new(Column::new("b", 1)),
1334 )),
1335 Operator::Plus,
1336 Arc::new(Literal::new(ScalarValue::Int32(Some(1)))),
1337 ));
1338
1339 let right_expr = Arc::new(BinaryExpr::new(
1340 Arc::new(Column::new("a", 0)),
1341 Operator::Minus,
1342 Arc::new(Column::new("z", 1)),
1343 ));
1344 let expr = Arc::new(BinaryExpr::new(left_expr, Operator::Gt, right_expr));
1345 let mut graph = ExprIntervalGraph::try_new(
1346 expr,
1347 &Schema::new(vec![
1348 Field::new("a", DataType::Int32, true),
1349 Field::new("b", DataType::Int32, true),
1350 Field::new("z", DataType::Int32, true),
1351 ]),
1352 )
1353 .unwrap();
1354 // Define a test leaf node.
1355 let leaf_node = Arc::new(BinaryExpr::new(
1356 Arc::new(Column::new("a", 0)),
1357 Operator::Plus,
1358 Arc::new(Column::new("b", 1)),
1359 ));
1360 // Store the current node count.
1361 let prev_node_count = graph.node_count();
1362 // Gather the index of node in the expression graph that match the test leaf node.
1363 graph.gather_node_indices(&[leaf_node]);
1364 // Store the final node count.
1365 let final_node_count = graph.node_count();
1366 // Assert that the final node count is one less than the previous node
1367 // count; i.e. that we did remove two nodes.
1368 assert_eq!(prev_node_count, final_node_count + 1);
1369 Ok(())
1370 }
1371
1372 #[test]
1373 fn test_gather_node_indices_cannot_provide() -> Result<()> {
1374 // Expression: a@0 + 1 + b@1 > y@0 - z@1 -> provide a@0 + b@1
1375 // TODO: We expect nodes a@0 and b@1 to be pruned, and intervals to be provided from the a@0 + b@1 node.
1376 // However, we do not have an exact node for a@0 + b@1 due to the binary tree structure of the expressions.
1377 // Pruning and interval providing for BinaryExpr expressions are more challenging without exact matches.
1378 // Currently, we only support exact matches for BinaryExprs, but we plan to extend support beyond exact matches in the future.
1379 let left_expr = Arc::new(BinaryExpr::new(
1380 Arc::new(BinaryExpr::new(
1381 Arc::new(Column::new("a", 0)),
1382 Operator::Plus,
1383 Arc::new(Literal::new(ScalarValue::Int32(Some(1)))),
1384 )),
1385 Operator::Plus,
1386 Arc::new(Column::new("b", 1)),
1387 ));
1388
1389 let right_expr = Arc::new(BinaryExpr::new(
1390 Arc::new(Column::new("y", 0)),
1391 Operator::Minus,
1392 Arc::new(Column::new("z", 1)),
1393 ));
1394 let expr = Arc::new(BinaryExpr::new(left_expr, Operator::Gt, right_expr));
1395 let mut graph = ExprIntervalGraph::try_new(
1396 expr,
1397 &Schema::new(vec![
1398 Field::new("a", DataType::Int32, true),
1399 Field::new("b", DataType::Int32, true),
1400 Field::new("y", DataType::Int32, true),
1401 Field::new("z", DataType::Int32, true),
1402 ]),
1403 )
1404 .unwrap();
1405 // Define a test leaf node.
1406 let leaf_node = Arc::new(BinaryExpr::new(
1407 Arc::new(Column::new("a", 0)),
1408 Operator::Plus,
1409 Arc::new(Column::new("b", 1)),
1410 ));
1411 // Store the current node count.
1412 let prev_node_count = graph.node_count();
1413 // Gather the index of node in the expression graph that match the test leaf node.
1414 graph.gather_node_indices(&[leaf_node]);
1415 // Store the final node count.
1416 let final_node_count = graph.node_count();
1417 // Assert that the final node count is equal the previous node count (i.e., no node was pruned).
1418 assert_eq!(prev_node_count, final_node_count);
1419 Ok(())
1420 }
1421
1422 #[test]
1423 fn test_propagate_constraints_singleton_interval_at_right() -> Result<()> {
1424 let expression = BinaryExpr::new(
1425 Arc::new(Column::new("ts_column", 0)),
1426 Operator::Plus,
1427 Arc::new(Literal::new(ScalarValue::new_interval_mdn(0, 1, 321))),
1428 );
1429 let parent = Interval::try_new(
1430 // 15.10.2020 - 10:11:12.000_000_321 AM
1431 ScalarValue::TimestampNanosecond(Some(1_602_756_672_000_000_321), None),
1432 // 16.10.2020 - 10:11:12.000_000_321 AM
1433 ScalarValue::TimestampNanosecond(Some(1_602_843_072_000_000_321), None),
1434 )?;
1435 let left_child = Interval::try_new(
1436 // 10.10.2020 - 10:11:12 AM
1437 ScalarValue::TimestampNanosecond(Some(1_602_324_672_000_000_000), None),
1438 // 20.10.2020 - 10:11:12 AM
1439 ScalarValue::TimestampNanosecond(Some(1_603_188_672_000_000_000), None),
1440 )?;
1441 let right_child = Interval::try_new(
1442 // 1 day 321 ns
1443 ScalarValue::IntervalMonthDayNano(Some(IntervalMonthDayNano {
1444 months: 0,
1445 days: 1,
1446 nanoseconds: 321,
1447 })),
1448 // 1 day 321 ns
1449 ScalarValue::IntervalMonthDayNano(Some(IntervalMonthDayNano {
1450 months: 0,
1451 days: 1,
1452 nanoseconds: 321,
1453 })),
1454 )?;
1455 let children = vec![&left_child, &right_child];
1456 let result = expression
1457 .propagate_constraints(&parent, &children)?
1458 .unwrap();
1459
1460 assert_eq!(
1461 vec![
1462 Interval::try_new(
1463 // 14.10.2020 - 10:11:12 AM
1464 ScalarValue::TimestampNanosecond(
1465 Some(1_602_670_272_000_000_000),
1466 None
1467 ),
1468 // 15.10.2020 - 10:11:12 AM
1469 ScalarValue::TimestampNanosecond(
1470 Some(1_602_756_672_000_000_000),
1471 None
1472 ),
1473 )?,
1474 Interval::try_new(
1475 // 1 day 321 ns in Duration type
1476 ScalarValue::IntervalMonthDayNano(Some(IntervalMonthDayNano {
1477 months: 0,
1478 days: 1,
1479 nanoseconds: 321,
1480 })),
1481 // 1 day 321 ns in Duration type
1482 ScalarValue::IntervalMonthDayNano(Some(IntervalMonthDayNano {
1483 months: 0,
1484 days: 1,
1485 nanoseconds: 321,
1486 })),
1487 )?
1488 ],
1489 result
1490 );
1491
1492 Ok(())
1493 }
1494
1495 #[test]
1496 fn test_propagate_constraints_column_interval_at_left() -> Result<()> {
1497 let expression = BinaryExpr::new(
1498 Arc::new(Column::new("interval_column", 1)),
1499 Operator::Plus,
1500 Arc::new(Column::new("ts_column", 0)),
1501 );
1502 let parent = Interval::try_new(
1503 // 15.10.2020 - 10:11:12 AM
1504 ScalarValue::TimestampMillisecond(Some(1_602_756_672_000), None),
1505 // 16.10.2020 - 10:11:12 AM
1506 ScalarValue::TimestampMillisecond(Some(1_602_843_072_000), None),
1507 )?;
1508 let right_child = Interval::try_new(
1509 // 10.10.2020 - 10:11:12 AM
1510 ScalarValue::TimestampMillisecond(Some(1_602_324_672_000), None),
1511 // 20.10.2020 - 10:11:12 AM
1512 ScalarValue::TimestampMillisecond(Some(1_603_188_672_000), None),
1513 )?;
1514 let left_child = Interval::try_new(
1515 // 2 days in millisecond
1516 ScalarValue::IntervalDayTime(Some(IntervalDayTime {
1517 days: 0,
1518 milliseconds: 172_800_000,
1519 })),
1520 // 10 days in millisecond
1521 ScalarValue::IntervalDayTime(Some(IntervalDayTime {
1522 days: 0,
1523 milliseconds: 864_000_000,
1524 })),
1525 )?;
1526 let children = vec![&left_child, &right_child];
1527 let result = expression
1528 .propagate_constraints(&parent, &children)?
1529 .unwrap();
1530
1531 assert_eq!(
1532 vec![
1533 Interval::try_new(
1534 // 2 days in millisecond
1535 ScalarValue::IntervalDayTime(Some(IntervalDayTime {
1536 days: 0,
1537 milliseconds: 172_800_000,
1538 })),
1539 // 6 days
1540 ScalarValue::IntervalDayTime(Some(IntervalDayTime {
1541 days: 0,
1542 milliseconds: 518_400_000,
1543 })),
1544 )?,
1545 Interval::try_new(
1546 // 10.10.2020 - 10:11:12 AM
1547 ScalarValue::TimestampMillisecond(Some(1_602_324_672_000), None),
1548 // 14.10.2020 - 10:11:12 AM
1549 ScalarValue::TimestampMillisecond(Some(1_602_670_272_000), None),
1550 )?
1551 ],
1552 result
1553 );
1554
1555 Ok(())
1556 }
1557
1558 #[test]
1559 fn test_propagate_comparison() -> Result<()> {
1560 // In the examples below:
1561 // `left` is unbounded: [?, ?],
1562 // `right` is known to be [1000,1000]
1563 // so `left` < `right` results in no new knowledge of `right` but knowing that `left` is now < 1000:` [?, 999]
1564 let left = Interval::make_unbounded(&DataType::Int64)?;
1565 let right = Interval::make(Some(1000_i64), Some(1000_i64))?;
1566 assert_eq!(
1567 (Some((
1568 Interval::make(None, Some(999_i64))?,
1569 Interval::make(Some(1000_i64), Some(1000_i64))?,
1570 ))),
1571 propagate_comparison(
1572 &Operator::Lt,
1573 &Interval::CERTAINLY_TRUE,
1574 &left,
1575 &right
1576 )?
1577 );
1578
1579 let left =
1580 Interval::make_unbounded(&DataType::Timestamp(TimeUnit::Nanosecond, None))?;
1581 let right = Interval::try_new(
1582 ScalarValue::TimestampNanosecond(Some(1000), None),
1583 ScalarValue::TimestampNanosecond(Some(1000), None),
1584 )?;
1585 assert_eq!(
1586 (Some((
1587 Interval::try_new(
1588 ScalarValue::try_from(&DataType::Timestamp(
1589 TimeUnit::Nanosecond,
1590 None
1591 ))
1592 .unwrap(),
1593 ScalarValue::TimestampNanosecond(Some(999), None),
1594 )?,
1595 Interval::try_new(
1596 ScalarValue::TimestampNanosecond(Some(1000), None),
1597 ScalarValue::TimestampNanosecond(Some(1000), None),
1598 )?
1599 ))),
1600 propagate_comparison(
1601 &Operator::Lt,
1602 &Interval::CERTAINLY_TRUE,
1603 &left,
1604 &right
1605 )?
1606 );
1607
1608 let left = Interval::make_unbounded(&DataType::Timestamp(
1609 TimeUnit::Nanosecond,
1610 Some("+05:00".into()),
1611 ))?;
1612 let right = Interval::try_new(
1613 ScalarValue::TimestampNanosecond(Some(1000), Some("+05:00".into())),
1614 ScalarValue::TimestampNanosecond(Some(1000), Some("+05:00".into())),
1615 )?;
1616 assert_eq!(
1617 (Some((
1618 Interval::try_new(
1619 ScalarValue::try_from(&DataType::Timestamp(
1620 TimeUnit::Nanosecond,
1621 Some("+05:00".into()),
1622 ))
1623 .unwrap(),
1624 ScalarValue::TimestampNanosecond(Some(999), Some("+05:00".into())),
1625 )?,
1626 Interval::try_new(
1627 ScalarValue::TimestampNanosecond(Some(1000), Some("+05:00".into())),
1628 ScalarValue::TimestampNanosecond(Some(1000), Some("+05:00".into())),
1629 )?
1630 ))),
1631 propagate_comparison(
1632 &Operator::Lt,
1633 &Interval::CERTAINLY_TRUE,
1634 &left,
1635 &right
1636 )?
1637 );
1638
1639 Ok(())
1640 }
1641
1642 #[test]
1643 fn test_propagate_or() -> Result<()> {
1644 let expr = Arc::new(BinaryExpr::new(
1645 Arc::new(Column::new("a", 0)),
1646 Operator::Or,
1647 Arc::new(Column::new("b", 1)),
1648 ));
1649 let parent = Interval::CERTAINLY_FALSE;
1650 let children_set = vec![
1651 vec![&Interval::CERTAINLY_FALSE, &Interval::UNCERTAIN],
1652 vec![&Interval::UNCERTAIN, &Interval::CERTAINLY_FALSE],
1653 vec![&Interval::CERTAINLY_FALSE, &Interval::CERTAINLY_FALSE],
1654 vec![&Interval::UNCERTAIN, &Interval::UNCERTAIN],
1655 ];
1656 for children in children_set {
1657 assert_eq!(
1658 expr.propagate_constraints(&parent, &children)?.unwrap(),
1659 vec![Interval::CERTAINLY_FALSE, Interval::CERTAINLY_FALSE],
1660 );
1661 }
1662
1663 let parent = Interval::CERTAINLY_FALSE;
1664 let children_set = vec![
1665 vec![&Interval::CERTAINLY_TRUE, &Interval::UNCERTAIN],
1666 vec![&Interval::UNCERTAIN, &Interval::CERTAINLY_TRUE],
1667 ];
1668 for children in children_set {
1669 assert_eq!(expr.propagate_constraints(&parent, &children)?, None,);
1670 }
1671
1672 let parent = Interval::CERTAINLY_TRUE;
1673 let children = vec![&Interval::CERTAINLY_FALSE, &Interval::UNCERTAIN];
1674 assert_eq!(
1675 expr.propagate_constraints(&parent, &children)?.unwrap(),
1676 vec![Interval::CERTAINLY_FALSE, Interval::CERTAINLY_TRUE]
1677 );
1678
1679 let parent = Interval::CERTAINLY_TRUE;
1680 let children = vec![&Interval::UNCERTAIN, &Interval::UNCERTAIN];
1681 assert_eq!(
1682 expr.propagate_constraints(&parent, &children)?.unwrap(),
1683 // Empty means unchanged intervals.
1684 vec![]
1685 );
1686
1687 Ok(())
1688 }
1689
1690 #[test]
1691 fn test_propagate_certainly_false_and() -> Result<()> {
1692 let expr = Arc::new(BinaryExpr::new(
1693 Arc::new(Column::new("a", 0)),
1694 Operator::And,
1695 Arc::new(Column::new("b", 1)),
1696 ));
1697 let parent = Interval::CERTAINLY_FALSE;
1698 let children_and_results_set = vec![
1699 (
1700 vec![&Interval::CERTAINLY_TRUE, &Interval::UNCERTAIN],
1701 vec![Interval::CERTAINLY_TRUE, Interval::CERTAINLY_FALSE],
1702 ),
1703 (
1704 vec![&Interval::UNCERTAIN, &Interval::CERTAINLY_TRUE],
1705 vec![Interval::CERTAINLY_FALSE, Interval::CERTAINLY_TRUE],
1706 ),
1707 (
1708 vec![&Interval::UNCERTAIN, &Interval::UNCERTAIN],
1709 // Empty means unchanged intervals.
1710 vec![],
1711 ),
1712 (
1713 vec![&Interval::CERTAINLY_FALSE, &Interval::UNCERTAIN],
1714 vec![],
1715 ),
1716 ];
1717 for (children, result) in children_and_results_set {
1718 assert_eq!(
1719 expr.propagate_constraints(&parent, &children)?.unwrap(),
1720 result
1721 );
1722 }
1723
1724 Ok(())
1725 }
1726}