1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Physical exec for aggregate window function expressions.

use crate::window::partition_evaluator::find_ranges_in_range;
use crate::{expressions::PhysicalSortExpr, PhysicalExpr};
use crate::{window::WindowExpr, AggregateExpr};
use arrow::compute::concat;
use arrow::record_batch::RecordBatch;
use arrow::{array::ArrayRef, datatypes::Field};
use datafusion_common::DataFusionError;
use datafusion_common::Result;
use datafusion_expr::Accumulator;
use datafusion_expr::{WindowFrame, WindowFrameUnits};
use std::any::Any;
use std::iter::IntoIterator;
use std::ops::Range;
use std::sync::Arc;

/// A window expr that takes the form of an aggregate function
#[derive(Debug)]
pub struct AggregateWindowExpr {
    aggregate: Arc<dyn AggregateExpr>,
    partition_by: Vec<Arc<dyn PhysicalExpr>>,
    order_by: Vec<PhysicalSortExpr>,
    window_frame: Option<WindowFrame>,
}

impl AggregateWindowExpr {
    /// create a new aggregate window function expression
    pub fn new(
        aggregate: Arc<dyn AggregateExpr>,
        partition_by: &[Arc<dyn PhysicalExpr>],
        order_by: &[PhysicalSortExpr],
        window_frame: Option<WindowFrame>,
    ) -> Self {
        Self {
            aggregate,
            partition_by: partition_by.to_vec(),
            order_by: order_by.to_vec(),
            window_frame,
        }
    }

    /// the aggregate window function operates based on window frame, and by default the mode is
    /// "range".
    fn evaluation_mode(&self) -> WindowFrameUnits {
        self.window_frame.unwrap_or_default().units
    }

    /// create a new accumulator based on the underlying aggregation function
    fn create_accumulator(&self) -> Result<AggregateWindowAccumulator> {
        let accumulator = self.aggregate.create_accumulator()?;
        Ok(AggregateWindowAccumulator { accumulator })
    }

    /// peer based evaluation based on the fact that batch is pre-sorted given the sort columns
    /// and then per partition point we'll evaluate the peer group (e.g. SUM or MAX gives the same
    /// results for peers) and concatenate the results.
    fn peer_based_evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
        let num_rows = batch.num_rows();
        let partition_points =
            self.evaluate_partition_points(num_rows, &self.partition_columns(batch)?)?;
        let sort_partition_points =
            self.evaluate_partition_points(num_rows, &self.sort_columns(batch)?)?;
        let values = self.evaluate_args(batch)?;
        let results = partition_points
            .iter()
            .map(|partition_range| {
                let sort_partition_points =
                    find_ranges_in_range(partition_range, &sort_partition_points);
                let mut window_accumulators = self.create_accumulator()?;
                sort_partition_points
                    .iter()
                    .map(|range| window_accumulators.scan_peers(&values, range))
                    .collect::<Result<Vec<_>>>()
            })
            .collect::<Result<Vec<Vec<ArrayRef>>>>()?
            .into_iter()
            .flatten()
            .collect::<Vec<ArrayRef>>();
        let results = results.iter().map(|i| i.as_ref()).collect::<Vec<_>>();
        concat(&results).map_err(DataFusionError::ArrowError)
    }

    fn group_based_evaluate(&self, _batch: &RecordBatch) -> Result<ArrayRef> {
        Err(DataFusionError::NotImplemented(format!(
            "Group based evaluation for {} is not yet implemented",
            self.name()
        )))
    }

    fn row_based_evaluate(&self, _batch: &RecordBatch) -> Result<ArrayRef> {
        Err(DataFusionError::NotImplemented(format!(
            "Row based evaluation for {} is not yet implemented",
            self.name()
        )))
    }
}

impl WindowExpr for AggregateWindowExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        self.aggregate.name()
    }

    fn field(&self) -> Result<Field> {
        self.aggregate.field()
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        self.aggregate.expressions()
    }

    fn partition_by(&self) -> &[Arc<dyn PhysicalExpr>] {
        &self.partition_by
    }

    fn order_by(&self) -> &[PhysicalSortExpr] {
        &self.order_by
    }

    /// evaluate the window function values against the batch
    fn evaluate(&self, batch: &RecordBatch) -> Result<ArrayRef> {
        match self.evaluation_mode() {
            WindowFrameUnits::Range => self.peer_based_evaluate(batch),
            WindowFrameUnits::Rows => self.row_based_evaluate(batch),
            WindowFrameUnits::Groups => self.group_based_evaluate(batch),
        }
    }
}

/// Aggregate window accumulator utilizes the accumulator from aggregation and do a accumulative sum
/// across evaluation arguments based on peer equivalences.
#[derive(Debug)]
struct AggregateWindowAccumulator {
    accumulator: Box<dyn Accumulator>,
}

impl AggregateWindowAccumulator {
    /// scan one peer group of values (as arguments to window function) given by the value_range
    /// and return evaluation result that are of the same number of rows.
    fn scan_peers(
        &mut self,
        values: &[ArrayRef],
        value_range: &Range<usize>,
    ) -> Result<ArrayRef> {
        if value_range.is_empty() {
            return Err(DataFusionError::Internal(
                "Value range cannot be empty".to_owned(),
            ));
        }
        let len = value_range.end - value_range.start;
        let values = values
            .iter()
            .map(|v| v.slice(value_range.start, len))
            .collect::<Vec<_>>();
        self.accumulator.update_batch(&values)?;
        let value = self.accumulator.evaluate()?;
        Ok(value.to_array_of_size(len))
    }
}