datafusion_physical_expr/expressions/try_cast.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::any::Any;
use std::fmt;
use std::hash::Hash;
use std::sync::Arc;
use crate::PhysicalExpr;
use arrow::compute;
use arrow::compute::{cast_with_options, CastOptions};
use arrow::datatypes::{DataType, Schema};
use arrow::record_batch::RecordBatch;
use compute::can_cast_types;
use datafusion_common::format::DEFAULT_FORMAT_OPTIONS;
use datafusion_common::{not_impl_err, Result, ScalarValue};
use datafusion_expr::ColumnarValue;
/// TRY_CAST expression casts an expression to a specific data type and returns NULL on invalid cast
#[derive(Debug, Eq)]
pub struct TryCastExpr {
/// The expression to cast
expr: Arc<dyn PhysicalExpr>,
/// The data type to cast to
cast_type: DataType,
}
// Manually derive PartialEq and Hash to work around https://github.com/rust-lang/rust/issues/78808
impl PartialEq for TryCastExpr {
fn eq(&self, other: &Self) -> bool {
self.expr.eq(&other.expr) && self.cast_type == other.cast_type
}
}
impl Hash for TryCastExpr {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.expr.hash(state);
self.cast_type.hash(state);
}
}
impl TryCastExpr {
/// Create a new CastExpr
pub fn new(expr: Arc<dyn PhysicalExpr>, cast_type: DataType) -> Self {
Self { expr, cast_type }
}
/// The expression to cast
pub fn expr(&self) -> &Arc<dyn PhysicalExpr> {
&self.expr
}
/// The data type to cast to
pub fn cast_type(&self) -> &DataType {
&self.cast_type
}
}
impl fmt::Display for TryCastExpr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "TRY_CAST({} AS {:?})", self.expr, self.cast_type)
}
}
impl PhysicalExpr for TryCastExpr {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
Ok(self.cast_type.clone())
}
fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
Ok(true)
}
fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
let value = self.expr.evaluate(batch)?;
let options = CastOptions {
safe: true,
format_options: DEFAULT_FORMAT_OPTIONS,
};
match value {
ColumnarValue::Array(array) => {
let cast = cast_with_options(&array, &self.cast_type, &options)?;
Ok(ColumnarValue::Array(cast))
}
ColumnarValue::Scalar(scalar) => {
let array = scalar.to_array()?;
let cast_array = cast_with_options(&array, &self.cast_type, &options)?;
let cast_scalar = ScalarValue::try_from_array(&cast_array, 0)?;
Ok(ColumnarValue::Scalar(cast_scalar))
}
}
}
fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>> {
vec![&self.expr]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>> {
Ok(Arc::new(TryCastExpr::new(
Arc::clone(&children[0]),
self.cast_type.clone(),
)))
}
}
/// Return a PhysicalExpression representing `expr` casted to
/// `cast_type`, if any casting is needed.
///
/// Note that such casts may lose type information
pub fn try_cast(
expr: Arc<dyn PhysicalExpr>,
input_schema: &Schema,
cast_type: DataType,
) -> Result<Arc<dyn PhysicalExpr>> {
let expr_type = expr.data_type(input_schema)?;
if expr_type == cast_type {
Ok(Arc::clone(&expr))
} else if can_cast_types(&expr_type, &cast_type) {
Ok(Arc::new(TryCastExpr::new(expr, cast_type)))
} else {
not_impl_err!("Unsupported TRY_CAST from {expr_type:?} to {cast_type:?}")
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::expressions::col;
use arrow::array::{
Decimal128Array, Decimal128Builder, StringArray, Time64NanosecondArray,
};
use arrow::{
array::{
Array, Float32Array, Float64Array, Int16Array, Int32Array, Int64Array,
Int8Array, TimestampNanosecondArray, UInt32Array,
},
datatypes::*,
};
// runs an end-to-end test of physical type cast
// 1. construct a record batch with a column "a" of type A
// 2. construct a physical expression of TRY_CAST(a AS B)
// 3. evaluate the expression
// 4. verify that the resulting expression is of type B
// 5. verify that the resulting values are downcastable and correct
macro_rules! generic_decimal_to_other_test_cast {
($DECIMAL_ARRAY:ident, $A_TYPE:expr, $TYPEARRAY:ident, $TYPE:expr, $VEC:expr) => {{
let schema = Schema::new(vec![Field::new("a", $A_TYPE, true)]);
let batch = RecordBatch::try_new(
Arc::new(schema.clone()),
vec![Arc::new($DECIMAL_ARRAY)],
)?;
// verify that we can construct the expression
let expression = try_cast(col("a", &schema)?, &schema, $TYPE)?;
// verify that its display is correct
assert_eq!(
format!("TRY_CAST(a@0 AS {:?})", $TYPE),
format!("{}", expression)
);
// verify that the expression's type is correct
assert_eq!(expression.data_type(&schema)?, $TYPE);
// compute
let result = expression
.evaluate(&batch)?
.into_array(batch.num_rows())
.expect("Failed to convert to array");
// verify that the array's data_type is correct
assert_eq!(*result.data_type(), $TYPE);
// verify that the data itself is downcastable
let result = result
.as_any()
.downcast_ref::<$TYPEARRAY>()
.expect("failed to downcast");
// verify that the result itself is correct
for (i, x) in $VEC.iter().enumerate() {
match x {
Some(x) => assert_eq!(result.value(i), *x),
None => assert!(!result.is_valid(i)),
}
}
}};
}
// runs an end-to-end test of physical type cast
// 1. construct a record batch with a column "a" of type A
// 2. construct a physical expression of TRY_CAST(a AS B)
// 3. evaluate the expression
// 4. verify that the resulting expression is of type B
// 5. verify that the resulting values are downcastable and correct
macro_rules! generic_test_cast {
($A_ARRAY:ident, $A_TYPE:expr, $A_VEC:expr, $TYPEARRAY:ident, $TYPE:expr, $VEC:expr) => {{
let schema = Schema::new(vec![Field::new("a", $A_TYPE, true)]);
let a_vec_len = $A_VEC.len();
let a = $A_ARRAY::from($A_VEC);
let batch =
RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(a)])?;
// verify that we can construct the expression
let expression = try_cast(col("a", &schema)?, &schema, $TYPE)?;
// verify that its display is correct
assert_eq!(
format!("TRY_CAST(a@0 AS {:?})", $TYPE),
format!("{}", expression)
);
// verify that the expression's type is correct
assert_eq!(expression.data_type(&schema)?, $TYPE);
// compute
let result = expression
.evaluate(&batch)?
.into_array(batch.num_rows())
.expect("Failed to convert to array");
// verify that the array's data_type is correct
assert_eq!(*result.data_type(), $TYPE);
// verify that the len is correct
assert_eq!(result.len(), a_vec_len);
// verify that the data itself is downcastable
let result = result
.as_any()
.downcast_ref::<$TYPEARRAY>()
.expect("failed to downcast");
// verify that the result itself is correct
for (i, x) in $VEC.iter().enumerate() {
match x {
Some(x) => assert_eq!(result.value(i), *x),
None => assert!(!result.is_valid(i)),
}
}
}};
}
#[test]
fn test_try_cast_decimal_to_decimal() -> Result<()> {
// try cast one decimal data type to another decimal data type
let array: Vec<i128> = vec![1234, 2222, 3, 4000, 5000];
let decimal_array = create_decimal_array(&array, 10, 3);
generic_decimal_to_other_test_cast!(
decimal_array,
DataType::Decimal128(10, 3),
Decimal128Array,
DataType::Decimal128(20, 6),
[
Some(1_234_000),
Some(2_222_000),
Some(3_000),
Some(4_000_000),
Some(5_000_000),
None
]
);
let decimal_array = create_decimal_array(&array, 10, 3);
generic_decimal_to_other_test_cast!(
decimal_array,
DataType::Decimal128(10, 3),
Decimal128Array,
DataType::Decimal128(10, 2),
[Some(123), Some(222), Some(0), Some(400), Some(500), None]
);
Ok(())
}
#[test]
fn test_try_cast_decimal_to_numeric() -> Result<()> {
// TODO we should add function to create Decimal128Array with value and metadata
// https://github.com/apache/arrow-rs/issues/1009
let array: Vec<i128> = vec![1, 2, 3, 4, 5];
let decimal_array = create_decimal_array(&array, 10, 0);
// decimal to i8
generic_decimal_to_other_test_cast!(
decimal_array,
DataType::Decimal128(10, 0),
Int8Array,
DataType::Int8,
[
Some(1_i8),
Some(2_i8),
Some(3_i8),
Some(4_i8),
Some(5_i8),
None
]
);
// decimal to i16
let decimal_array = create_decimal_array(&array, 10, 0);
generic_decimal_to_other_test_cast!(
decimal_array,
DataType::Decimal128(10, 0),
Int16Array,
DataType::Int16,
[
Some(1_i16),
Some(2_i16),
Some(3_i16),
Some(4_i16),
Some(5_i16),
None
]
);
// decimal to i32
let decimal_array = create_decimal_array(&array, 10, 0);
generic_decimal_to_other_test_cast!(
decimal_array,
DataType::Decimal128(10, 0),
Int32Array,
DataType::Int32,
[
Some(1_i32),
Some(2_i32),
Some(3_i32),
Some(4_i32),
Some(5_i32),
None
]
);
// decimal to i64
let decimal_array = create_decimal_array(&array, 10, 0);
generic_decimal_to_other_test_cast!(
decimal_array,
DataType::Decimal128(10, 0),
Int64Array,
DataType::Int64,
[
Some(1_i64),
Some(2_i64),
Some(3_i64),
Some(4_i64),
Some(5_i64),
None
]
);
// decimal to float32
let array: Vec<i128> = vec![1234, 2222, 3, 4000, 5000];
let decimal_array = create_decimal_array(&array, 10, 3);
generic_decimal_to_other_test_cast!(
decimal_array,
DataType::Decimal128(10, 3),
Float32Array,
DataType::Float32,
[
Some(1.234_f32),
Some(2.222_f32),
Some(0.003_f32),
Some(4.0_f32),
Some(5.0_f32),
None
]
);
// decimal to float64
let decimal_array = create_decimal_array(&array, 20, 6);
generic_decimal_to_other_test_cast!(
decimal_array,
DataType::Decimal128(20, 6),
Float64Array,
DataType::Float64,
[
Some(0.001234_f64),
Some(0.002222_f64),
Some(0.000003_f64),
Some(0.004_f64),
Some(0.005_f64),
None
]
);
Ok(())
}
#[test]
fn test_try_cast_numeric_to_decimal() -> Result<()> {
// int8
generic_test_cast!(
Int8Array,
DataType::Int8,
vec![1, 2, 3, 4, 5],
Decimal128Array,
DataType::Decimal128(3, 0),
[Some(1), Some(2), Some(3), Some(4), Some(5)]
);
// int16
generic_test_cast!(
Int16Array,
DataType::Int16,
vec![1, 2, 3, 4, 5],
Decimal128Array,
DataType::Decimal128(5, 0),
[Some(1), Some(2), Some(3), Some(4), Some(5)]
);
// int32
generic_test_cast!(
Int32Array,
DataType::Int32,
vec![1, 2, 3, 4, 5],
Decimal128Array,
DataType::Decimal128(10, 0),
[Some(1), Some(2), Some(3), Some(4), Some(5)]
);
// int64
generic_test_cast!(
Int64Array,
DataType::Int64,
vec![1, 2, 3, 4, 5],
Decimal128Array,
DataType::Decimal128(20, 0),
[Some(1), Some(2), Some(3), Some(4), Some(5)]
);
// int64 to different scale
generic_test_cast!(
Int64Array,
DataType::Int64,
vec![1, 2, 3, 4, 5],
Decimal128Array,
DataType::Decimal128(20, 2),
[Some(100), Some(200), Some(300), Some(400), Some(500)]
);
// float32
generic_test_cast!(
Float32Array,
DataType::Float32,
vec![1.5, 2.5, 3.0, 1.123_456_8, 5.50],
Decimal128Array,
DataType::Decimal128(10, 2),
[Some(150), Some(250), Some(300), Some(112), Some(550)]
);
// float64
generic_test_cast!(
Float64Array,
DataType::Float64,
vec![1.5, 2.5, 3.0, 1.123_456_8, 5.50],
Decimal128Array,
DataType::Decimal128(20, 4),
[
Some(15000),
Some(25000),
Some(30000),
Some(11235),
Some(55000)
]
);
Ok(())
}
#[test]
fn test_cast_i32_u32() -> Result<()> {
generic_test_cast!(
Int32Array,
DataType::Int32,
vec![1, 2, 3, 4, 5],
UInt32Array,
DataType::UInt32,
[
Some(1_u32),
Some(2_u32),
Some(3_u32),
Some(4_u32),
Some(5_u32)
]
);
Ok(())
}
#[test]
fn test_cast_i32_utf8() -> Result<()> {
generic_test_cast!(
Int32Array,
DataType::Int32,
vec![1, 2, 3, 4, 5],
StringArray,
DataType::Utf8,
[Some("1"), Some("2"), Some("3"), Some("4"), Some("5")]
);
Ok(())
}
#[test]
fn test_try_cast_utf8_i32() -> Result<()> {
generic_test_cast!(
StringArray,
DataType::Utf8,
vec!["a", "2", "3", "b", "5"],
Int32Array,
DataType::Int32,
[None, Some(2), Some(3), None, Some(5)]
);
Ok(())
}
#[test]
fn test_cast_i64_t64() -> Result<()> {
let original = vec![1, 2, 3, 4, 5];
let expected: Vec<Option<i64>> = original
.iter()
.map(|i| Some(Time64NanosecondArray::from(vec![*i]).value(0)))
.collect();
generic_test_cast!(
Int64Array,
DataType::Int64,
original,
TimestampNanosecondArray,
DataType::Timestamp(TimeUnit::Nanosecond, None),
expected
);
Ok(())
}
#[test]
fn invalid_cast() {
// Ensure a useful error happens at plan time if invalid casts are used
let schema = Schema::new(vec![Field::new("a", DataType::Int32, false)]);
let result = try_cast(
col("a", &schema).unwrap(),
&schema,
DataType::Interval(IntervalUnit::MonthDayNano),
);
result.expect_err("expected Invalid TRY_CAST");
}
// create decimal array with the specified precision and scale
fn create_decimal_array(array: &[i128], precision: u8, scale: i8) -> Decimal128Array {
let mut decimal_builder = Decimal128Builder::with_capacity(array.len());
for value in array {
decimal_builder.append_value(*value);
}
decimal_builder.append_null();
decimal_builder
.finish()
.with_precision_and_scale(precision, scale)
.unwrap()
}
}