datafusion_physical_expr/
planner.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::sync::Arc;

use crate::scalar_function;
use crate::{
    expressions::{self, binary, like, similar_to, Column, Literal},
    PhysicalExpr,
};

use arrow::datatypes::Schema;
use datafusion_common::{
    exec_err, not_impl_err, plan_err, DFSchema, Result, ScalarValue, ToDFSchema,
};
use datafusion_expr::execution_props::ExecutionProps;
use datafusion_expr::expr::{Alias, Cast, InList, ScalarFunction};
use datafusion_expr::var_provider::is_system_variables;
use datafusion_expr::var_provider::VarType;
use datafusion_expr::{
    binary_expr, lit, Between, BinaryExpr, Expr, Like, Operator, TryCast,
};

/// [PhysicalExpr] evaluate DataFusion expressions such as `A + 1`, or `CAST(c1
/// AS int)`.
///
/// [PhysicalExpr] are the physical counterpart to [Expr] used in logical
/// planning, and can be evaluated directly on a [RecordBatch]. They are
/// normally created from [Expr] by a [PhysicalPlanner] and can be created
/// directly using [create_physical_expr].
///
/// A Physical expression knows its type, nullability and how to evaluate itself.
///
/// [PhysicalPlanner]: https://docs.rs/datafusion/latest/datafusion/physical_planner/trait.PhysicalPlanner.html
/// [RecordBatch]: https://docs.rs/arrow/latest/arrow/record_batch/struct.RecordBatch.html
///
/// # Example: Create `PhysicalExpr` from `Expr`
/// ```
/// # use arrow::datatypes::{DataType, Field, Schema};
/// # use datafusion_common::DFSchema;
/// # use datafusion_expr::{Expr, col, lit};
/// # use datafusion_physical_expr::create_physical_expr;
/// # use datafusion_expr::execution_props::ExecutionProps;
/// // For a logical expression `a = 1`, we can create a physical expression
/// let expr = col("a").eq(lit(1));
/// // To create a PhysicalExpr we need 1. a schema
/// let schema = Schema::new(vec![Field::new("a", DataType::Int32, true)]);
/// let df_schema = DFSchema::try_from(schema).unwrap();
/// // 2. ExecutionProps
/// let props = ExecutionProps::new();
/// // We can now create a PhysicalExpr:
/// let physical_expr = create_physical_expr(&expr, &df_schema, &props).unwrap();
/// ```
///
/// # Example: Executing a PhysicalExpr to obtain [ColumnarValue]
/// ```
/// # use std::sync::Arc;
/// # use arrow::array::{cast::AsArray, BooleanArray, Int32Array, RecordBatch};
/// # use arrow::datatypes::{DataType, Field, Schema};
/// # use datafusion_common::{assert_batches_eq, DFSchema};
/// # use datafusion_expr::{Expr, col, lit, ColumnarValue};
/// # use datafusion_physical_expr::create_physical_expr;
/// # use datafusion_expr::execution_props::ExecutionProps;
/// # let expr = col("a").eq(lit(1));
/// # let schema = Schema::new(vec![Field::new("a", DataType::Int32, true)]);
/// # let df_schema = DFSchema::try_from(schema.clone()).unwrap();
/// # let props = ExecutionProps::new();
/// // Given a PhysicalExpr, for `a = 1` we can evaluate it against a RecordBatch like this:
/// let physical_expr = create_physical_expr(&expr, &df_schema, &props).unwrap();
/// // Input of [1,2,3]
/// let input_batch = RecordBatch::try_from_iter(vec![
///   ("a", Arc::new(Int32Array::from(vec![1, 2, 3])) as _)
/// ]).unwrap();
/// // The result is a ColumnarValue (either an Array or a Scalar)
/// let result = physical_expr.evaluate(&input_batch).unwrap();
/// // In this case, a BooleanArray with the result of the comparison
/// let ColumnarValue::Array(arr) = result else {
///  panic!("Expected an array")
/// };
/// assert_eq!(arr.as_boolean(), &BooleanArray::from(vec![true, false, false]));
/// ```
///
/// [ColumnarValue]: datafusion_expr::ColumnarValue
///
/// Create a physical expression from a logical expression ([Expr]).
///
/// # Arguments
///
/// * `e` - The logical expression
/// * `input_dfschema` - The DataFusion schema for the input, used to resolve `Column` references
///                      to qualified or unqualified fields by name.
pub fn create_physical_expr(
    e: &Expr,
    input_dfschema: &DFSchema,
    execution_props: &ExecutionProps,
) -> Result<Arc<dyn PhysicalExpr>> {
    let input_schema: &Schema = &input_dfschema.into();

    match e {
        Expr::Alias(Alias { expr, .. }) => {
            Ok(create_physical_expr(expr, input_dfschema, execution_props)?)
        }
        Expr::Column(c) => {
            let idx = input_dfschema.index_of_column(c)?;
            Ok(Arc::new(Column::new(&c.name, idx)))
        }
        Expr::Literal(value) => Ok(Arc::new(Literal::new(value.clone()))),
        Expr::ScalarVariable(_, variable_names) => {
            if is_system_variables(variable_names) {
                match execution_props.get_var_provider(VarType::System) {
                    Some(provider) => {
                        let scalar_value = provider.get_value(variable_names.clone())?;
                        Ok(Arc::new(Literal::new(scalar_value)))
                    }
                    _ => plan_err!("No system variable provider found"),
                }
            } else {
                match execution_props.get_var_provider(VarType::UserDefined) {
                    Some(provider) => {
                        let scalar_value = provider.get_value(variable_names.clone())?;
                        Ok(Arc::new(Literal::new(scalar_value)))
                    }
                    _ => plan_err!("No user defined variable provider found"),
                }
            }
        }
        Expr::IsTrue(expr) => {
            let binary_op = binary_expr(
                expr.as_ref().clone(),
                Operator::IsNotDistinctFrom,
                lit(true),
            );
            create_physical_expr(&binary_op, input_dfschema, execution_props)
        }
        Expr::IsNotTrue(expr) => {
            let binary_op =
                binary_expr(expr.as_ref().clone(), Operator::IsDistinctFrom, lit(true));
            create_physical_expr(&binary_op, input_dfschema, execution_props)
        }
        Expr::IsFalse(expr) => {
            let binary_op = binary_expr(
                expr.as_ref().clone(),
                Operator::IsNotDistinctFrom,
                lit(false),
            );
            create_physical_expr(&binary_op, input_dfschema, execution_props)
        }
        Expr::IsNotFalse(expr) => {
            let binary_op =
                binary_expr(expr.as_ref().clone(), Operator::IsDistinctFrom, lit(false));
            create_physical_expr(&binary_op, input_dfschema, execution_props)
        }
        Expr::IsUnknown(expr) => {
            let binary_op = binary_expr(
                expr.as_ref().clone(),
                Operator::IsNotDistinctFrom,
                Expr::Literal(ScalarValue::Boolean(None)),
            );
            create_physical_expr(&binary_op, input_dfschema, execution_props)
        }
        Expr::IsNotUnknown(expr) => {
            let binary_op = binary_expr(
                expr.as_ref().clone(),
                Operator::IsDistinctFrom,
                Expr::Literal(ScalarValue::Boolean(None)),
            );
            create_physical_expr(&binary_op, input_dfschema, execution_props)
        }
        Expr::BinaryExpr(BinaryExpr { left, op, right }) => {
            // Create physical expressions for left and right operands
            let lhs = create_physical_expr(left, input_dfschema, execution_props)?;
            let rhs = create_physical_expr(right, input_dfschema, execution_props)?;
            // Note that the logical planner is responsible
            // for type coercion on the arguments (e.g. if one
            // argument was originally Int32 and one was
            // Int64 they will both be coerced to Int64).
            //
            // There should be no coercion during physical
            // planning.
            binary(lhs, *op, rhs, input_schema)
        }
        Expr::Like(Like {
            negated,
            expr,
            pattern,
            escape_char,
            case_insensitive,
        }) => {
            if escape_char.is_some() {
                return exec_err!("LIKE does not support escape_char");
            }
            let physical_expr =
                create_physical_expr(expr, input_dfschema, execution_props)?;
            let physical_pattern =
                create_physical_expr(pattern, input_dfschema, execution_props)?;
            like(
                *negated,
                *case_insensitive,
                physical_expr,
                physical_pattern,
                input_schema,
            )
        }
        Expr::SimilarTo(Like {
            negated,
            expr,
            pattern,
            escape_char,
            case_insensitive,
        }) => {
            if escape_char.is_some() {
                return exec_err!("SIMILAR TO does not support escape_char yet");
            }
            let physical_expr =
                create_physical_expr(expr, input_dfschema, execution_props)?;
            let physical_pattern =
                create_physical_expr(pattern, input_dfschema, execution_props)?;
            similar_to(*negated, *case_insensitive, physical_expr, physical_pattern)
        }
        Expr::Case(case) => {
            let expr: Option<Arc<dyn PhysicalExpr>> = if let Some(e) = &case.expr {
                Some(create_physical_expr(
                    e.as_ref(),
                    input_dfschema,
                    execution_props,
                )?)
            } else {
                None
            };
            let (when_expr, then_expr): (Vec<&Expr>, Vec<&Expr>) = case
                .when_then_expr
                .iter()
                .map(|(w, t)| (w.as_ref(), t.as_ref()))
                .unzip();
            let when_expr =
                create_physical_exprs(when_expr, input_dfschema, execution_props)?;
            let then_expr =
                create_physical_exprs(then_expr, input_dfschema, execution_props)?;
            let when_then_expr: Vec<(Arc<dyn PhysicalExpr>, Arc<dyn PhysicalExpr>)> =
                when_expr
                    .iter()
                    .zip(then_expr.iter())
                    .map(|(w, t)| (Arc::clone(w), Arc::clone(t)))
                    .collect();
            let else_expr: Option<Arc<dyn PhysicalExpr>> =
                if let Some(e) = &case.else_expr {
                    Some(create_physical_expr(
                        e.as_ref(),
                        input_dfschema,
                        execution_props,
                    )?)
                } else {
                    None
                };
            Ok(expressions::case(expr, when_then_expr, else_expr)?)
        }
        Expr::Cast(Cast { expr, data_type }) => expressions::cast(
            create_physical_expr(expr, input_dfschema, execution_props)?,
            input_schema,
            data_type.clone(),
        ),
        Expr::TryCast(TryCast { expr, data_type }) => expressions::try_cast(
            create_physical_expr(expr, input_dfschema, execution_props)?,
            input_schema,
            data_type.clone(),
        ),
        Expr::Not(expr) => {
            expressions::not(create_physical_expr(expr, input_dfschema, execution_props)?)
        }
        Expr::Negative(expr) => expressions::negative(
            create_physical_expr(expr, input_dfschema, execution_props)?,
            input_schema,
        ),
        Expr::IsNull(expr) => expressions::is_null(create_physical_expr(
            expr,
            input_dfschema,
            execution_props,
        )?),
        Expr::IsNotNull(expr) => expressions::is_not_null(create_physical_expr(
            expr,
            input_dfschema,
            execution_props,
        )?),
        Expr::ScalarFunction(ScalarFunction { func, args }) => {
            let physical_args =
                create_physical_exprs(args, input_dfschema, execution_props)?;

            scalar_function::create_physical_expr(
                Arc::clone(func).as_ref(),
                &physical_args,
                input_schema,
                args,
                input_dfschema,
            )
        }
        Expr::Between(Between {
            expr,
            negated,
            low,
            high,
        }) => {
            let value_expr = create_physical_expr(expr, input_dfschema, execution_props)?;
            let low_expr = create_physical_expr(low, input_dfschema, execution_props)?;
            let high_expr = create_physical_expr(high, input_dfschema, execution_props)?;

            // rewrite the between into the two binary operators
            let binary_expr = binary(
                binary(
                    Arc::clone(&value_expr),
                    Operator::GtEq,
                    low_expr,
                    input_schema,
                )?,
                Operator::And,
                binary(
                    Arc::clone(&value_expr),
                    Operator::LtEq,
                    high_expr,
                    input_schema,
                )?,
                input_schema,
            );

            if *negated {
                expressions::not(binary_expr?)
            } else {
                binary_expr
            }
        }
        Expr::InList(InList {
            expr,
            list,
            negated,
        }) => match expr.as_ref() {
            Expr::Literal(ScalarValue::Utf8(None)) => {
                Ok(expressions::lit(ScalarValue::Boolean(None)))
            }
            _ => {
                let value_expr =
                    create_physical_expr(expr, input_dfschema, execution_props)?;

                let list_exprs =
                    create_physical_exprs(list, input_dfschema, execution_props)?;
                expressions::in_list(value_expr, list_exprs, negated, input_schema)
            }
        },
        other => {
            not_impl_err!("Physical plan does not support logical expression {other:?}")
        }
    }
}

/// Create vector of Physical Expression from a vector of logical expression
pub fn create_physical_exprs<'a, I>(
    exprs: I,
    input_dfschema: &DFSchema,
    execution_props: &ExecutionProps,
) -> Result<Vec<Arc<dyn PhysicalExpr>>>
where
    I: IntoIterator<Item = &'a Expr>,
{
    exprs
        .into_iter()
        .map(|expr| create_physical_expr(expr, input_dfschema, execution_props))
        .collect::<Result<Vec<_>>>()
}

/// Convert a logical expression to a physical expression (without any simplification, etc)
pub fn logical2physical(expr: &Expr, schema: &Schema) -> Arc<dyn PhysicalExpr> {
    let df_schema = schema.clone().to_dfschema().unwrap();
    let execution_props = ExecutionProps::new();
    create_physical_expr(expr, &df_schema, &execution_props).unwrap()
}

#[cfg(test)]
mod tests {
    use arrow_array::{ArrayRef, BooleanArray, RecordBatch, StringArray};
    use arrow_schema::{DataType, Field};

    use datafusion_expr::{col, lit};

    use super::*;

    #[test]
    fn test_create_physical_expr_scalar_input_output() -> Result<()> {
        let expr = col("letter").eq(lit("A"));

        let schema = Schema::new(vec![Field::new("letter", DataType::Utf8, false)]);
        let df_schema = DFSchema::try_from_qualified_schema("data", &schema)?;
        let p = create_physical_expr(&expr, &df_schema, &ExecutionProps::new())?;

        let batch = RecordBatch::try_new(
            Arc::new(schema),
            vec![Arc::new(StringArray::from_iter_values(vec![
                "A", "B", "C", "D",
            ]))],
        )?;
        let result = p.evaluate(&batch)?;
        let result = result.into_array(4).expect("Failed to convert to array");

        assert_eq!(
            &result,
            &(Arc::new(BooleanArray::from(vec![true, false, false, false,])) as ArrayRef)
        );

        Ok(())
    }
}