datafusion_physical_expr/expressions/
is_null.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! IS NULL expression

use std::hash::{Hash, Hasher};
use std::{any::Any, sync::Arc};

use arrow::{
    datatypes::{DataType, Schema},
    record_batch::RecordBatch,
};

use crate::physical_expr::down_cast_any_ref;
use crate::PhysicalExpr;
use datafusion_common::Result;
use datafusion_common::ScalarValue;
use datafusion_expr::ColumnarValue;

/// IS NULL expression
#[derive(Debug, Hash)]
pub struct IsNullExpr {
    /// Input expression
    arg: Arc<dyn PhysicalExpr>,
}

impl IsNullExpr {
    /// Create new not expression
    pub fn new(arg: Arc<dyn PhysicalExpr>) -> Self {
        Self { arg }
    }

    /// Get the input expression
    pub fn arg(&self) -> &Arc<dyn PhysicalExpr> {
        &self.arg
    }
}

impl std::fmt::Display for IsNullExpr {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{} IS NULL", self.arg)
    }
}

impl PhysicalExpr for IsNullExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
        Ok(DataType::Boolean)
    }

    fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
        Ok(false)
    }

    fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
        let arg = self.arg.evaluate(batch)?;
        match arg {
            ColumnarValue::Array(array) => Ok(ColumnarValue::Array(Arc::new(
                arrow::compute::is_null(&array)?,
            ))),
            ColumnarValue::Scalar(scalar) => Ok(ColumnarValue::Scalar(
                ScalarValue::Boolean(Some(scalar.is_null())),
            )),
        }
    }

    fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>> {
        vec![&self.arg]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn PhysicalExpr>>,
    ) -> Result<Arc<dyn PhysicalExpr>> {
        Ok(Arc::new(IsNullExpr::new(Arc::clone(&children[0]))))
    }

    fn dyn_hash(&self, state: &mut dyn Hasher) {
        let mut s = state;
        self.hash(&mut s);
    }
}

impl PartialEq<dyn Any> for IsNullExpr {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| self.arg.eq(&x.arg))
            .unwrap_or(false)
    }
}

/// Create an IS NULL expression
pub fn is_null(arg: Arc<dyn PhysicalExpr>) -> Result<Arc<dyn PhysicalExpr>> {
    Ok(Arc::new(IsNullExpr::new(arg)))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::expressions::col;
    use arrow::{
        array::{BooleanArray, StringArray},
        datatypes::*,
    };
    use arrow_array::{Array, Float64Array, Int32Array, UnionArray};
    use arrow_buffer::ScalarBuffer;
    use datafusion_common::cast::as_boolean_array;

    #[test]
    fn is_null_op() -> Result<()> {
        let schema = Schema::new(vec![Field::new("a", DataType::Utf8, true)]);
        let a = StringArray::from(vec![Some("foo"), None]);

        // expression: "a is null"
        let expr = is_null(col("a", &schema)?).unwrap();
        let batch = RecordBatch::try_new(Arc::new(schema), vec![Arc::new(a)])?;

        let result = expr
            .evaluate(&batch)?
            .into_array(batch.num_rows())
            .expect("Failed to convert to array");
        let result =
            as_boolean_array(&result).expect("failed to downcast to BooleanArray");

        let expected = &BooleanArray::from(vec![false, true]);

        assert_eq!(expected, result);

        Ok(())
    }

    fn union_fields() -> UnionFields {
        [
            (0, Arc::new(Field::new("A", DataType::Int32, true))),
            (1, Arc::new(Field::new("B", DataType::Float64, true))),
            (2, Arc::new(Field::new("C", DataType::Utf8, true))),
        ]
        .into_iter()
        .collect()
    }

    #[test]
    fn sparse_union_is_null() {
        // union of [{A=1}, {A=}, {B=1.1}, {B=1.2}, {B=}, {C=}, {C="a"}]
        let int_array =
            Int32Array::from(vec![Some(1), None, None, None, None, None, None]);
        let float_array =
            Float64Array::from(vec![None, None, Some(1.1), Some(1.2), None, None, None]);
        let str_array =
            StringArray::from(vec![None, None, None, None, None, None, Some("a")]);
        let type_ids = [0, 0, 1, 1, 1, 2, 2]
            .into_iter()
            .collect::<ScalarBuffer<i8>>();

        let children = vec![
            Arc::new(int_array) as Arc<dyn Array>,
            Arc::new(float_array),
            Arc::new(str_array),
        ];

        let array =
            UnionArray::try_new(union_fields(), type_ids, None, children).unwrap();

        let result = arrow::compute::is_null(&array).unwrap();

        let expected =
            &BooleanArray::from(vec![false, true, false, false, true, true, false]);
        assert_eq!(expected, &result);
    }

    #[test]
    fn dense_union_is_null() {
        // union of [{A=1}, {A=}, {B=3.2}, {B=}, {C="a"}, {C=}]
        let int_array = Int32Array::from(vec![Some(1), None]);
        let float_array = Float64Array::from(vec![Some(3.2), None]);
        let str_array = StringArray::from(vec![Some("a"), None]);
        let type_ids = [0, 0, 1, 1, 2, 2].into_iter().collect::<ScalarBuffer<i8>>();
        let offsets = [0, 1, 0, 1, 0, 1]
            .into_iter()
            .collect::<ScalarBuffer<i32>>();

        let children = vec![
            Arc::new(int_array) as Arc<dyn Array>,
            Arc::new(float_array),
            Arc::new(str_array),
        ];

        let array =
            UnionArray::try_new(union_fields(), type_ids, Some(offsets), children)
                .unwrap();

        let result = arrow::compute::is_null(&array).unwrap();

        let expected = &BooleanArray::from(vec![false, true, false, true, false, true]);
        assert_eq!(expected, &result);
    }
}