1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Utilizing exact statistics from sources to avoid scanning data
use std::sync::Arc;

use datafusion_common::config::ConfigOptions;
use datafusion_common::scalar::ScalarValue;
use datafusion_common::Result;
use datafusion_physical_plan::aggregates::AggregateExec;
use datafusion_physical_plan::projection::ProjectionExec;
use datafusion_physical_plan::{expressions, AggregateExpr, ExecutionPlan, Statistics};

use crate::PhysicalOptimizerRule;
use datafusion_common::stats::Precision;
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::utils::expr::COUNT_STAR_EXPANSION;
use datafusion_physical_plan::placeholder_row::PlaceholderRowExec;
use datafusion_physical_plan::udaf::AggregateFunctionExpr;

/// Optimizer that uses available statistics for aggregate functions
#[derive(Default)]
pub struct AggregateStatistics {}

impl AggregateStatistics {
    #[allow(missing_docs)]
    pub fn new() -> Self {
        Self {}
    }
}

impl PhysicalOptimizerRule for AggregateStatistics {
    fn optimize(
        &self,
        plan: Arc<dyn ExecutionPlan>,
        _config: &ConfigOptions,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        if let Some(partial_agg_exec) = take_optimizable(&*plan) {
            let partial_agg_exec = partial_agg_exec
                .as_any()
                .downcast_ref::<AggregateExec>()
                .expect("take_optimizable() ensures that this is a AggregateExec");
            let stats = partial_agg_exec.input().statistics()?;
            let mut projections = vec![];
            for expr in partial_agg_exec.aggr_expr() {
                if let Some((non_null_rows, name)) =
                    take_optimizable_column_and_table_count(&**expr, &stats)
                {
                    projections.push((expressions::lit(non_null_rows), name.to_owned()));
                } else if let Some((min, name)) = take_optimizable_min(&**expr, &stats) {
                    projections.push((expressions::lit(min), name.to_owned()));
                } else if let Some((max, name)) = take_optimizable_max(&**expr, &stats) {
                    projections.push((expressions::lit(max), name.to_owned()));
                } else {
                    // TODO: we need all aggr_expr to be resolved (cf TODO fullres)
                    break;
                }
            }

            // TODO fullres: use statistics even if not all aggr_expr could be resolved
            if projections.len() == partial_agg_exec.aggr_expr().len() {
                // input can be entirely removed
                Ok(Arc::new(ProjectionExec::try_new(
                    projections,
                    Arc::new(PlaceholderRowExec::new(plan.schema())),
                )?))
            } else {
                plan.map_children(|child| {
                    self.optimize(child, _config).map(Transformed::yes)
                })
                .data()
            }
        } else {
            plan.map_children(|child| self.optimize(child, _config).map(Transformed::yes))
                .data()
        }
    }

    fn name(&self) -> &str {
        "aggregate_statistics"
    }

    /// This rule will change the nullable properties of the schema, disable the schema check.
    fn schema_check(&self) -> bool {
        false
    }
}

/// assert if the node passed as argument is a final `AggregateExec` node that can be optimized:
/// - its child (with possible intermediate layers) is a partial `AggregateExec` node
/// - they both have no grouping expression
///
/// If this is the case, return a ref to the partial `AggregateExec`, else `None`.
/// We would have preferred to return a casted ref to AggregateExec but the recursion requires
/// the `ExecutionPlan.children()` method that returns an owned reference.
fn take_optimizable(node: &dyn ExecutionPlan) -> Option<Arc<dyn ExecutionPlan>> {
    if let Some(final_agg_exec) = node.as_any().downcast_ref::<AggregateExec>() {
        if !final_agg_exec.mode().is_first_stage()
            && final_agg_exec.group_expr().is_empty()
        {
            let mut child = Arc::clone(final_agg_exec.input());
            loop {
                if let Some(partial_agg_exec) =
                    child.as_any().downcast_ref::<AggregateExec>()
                {
                    if partial_agg_exec.mode().is_first_stage()
                        && partial_agg_exec.group_expr().is_empty()
                        && partial_agg_exec.filter_expr().iter().all(|e| e.is_none())
                    {
                        return Some(child);
                    }
                }
                if let [childrens_child] = child.children().as_slice() {
                    child = Arc::clone(childrens_child);
                } else {
                    break;
                }
            }
        }
    }
    None
}

/// If this agg_expr is a count that can be exactly derived from the statistics, return it.
fn take_optimizable_column_and_table_count(
    agg_expr: &dyn AggregateExpr,
    stats: &Statistics,
) -> Option<(ScalarValue, String)> {
    let col_stats = &stats.column_statistics;
    if is_non_distinct_count(agg_expr) {
        if let Precision::Exact(num_rows) = stats.num_rows {
            let exprs = agg_expr.expressions();
            if exprs.len() == 1 {
                // TODO optimize with exprs other than Column
                if let Some(col_expr) =
                    exprs[0].as_any().downcast_ref::<expressions::Column>()
                {
                    let current_val = &col_stats[col_expr.index()].null_count;
                    if let &Precision::Exact(val) = current_val {
                        return Some((
                            ScalarValue::Int64(Some((num_rows - val) as i64)),
                            agg_expr.name().to_string(),
                        ));
                    }
                } else if let Some(lit_expr) =
                    exprs[0].as_any().downcast_ref::<expressions::Literal>()
                {
                    if lit_expr.value() == &COUNT_STAR_EXPANSION {
                        return Some((
                            ScalarValue::Int64(Some(num_rows as i64)),
                            agg_expr.name().to_string(),
                        ));
                    }
                }
            }
        }
    }
    None
}

/// If this agg_expr is a min that is exactly defined in the statistics, return it.
fn take_optimizable_min(
    agg_expr: &dyn AggregateExpr,
    stats: &Statistics,
) -> Option<(ScalarValue, String)> {
    if let Precision::Exact(num_rows) = &stats.num_rows {
        match *num_rows {
            0 => {
                // MIN/MAX with 0 rows is always null
                if is_min(agg_expr) {
                    if let Ok(min_data_type) =
                        ScalarValue::try_from(agg_expr.field().unwrap().data_type())
                    {
                        return Some((min_data_type, agg_expr.name().to_string()));
                    }
                }
            }
            value if value > 0 => {
                let col_stats = &stats.column_statistics;
                if is_min(agg_expr) {
                    let exprs = agg_expr.expressions();
                    if exprs.len() == 1 {
                        // TODO optimize with exprs other than Column
                        if let Some(col_expr) =
                            exprs[0].as_any().downcast_ref::<expressions::Column>()
                        {
                            if let Precision::Exact(val) =
                                &col_stats[col_expr.index()].min_value
                            {
                                if !val.is_null() {
                                    return Some((
                                        val.clone(),
                                        agg_expr.name().to_string(),
                                    ));
                                }
                            }
                        }
                    }
                }
            }
            _ => {}
        }
    }
    None
}

/// If this agg_expr is a max that is exactly defined in the statistics, return it.
fn take_optimizable_max(
    agg_expr: &dyn AggregateExpr,
    stats: &Statistics,
) -> Option<(ScalarValue, String)> {
    if let Precision::Exact(num_rows) = &stats.num_rows {
        match *num_rows {
            0 => {
                // MIN/MAX with 0 rows is always null
                if is_max(agg_expr) {
                    if let Ok(max_data_type) =
                        ScalarValue::try_from(agg_expr.field().unwrap().data_type())
                    {
                        return Some((max_data_type, agg_expr.name().to_string()));
                    }
                }
            }
            value if value > 0 => {
                let col_stats = &stats.column_statistics;
                if is_max(agg_expr) {
                    let exprs = agg_expr.expressions();
                    if exprs.len() == 1 {
                        // TODO optimize with exprs other than Column
                        if let Some(col_expr) =
                            exprs[0].as_any().downcast_ref::<expressions::Column>()
                        {
                            if let Precision::Exact(val) =
                                &col_stats[col_expr.index()].max_value
                            {
                                if !val.is_null() {
                                    return Some((
                                        val.clone(),
                                        agg_expr.name().to_string(),
                                    ));
                                }
                            }
                        }
                    }
                }
            }
            _ => {}
        }
    }
    None
}

// TODO: Move this check into AggregateUDFImpl
// https://github.com/apache/datafusion/issues/11153
fn is_non_distinct_count(agg_expr: &dyn AggregateExpr) -> bool {
    if let Some(agg_expr) = agg_expr.as_any().downcast_ref::<AggregateFunctionExpr>() {
        if agg_expr.fun().name() == "count" && !agg_expr.is_distinct() {
            return true;
        }
    }
    false
}

// TODO: Move this check into AggregateUDFImpl
// https://github.com/apache/datafusion/issues/11153
fn is_min(agg_expr: &dyn AggregateExpr) -> bool {
    if let Some(agg_expr) = agg_expr.as_any().downcast_ref::<AggregateFunctionExpr>() {
        if agg_expr.fun().name().to_lowercase() == "min" {
            return true;
        }
    }
    false
}

// TODO: Move this check into AggregateUDFImpl
// https://github.com/apache/datafusion/issues/11153
fn is_max(agg_expr: &dyn AggregateExpr) -> bool {
    if let Some(agg_expr) = agg_expr.as_any().downcast_ref::<AggregateFunctionExpr>() {
        if agg_expr.fun().name().to_lowercase() == "max" {
            return true;
        }
    }
    false
}

// See tests in datafusion/core/tests/physical_optimizer