1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Utilizing exact statistics from sources to avoid scanning data
use std::sync::Arc;
use datafusion_common::config::ConfigOptions;
use datafusion_common::scalar::ScalarValue;
use datafusion_common::Result;
use datafusion_physical_plan::aggregates::AggregateExec;
use datafusion_physical_plan::projection::ProjectionExec;
use datafusion_physical_plan::{expressions, AggregateExpr, ExecutionPlan, Statistics};
use crate::PhysicalOptimizerRule;
use datafusion_common::stats::Precision;
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::utils::expr::COUNT_STAR_EXPANSION;
use datafusion_physical_plan::placeholder_row::PlaceholderRowExec;
use datafusion_physical_plan::udaf::AggregateFunctionExpr;
/// Optimizer that uses available statistics for aggregate functions
#[derive(Default)]
pub struct AggregateStatistics {}
impl AggregateStatistics {
#[allow(missing_docs)]
pub fn new() -> Self {
Self {}
}
}
impl PhysicalOptimizerRule for AggregateStatistics {
fn optimize(
&self,
plan: Arc<dyn ExecutionPlan>,
_config: &ConfigOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
if let Some(partial_agg_exec) = take_optimizable(&*plan) {
let partial_agg_exec = partial_agg_exec
.as_any()
.downcast_ref::<AggregateExec>()
.expect("take_optimizable() ensures that this is a AggregateExec");
let stats = partial_agg_exec.input().statistics()?;
let mut projections = vec![];
for expr in partial_agg_exec.aggr_expr() {
if let Some((non_null_rows, name)) =
take_optimizable_column_and_table_count(&**expr, &stats)
{
projections.push((expressions::lit(non_null_rows), name.to_owned()));
} else if let Some((min, name)) = take_optimizable_min(&**expr, &stats) {
projections.push((expressions::lit(min), name.to_owned()));
} else if let Some((max, name)) = take_optimizable_max(&**expr, &stats) {
projections.push((expressions::lit(max), name.to_owned()));
} else {
// TODO: we need all aggr_expr to be resolved (cf TODO fullres)
break;
}
}
// TODO fullres: use statistics even if not all aggr_expr could be resolved
if projections.len() == partial_agg_exec.aggr_expr().len() {
// input can be entirely removed
Ok(Arc::new(ProjectionExec::try_new(
projections,
Arc::new(PlaceholderRowExec::new(plan.schema())),
)?))
} else {
plan.map_children(|child| {
self.optimize(child, _config).map(Transformed::yes)
})
.data()
}
} else {
plan.map_children(|child| self.optimize(child, _config).map(Transformed::yes))
.data()
}
}
fn name(&self) -> &str {
"aggregate_statistics"
}
/// This rule will change the nullable properties of the schema, disable the schema check.
fn schema_check(&self) -> bool {
false
}
}
/// assert if the node passed as argument is a final `AggregateExec` node that can be optimized:
/// - its child (with possible intermediate layers) is a partial `AggregateExec` node
/// - they both have no grouping expression
///
/// If this is the case, return a ref to the partial `AggregateExec`, else `None`.
/// We would have preferred to return a casted ref to AggregateExec but the recursion requires
/// the `ExecutionPlan.children()` method that returns an owned reference.
fn take_optimizable(node: &dyn ExecutionPlan) -> Option<Arc<dyn ExecutionPlan>> {
if let Some(final_agg_exec) = node.as_any().downcast_ref::<AggregateExec>() {
if !final_agg_exec.mode().is_first_stage()
&& final_agg_exec.group_expr().is_empty()
{
let mut child = Arc::clone(final_agg_exec.input());
loop {
if let Some(partial_agg_exec) =
child.as_any().downcast_ref::<AggregateExec>()
{
if partial_agg_exec.mode().is_first_stage()
&& partial_agg_exec.group_expr().is_empty()
&& partial_agg_exec.filter_expr().iter().all(|e| e.is_none())
{
return Some(child);
}
}
if let [childrens_child] = child.children().as_slice() {
child = Arc::clone(childrens_child);
} else {
break;
}
}
}
}
None
}
/// If this agg_expr is a count that can be exactly derived from the statistics, return it.
fn take_optimizable_column_and_table_count(
agg_expr: &dyn AggregateExpr,
stats: &Statistics,
) -> Option<(ScalarValue, String)> {
let col_stats = &stats.column_statistics;
if is_non_distinct_count(agg_expr) {
if let Precision::Exact(num_rows) = stats.num_rows {
let exprs = agg_expr.expressions();
if exprs.len() == 1 {
// TODO optimize with exprs other than Column
if let Some(col_expr) =
exprs[0].as_any().downcast_ref::<expressions::Column>()
{
let current_val = &col_stats[col_expr.index()].null_count;
if let &Precision::Exact(val) = current_val {
return Some((
ScalarValue::Int64(Some((num_rows - val) as i64)),
agg_expr.name().to_string(),
));
}
} else if let Some(lit_expr) =
exprs[0].as_any().downcast_ref::<expressions::Literal>()
{
if lit_expr.value() == &COUNT_STAR_EXPANSION {
return Some((
ScalarValue::Int64(Some(num_rows as i64)),
agg_expr.name().to_string(),
));
}
}
}
}
}
None
}
/// If this agg_expr is a min that is exactly defined in the statistics, return it.
fn take_optimizable_min(
agg_expr: &dyn AggregateExpr,
stats: &Statistics,
) -> Option<(ScalarValue, String)> {
if let Precision::Exact(num_rows) = &stats.num_rows {
match *num_rows {
0 => {
// MIN/MAX with 0 rows is always null
if is_min(agg_expr) {
if let Ok(min_data_type) =
ScalarValue::try_from(agg_expr.field().unwrap().data_type())
{
return Some((min_data_type, agg_expr.name().to_string()));
}
}
}
value if value > 0 => {
let col_stats = &stats.column_statistics;
if is_min(agg_expr) {
let exprs = agg_expr.expressions();
if exprs.len() == 1 {
// TODO optimize with exprs other than Column
if let Some(col_expr) =
exprs[0].as_any().downcast_ref::<expressions::Column>()
{
if let Precision::Exact(val) =
&col_stats[col_expr.index()].min_value
{
if !val.is_null() {
return Some((
val.clone(),
agg_expr.name().to_string(),
));
}
}
}
}
}
}
_ => {}
}
}
None
}
/// If this agg_expr is a max that is exactly defined in the statistics, return it.
fn take_optimizable_max(
agg_expr: &dyn AggregateExpr,
stats: &Statistics,
) -> Option<(ScalarValue, String)> {
if let Precision::Exact(num_rows) = &stats.num_rows {
match *num_rows {
0 => {
// MIN/MAX with 0 rows is always null
if is_max(agg_expr) {
if let Ok(max_data_type) =
ScalarValue::try_from(agg_expr.field().unwrap().data_type())
{
return Some((max_data_type, agg_expr.name().to_string()));
}
}
}
value if value > 0 => {
let col_stats = &stats.column_statistics;
if is_max(agg_expr) {
let exprs = agg_expr.expressions();
if exprs.len() == 1 {
// TODO optimize with exprs other than Column
if let Some(col_expr) =
exprs[0].as_any().downcast_ref::<expressions::Column>()
{
if let Precision::Exact(val) =
&col_stats[col_expr.index()].max_value
{
if !val.is_null() {
return Some((
val.clone(),
agg_expr.name().to_string(),
));
}
}
}
}
}
}
_ => {}
}
}
None
}
// TODO: Move this check into AggregateUDFImpl
// https://github.com/apache/datafusion/issues/11153
fn is_non_distinct_count(agg_expr: &dyn AggregateExpr) -> bool {
if let Some(agg_expr) = agg_expr.as_any().downcast_ref::<AggregateFunctionExpr>() {
if agg_expr.fun().name() == "count" && !agg_expr.is_distinct() {
return true;
}
}
false
}
// TODO: Move this check into AggregateUDFImpl
// https://github.com/apache/datafusion/issues/11153
fn is_min(agg_expr: &dyn AggregateExpr) -> bool {
if let Some(agg_expr) = agg_expr.as_any().downcast_ref::<AggregateFunctionExpr>() {
if agg_expr.fun().name().to_lowercase() == "min" {
return true;
}
}
false
}
// TODO: Move this check into AggregateUDFImpl
// https://github.com/apache/datafusion/issues/11153
fn is_max(agg_expr: &dyn AggregateExpr) -> bool {
if let Some(agg_expr) = agg_expr.as_any().downcast_ref::<AggregateFunctionExpr>() {
if agg_expr.fun().name().to_lowercase() == "max" {
return true;
}
}
false
}
// See tests in datafusion/core/tests/physical_optimizer