datafusion_physical_optimizer/
limit_pushdown.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`LimitPushdown`] pushes `LIMIT` down through `ExecutionPlan`s to reduce
//! data transfer as much as possible.

use std::fmt::Debug;
use std::sync::Arc;

use crate::PhysicalOptimizerRule;
use datafusion_common::config::ConfigOptions;
use datafusion_common::error::Result;
use datafusion_common::tree_node::{Transformed, TreeNodeRecursion};
use datafusion_common::utils::combine_limit;
use datafusion_physical_plan::coalesce_partitions::CoalescePartitionsExec;
use datafusion_physical_plan::limit::{GlobalLimitExec, LocalLimitExec};
use datafusion_physical_plan::sorts::sort_preserving_merge::SortPreservingMergeExec;
use datafusion_physical_plan::{ExecutionPlan, ExecutionPlanProperties};

/// This rule inspects [`ExecutionPlan`]'s and pushes down the fetch limit from
/// the parent to the child if applicable.
#[derive(Default, Debug)]
pub struct LimitPushdown {}

/// This is a "data class" we use within the [`LimitPushdown`] rule to push
/// down [`LimitExec`] in the plan. GlobalRequirements are hold as a rule-wide state
/// and holds the fetch and skip information. The struct also has a field named
/// satisfied which means if the "current" plan is valid in terms of limits or not.
///
/// For example: If the plan is satisfied with current fetch info, we decide to not add a LocalLimit
///
/// [`LimitPushdown`]: crate::limit_pushdown::LimitPushdown
/// [`LimitExec`]: crate::limit_pushdown::LimitExec
#[derive(Default, Clone, Debug)]
pub struct GlobalRequirements {
    fetch: Option<usize>,
    skip: usize,
    satisfied: bool,
}

impl LimitPushdown {
    #[allow(missing_docs)]
    pub fn new() -> Self {
        Self {}
    }
}

impl PhysicalOptimizerRule for LimitPushdown {
    fn optimize(
        &self,
        plan: Arc<dyn ExecutionPlan>,
        _config: &ConfigOptions,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        let global_state = GlobalRequirements {
            fetch: None,
            skip: 0,
            satisfied: false,
        };
        pushdown_limits(plan, global_state)
    }

    fn name(&self) -> &str {
        "LimitPushdown"
    }

    fn schema_check(&self) -> bool {
        true
    }
}

/// This enumeration makes `skip` and `fetch` calculations easier by providing
/// a single API for both local and global limit operators.
#[derive(Debug)]
pub enum LimitExec {
    Global(GlobalLimitExec),
    Local(LocalLimitExec),
}

impl LimitExec {
    fn input(&self) -> &Arc<dyn ExecutionPlan> {
        match self {
            Self::Global(global) => global.input(),
            Self::Local(local) => local.input(),
        }
    }

    fn fetch(&self) -> Option<usize> {
        match self {
            Self::Global(global) => global.fetch(),
            Self::Local(local) => Some(local.fetch()),
        }
    }

    fn skip(&self) -> usize {
        match self {
            Self::Global(global) => global.skip(),
            Self::Local(_) => 0,
        }
    }
}

impl From<LimitExec> for Arc<dyn ExecutionPlan> {
    fn from(limit_exec: LimitExec) -> Self {
        match limit_exec {
            LimitExec::Global(global) => Arc::new(global),
            LimitExec::Local(local) => Arc::new(local),
        }
    }
}

/// This function is the main helper function of the `LimitPushDown` rule.
/// The helper takes an `ExecutionPlan` and a global (algorithm) state which is
/// an instance of `GlobalRequirements` and modifies these parameters while
/// checking if the limits can be pushed down or not.
///
/// If a limit is encountered, a [`TreeNodeRecursion::Stop`] is returned. Otherwise,
/// return a [`TreeNodeRecursion::Continue`].
pub fn pushdown_limit_helper(
    mut pushdown_plan: Arc<dyn ExecutionPlan>,
    mut global_state: GlobalRequirements,
) -> Result<(Transformed<Arc<dyn ExecutionPlan>>, GlobalRequirements)> {
    // Extract limit, if exist, and return child inputs.
    if let Some(limit_exec) = extract_limit(&pushdown_plan) {
        // If we have fetch/skip info in the global state already, we need to
        // decide which one to continue with:
        let (skip, fetch) = combine_limit(
            global_state.skip,
            global_state.fetch,
            limit_exec.skip(),
            limit_exec.fetch(),
        );
        global_state.skip = skip;
        global_state.fetch = fetch;

        // Now the global state has the most recent information, we can remove
        // the `LimitExec` plan. We will decide later if we should add it again
        // or not.
        return Ok((
            Transformed {
                data: Arc::clone(limit_exec.input()),
                transformed: true,
                tnr: TreeNodeRecursion::Stop,
            },
            global_state,
        ));
    }

    // If we have a non-limit operator with fetch capability, update global
    // state as necessary:
    if pushdown_plan.fetch().is_some() {
        if global_state.fetch.is_none() {
            global_state.satisfied = true;
        }
        (global_state.skip, global_state.fetch) = combine_limit(
            global_state.skip,
            global_state.fetch,
            0,
            pushdown_plan.fetch(),
        );
    }

    let Some(global_fetch) = global_state.fetch else {
        // There's no valid fetch information, exit early:
        return if global_state.skip > 0 && !global_state.satisfied {
            // There might be a case with only offset, if so add a global limit:
            global_state.satisfied = true;
            Ok((
                Transformed::yes(add_global_limit(
                    pushdown_plan,
                    global_state.skip,
                    None,
                )),
                global_state,
            ))
        } else {
            // There's no info on offset or fetch, nothing to do:
            Ok((Transformed::no(pushdown_plan), global_state))
        };
    };

    let skip_and_fetch = Some(global_fetch + global_state.skip);

    if pushdown_plan.supports_limit_pushdown() {
        if !combines_input_partitions(&pushdown_plan) {
            // We have information in the global state and the plan pushes down,
            // continue:
            Ok((Transformed::no(pushdown_plan), global_state))
        } else if let Some(plan_with_fetch) = pushdown_plan.with_fetch(skip_and_fetch) {
            // This plan is combining input partitions, so we need to add the
            // fetch info to plan if possible. If not, we must add a `LimitExec`
            // with the information from the global state.
            let mut new_plan = plan_with_fetch;
            // Execution plans can't (yet) handle skip, so if we have one,
            // we still need to add a global limit
            if global_state.skip > 0 {
                new_plan =
                    add_global_limit(new_plan, global_state.skip, global_state.fetch);
            }
            global_state.fetch = skip_and_fetch;
            global_state.skip = 0;
            global_state.satisfied = true;
            Ok((Transformed::yes(new_plan), global_state))
        } else if global_state.satisfied {
            // If the plan is already satisfied, do not add a limit:
            Ok((Transformed::no(pushdown_plan), global_state))
        } else {
            global_state.satisfied = true;
            Ok((
                Transformed::yes(add_limit(
                    pushdown_plan,
                    global_state.skip,
                    global_fetch,
                )),
                global_state,
            ))
        }
    } else {
        // The plan does not support push down and it is not a limit. We will need
        // to add a limit or a fetch. If the plan is already satisfied, we will try
        // to add the fetch info and return the plan.

        // There's no push down, change fetch & skip to default values:
        let global_skip = global_state.skip;
        global_state.fetch = None;
        global_state.skip = 0;

        let maybe_fetchable = pushdown_plan.with_fetch(skip_and_fetch);
        if global_state.satisfied {
            if let Some(plan_with_fetch) = maybe_fetchable {
                Ok((Transformed::yes(plan_with_fetch), global_state))
            } else {
                Ok((Transformed::no(pushdown_plan), global_state))
            }
        } else {
            // Add fetch or a `LimitExec`:
            global_state.satisfied = true;
            pushdown_plan = if let Some(plan_with_fetch) = maybe_fetchable {
                if global_skip > 0 {
                    add_global_limit(plan_with_fetch, global_skip, Some(global_fetch))
                } else {
                    plan_with_fetch
                }
            } else {
                add_limit(pushdown_plan, global_skip, global_fetch)
            };
            Ok((Transformed::yes(pushdown_plan), global_state))
        }
    }
}

/// Pushes down the limit through the plan.
pub(crate) fn pushdown_limits(
    pushdown_plan: Arc<dyn ExecutionPlan>,
    global_state: GlobalRequirements,
) -> Result<Arc<dyn ExecutionPlan>> {
    // Call pushdown_limit_helper.
    // This will either extract the limit node (returning the child), or apply the limit pushdown.
    let (mut new_node, mut global_state) =
        pushdown_limit_helper(pushdown_plan, global_state)?;

    // While limits exist, continue combining the global_state.
    while new_node.tnr == TreeNodeRecursion::Stop {
        (new_node, global_state) = pushdown_limit_helper(new_node.data, global_state)?;
    }

    // Apply pushdown limits in children
    let children = new_node.data.children();
    let new_children = children
        .into_iter()
        .map(|child| {
            pushdown_limits(Arc::<dyn ExecutionPlan>::clone(child), global_state.clone())
        })
        .collect::<Result<_>>()?;
    new_node.data.with_new_children(new_children)
}

/// Transforms the [`ExecutionPlan`] into a [`LimitExec`] if it is a
/// [`GlobalLimitExec`] or a [`LocalLimitExec`].
fn extract_limit(plan: &Arc<dyn ExecutionPlan>) -> Option<LimitExec> {
    if let Some(global_limit) = plan.as_any().downcast_ref::<GlobalLimitExec>() {
        Some(LimitExec::Global(GlobalLimitExec::new(
            Arc::clone(global_limit.input()),
            global_limit.skip(),
            global_limit.fetch(),
        )))
    } else {
        plan.as_any()
            .downcast_ref::<LocalLimitExec>()
            .map(|local_limit| {
                LimitExec::Local(LocalLimitExec::new(
                    Arc::clone(local_limit.input()),
                    local_limit.fetch(),
                ))
            })
    }
}

/// Checks if the given plan combines input partitions.
fn combines_input_partitions(plan: &Arc<dyn ExecutionPlan>) -> bool {
    let plan = plan.as_any();
    plan.is::<CoalescePartitionsExec>() || plan.is::<SortPreservingMergeExec>()
}

/// Adds a limit to the plan, chooses between global and local limits based on
/// skip value and the number of partitions.
fn add_limit(
    pushdown_plan: Arc<dyn ExecutionPlan>,
    skip: usize,
    fetch: usize,
) -> Arc<dyn ExecutionPlan> {
    if skip > 0 || pushdown_plan.output_partitioning().partition_count() == 1 {
        add_global_limit(pushdown_plan, skip, Some(fetch))
    } else {
        Arc::new(LocalLimitExec::new(pushdown_plan, fetch + skip)) as _
    }
}

/// Adds a global limit to the plan.
fn add_global_limit(
    pushdown_plan: Arc<dyn ExecutionPlan>,
    skip: usize,
    fetch: Option<usize>,
) -> Arc<dyn ExecutionPlan> {
    Arc::new(GlobalLimitExec::new(pushdown_plan, skip, fetch)) as _
}

// See tests in datafusion/core/tests/physical_optimizer