datafusion_physical_optimizer/limited_distinct_aggregation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! A special-case optimizer rule that pushes limit into a grouped aggregation
//! which has no aggregate expressions or sorting requirements
use std::sync::Arc;
use datafusion_physical_plan::aggregates::AggregateExec;
use datafusion_physical_plan::limit::{GlobalLimitExec, LocalLimitExec};
use datafusion_physical_plan::{ExecutionPlan, ExecutionPlanProperties};
use datafusion_common::config::ConfigOptions;
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::Result;
use crate::PhysicalOptimizerRule;
use itertools::Itertools;
/// An optimizer rule that passes a `limit` hint into grouped aggregations which don't require all
/// rows in the group to be processed for correctness. Example queries fitting this description are:
/// - `SELECT distinct l_orderkey FROM lineitem LIMIT 10;`
/// - `SELECT l_orderkey FROM lineitem GROUP BY l_orderkey LIMIT 10;`
#[derive(Debug)]
pub struct LimitedDistinctAggregation {}
impl LimitedDistinctAggregation {
/// Create a new `LimitedDistinctAggregation`
pub fn new() -> Self {
Self {}
}
fn transform_agg(
aggr: &AggregateExec,
limit: usize,
) -> Option<Arc<dyn ExecutionPlan>> {
// rules for transforming this Aggregate are held in this method
if !aggr.is_unordered_unfiltered_group_by_distinct() {
return None;
}
// We found what we want: clone, copy the limit down, and return modified node
let new_aggr = AggregateExec::try_new(
*aggr.mode(),
aggr.group_expr().clone(),
aggr.aggr_expr().to_vec(),
aggr.filter_expr().to_vec(),
aggr.input().to_owned(),
aggr.input_schema(),
)
.expect("Unable to copy Aggregate!")
.with_limit(Some(limit));
Some(Arc::new(new_aggr))
}
/// transform_limit matches an `AggregateExec` as the child of a `LocalLimitExec`
/// or `GlobalLimitExec` and pushes the limit into the aggregation as a soft limit when
/// there is a group by, but no sorting, no aggregate expressions, and no filters in the
/// aggregation
fn transform_limit(plan: Arc<dyn ExecutionPlan>) -> Option<Arc<dyn ExecutionPlan>> {
let limit: usize;
let mut global_fetch: Option<usize> = None;
let mut global_skip: usize = 0;
let children: Vec<Arc<dyn ExecutionPlan>>;
let mut is_global_limit = false;
if let Some(local_limit) = plan.as_any().downcast_ref::<LocalLimitExec>() {
limit = local_limit.fetch();
children = local_limit.children().into_iter().cloned().collect();
} else if let Some(global_limit) = plan.as_any().downcast_ref::<GlobalLimitExec>()
{
global_fetch = global_limit.fetch();
global_fetch?;
global_skip = global_limit.skip();
// the aggregate must read at least fetch+skip number of rows
limit = global_fetch.unwrap() + global_skip;
children = global_limit.children().into_iter().cloned().collect();
is_global_limit = true
} else {
return None;
}
let child = children.iter().exactly_one().ok()?;
// ensure there is no output ordering; can this rule be relaxed?
if plan.output_ordering().is_some() {
return None;
}
// ensure no ordering is required on the input
if plan.required_input_ordering()[0].is_some() {
return None;
}
// if found_match_aggr is true, match_aggr holds a parent aggregation whose group_by
// must match that of a child aggregation in order to rewrite the child aggregation
let mut match_aggr: Arc<dyn ExecutionPlan> = plan;
let mut found_match_aggr = false;
let mut rewrite_applicable = true;
let closure = |plan: Arc<dyn ExecutionPlan>| {
if !rewrite_applicable {
return Ok(Transformed::no(plan));
}
if let Some(aggr) = plan.as_any().downcast_ref::<AggregateExec>() {
if found_match_aggr {
if let Some(parent_aggr) =
match_aggr.as_any().downcast_ref::<AggregateExec>()
{
if !parent_aggr.group_expr().eq(aggr.group_expr()) {
// a partial and final aggregation with different groupings disqualifies
// rewriting the child aggregation
rewrite_applicable = false;
return Ok(Transformed::no(plan));
}
}
}
// either we run into an Aggregate and transform it, or disable the rewrite
// for subsequent children
match Self::transform_agg(aggr, limit) {
None => {}
Some(new_aggr) => {
match_aggr = plan;
found_match_aggr = true;
return Ok(Transformed::yes(new_aggr));
}
}
}
rewrite_applicable = false;
Ok(Transformed::no(plan))
};
let child = child.to_owned().transform_down(closure).data().ok()?;
if is_global_limit {
return Some(Arc::new(GlobalLimitExec::new(
child,
global_skip,
global_fetch,
)));
}
Some(Arc::new(LocalLimitExec::new(child, limit)))
}
}
impl Default for LimitedDistinctAggregation {
fn default() -> Self {
Self::new()
}
}
impl PhysicalOptimizerRule for LimitedDistinctAggregation {
fn optimize(
&self,
plan: Arc<dyn ExecutionPlan>,
config: &ConfigOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
if config.optimizer.enable_distinct_aggregation_soft_limit {
plan.transform_down(|plan| {
Ok(
if let Some(plan) =
LimitedDistinctAggregation::transform_limit(plan.to_owned())
{
Transformed::yes(plan)
} else {
Transformed::no(plan)
},
)
})
.data()
} else {
Ok(plan)
}
}
fn name(&self) -> &str {
"LimitedDistinctAggregation"
}
fn schema_check(&self) -> bool {
true
}
}
// See tests in datafusion/core/tests/physical_optimizer/limited_distinct_aggregation.rs