datafusion_physical_optimizer/
aggregate_statistics.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Utilizing exact statistics from sources to avoid scanning data
use datafusion_common::config::ConfigOptions;
use datafusion_common::scalar::ScalarValue;
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::Result;
use datafusion_physical_plan::aggregates::AggregateExec;
use datafusion_physical_plan::placeholder_row::PlaceholderRowExec;
use datafusion_physical_plan::projection::ProjectionExec;
use datafusion_physical_plan::udaf::{AggregateFunctionExpr, StatisticsArgs};
use datafusion_physical_plan::{expressions, ExecutionPlan};
use std::sync::Arc;

use crate::PhysicalOptimizerRule;

/// Optimizer that uses available statistics for aggregate functions
#[derive(Default, Debug)]
pub struct AggregateStatistics {}

impl AggregateStatistics {
    #[allow(missing_docs)]
    pub fn new() -> Self {
        Self {}
    }
}

impl PhysicalOptimizerRule for AggregateStatistics {
    #[cfg_attr(feature = "recursive_protection", recursive::recursive)]
    fn optimize(
        &self,
        plan: Arc<dyn ExecutionPlan>,
        _config: &ConfigOptions,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        if let Some(partial_agg_exec) = take_optimizable(&*plan) {
            let partial_agg_exec = partial_agg_exec
                .as_any()
                .downcast_ref::<AggregateExec>()
                .expect("take_optimizable() ensures that this is a AggregateExec");
            let stats = partial_agg_exec.input().statistics()?;
            let mut projections = vec![];
            for expr in partial_agg_exec.aggr_expr() {
                let field = expr.field();
                let args = expr.expressions();
                let statistics_args = StatisticsArgs {
                    statistics: &stats,
                    return_type: field.data_type(),
                    is_distinct: expr.is_distinct(),
                    exprs: args.as_slice(),
                };
                if let Some((optimizable_statistic, name)) =
                    take_optimizable_value_from_statistics(&statistics_args, expr)
                {
                    projections
                        .push((expressions::lit(optimizable_statistic), name.to_owned()));
                } else {
                    // TODO: we need all aggr_expr to be resolved (cf TODO fullres)
                    break;
                }
            }

            // TODO fullres: use statistics even if not all aggr_expr could be resolved
            if projections.len() == partial_agg_exec.aggr_expr().len() {
                // input can be entirely removed
                Ok(Arc::new(ProjectionExec::try_new(
                    projections,
                    Arc::new(PlaceholderRowExec::new(plan.schema())),
                )?))
            } else {
                plan.map_children(|child| {
                    self.optimize(child, _config).map(Transformed::yes)
                })
                .data()
            }
        } else {
            plan.map_children(|child| self.optimize(child, _config).map(Transformed::yes))
                .data()
        }
    }

    fn name(&self) -> &str {
        "aggregate_statistics"
    }

    /// This rule will change the nullable properties of the schema, disable the schema check.
    fn schema_check(&self) -> bool {
        false
    }
}

/// assert if the node passed as argument is a final `AggregateExec` node that can be optimized:
/// - its child (with possible intermediate layers) is a partial `AggregateExec` node
/// - they both have no grouping expression
///
/// If this is the case, return a ref to the partial `AggregateExec`, else `None`.
/// We would have preferred to return a casted ref to AggregateExec but the recursion requires
/// the `ExecutionPlan.children()` method that returns an owned reference.
fn take_optimizable(node: &dyn ExecutionPlan) -> Option<Arc<dyn ExecutionPlan>> {
    if let Some(final_agg_exec) = node.as_any().downcast_ref::<AggregateExec>() {
        if !final_agg_exec.mode().is_first_stage()
            && final_agg_exec.group_expr().is_empty()
        {
            let mut child = Arc::clone(final_agg_exec.input());
            loop {
                if let Some(partial_agg_exec) =
                    child.as_any().downcast_ref::<AggregateExec>()
                {
                    if partial_agg_exec.mode().is_first_stage()
                        && partial_agg_exec.group_expr().is_empty()
                        && partial_agg_exec.filter_expr().iter().all(|e| e.is_none())
                    {
                        return Some(child);
                    }
                }
                if let [childrens_child] = child.children().as_slice() {
                    child = Arc::clone(childrens_child);
                } else {
                    break;
                }
            }
        }
    }
    None
}

/// If this agg_expr is a max that is exactly defined in the statistics, return it.
fn take_optimizable_value_from_statistics(
    statistics_args: &StatisticsArgs,
    agg_expr: &AggregateFunctionExpr,
) -> Option<(ScalarValue, String)> {
    let value = agg_expr.fun().value_from_stats(statistics_args);
    value.map(|val| (val, agg_expr.name().to_string()))
}

// See tests in datafusion/core/tests/physical_optimizer