datafusion_physical_optimizer/
join_selection.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! The [`JoinSelection`] rule tries to modify a given plan so that it can
//! accommodate infinite sources and utilize statistical information (if there
//! is any) to obtain more performant plans. To achieve the first goal, it
//! tries to transform a non-runnable query (with the given infinite sources)
//! into a runnable query by replacing pipeline-breaking join operations with
//! pipeline-friendly ones. To achieve the second goal, it selects the proper
//! `PartitionMode` and the build side using the available statistics for hash joins.

use std::sync::Arc;

use crate::PhysicalOptimizerRule;

use datafusion_common::config::ConfigOptions;
use datafusion_common::error::Result;
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::{internal_err, JoinSide, JoinType};
use datafusion_expr_common::sort_properties::SortProperties;
use datafusion_physical_expr::expressions::Column;
use datafusion_physical_expr::LexOrdering;
use datafusion_physical_plan::execution_plan::EmissionType;
use datafusion_physical_plan::joins::utils::{ColumnIndex, JoinFilter};
use datafusion_physical_plan::joins::{
    CrossJoinExec, HashJoinExec, NestedLoopJoinExec, PartitionMode,
    StreamJoinPartitionMode, SymmetricHashJoinExec,
};
use datafusion_physical_plan::{ExecutionPlan, ExecutionPlanProperties};

/// The [`JoinSelection`] rule tries to modify a given plan so that it can
/// accommodate infinite sources and optimize joins in the plan according to
/// available statistical information, if there is any.
#[derive(Default, Debug)]
pub struct JoinSelection {}

impl JoinSelection {
    #[allow(missing_docs)]
    pub fn new() -> Self {
        Self {}
    }
}

// TODO: We need some performance test for Right Semi/Right Join swap to Left Semi/Left Join in case that the right side is smaller but not much smaller.
// TODO: In PrestoSQL, the optimizer flips join sides only if one side is much smaller than the other by more than SIZE_DIFFERENCE_THRESHOLD times, by default is 8 times.
/// Checks statistics for join swap.
pub(crate) fn should_swap_join_order(
    left: &dyn ExecutionPlan,
    right: &dyn ExecutionPlan,
) -> Result<bool> {
    // Get the left and right table's total bytes
    // If both the left and right tables contain total_byte_size statistics,
    // use `total_byte_size` to determine `should_swap_join_order`, else use `num_rows`
    let left_stats = left.statistics()?;
    let right_stats = right.statistics()?;
    // First compare `total_byte_size` of left and right side,
    // if information in this field is insufficient fallback to the `num_rows`
    match (
        left_stats.total_byte_size.get_value(),
        right_stats.total_byte_size.get_value(),
    ) {
        (Some(l), Some(r)) => Ok(l > r),
        _ => match (
            left_stats.num_rows.get_value(),
            right_stats.num_rows.get_value(),
        ) {
            (Some(l), Some(r)) => Ok(l > r),
            _ => Ok(false),
        },
    }
}

fn supports_collect_by_thresholds(
    plan: &dyn ExecutionPlan,
    threshold_byte_size: usize,
    threshold_num_rows: usize,
) -> bool {
    // Currently we do not trust the 0 value from stats, due to stats collection might have bug
    // TODO check the logic in datasource::get_statistics_with_limit()
    let Ok(stats) = plan.statistics() else {
        return false;
    };

    if let Some(byte_size) = stats.total_byte_size.get_value() {
        *byte_size != 0 && *byte_size < threshold_byte_size
    } else if let Some(num_rows) = stats.num_rows.get_value() {
        *num_rows != 0 && *num_rows < threshold_num_rows
    } else {
        false
    }
}

/// Predicate that checks whether the given join type supports input swapping.
#[deprecated(since = "45.0.0", note = "use JoinType::supports_swap instead")]
#[allow(dead_code)]
pub(crate) fn supports_swap(join_type: JoinType) -> bool {
    join_type.supports_swap()
}

/// This function returns the new join type we get after swapping the given
/// join's inputs.
#[deprecated(since = "45.0.0", note = "use datafusion-functions-nested instead")]
#[allow(dead_code)]
pub(crate) fn swap_join_type(join_type: JoinType) -> JoinType {
    join_type.swap()
}

/// This function swaps the inputs of the given join operator.
/// This function is public so other downstream projects can use it
/// to construct `HashJoinExec` with right side as the build side.
#[deprecated(since = "45.0.0", note = "use HashJoinExec::swap_inputs instead")]
pub fn swap_hash_join(
    hash_join: &HashJoinExec,
    partition_mode: PartitionMode,
) -> Result<Arc<dyn ExecutionPlan>> {
    hash_join.swap_inputs(partition_mode)
}

/// Swaps inputs of `NestedLoopJoinExec` and wraps it into `ProjectionExec` is required
#[deprecated(since = "45.0.0", note = "use NestedLoopJoinExec::swap_inputs")]
#[allow(dead_code)]
pub(crate) fn swap_nl_join(join: &NestedLoopJoinExec) -> Result<Arc<dyn ExecutionPlan>> {
    join.swap_inputs()
}

/// Swaps join sides for filter column indices and produces new `JoinFilter` (if exists).
#[deprecated(since = "45.0.0", note = "use filter.map(JoinFilter::swap) instead")]
#[allow(dead_code)]
fn swap_join_filter(filter: Option<&JoinFilter>) -> Option<JoinFilter> {
    filter.map(JoinFilter::swap)
}

#[deprecated(since = "45.0.0", note = "use JoinFilter::swap instead")]
#[allow(dead_code)]
pub(crate) fn swap_filter(filter: &JoinFilter) -> JoinFilter {
    filter.swap()
}

impl PhysicalOptimizerRule for JoinSelection {
    fn optimize(
        &self,
        plan: Arc<dyn ExecutionPlan>,
        config: &ConfigOptions,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        // First, we make pipeline-fixing modifications to joins so as to accommodate
        // unbounded inputs. Each pipeline-fixing subrule, which is a function
        // of type `PipelineFixerSubrule`, takes a single [`PipelineStatePropagator`]
        // argument storing state variables that indicate the unboundedness status
        // of the current [`ExecutionPlan`] as we traverse the plan tree.
        let subrules: Vec<Box<PipelineFixerSubrule>> = vec![
            Box::new(hash_join_convert_symmetric_subrule),
            Box::new(hash_join_swap_subrule),
        ];
        let new_plan = plan
            .transform_up(|p| apply_subrules(p, &subrules, config))
            .data()?;
        // Next, we apply another subrule that tries to optimize joins using any
        // statistics their inputs might have.
        // - For a hash join with partition mode [`PartitionMode::Auto`], we will
        //   make a cost-based decision to select which `PartitionMode` mode
        //   (`Partitioned`/`CollectLeft`) is optimal. If the statistics information
        //   is not available, we will fall back to [`PartitionMode::Partitioned`].
        // - We optimize/swap join sides so that the left (build) side of the join
        //   is the small side. If the statistics information is not available, we
        //   do not modify join sides.
        // - We will also swap left and right sides for cross joins so that the left
        //   side is the small side.
        let config = &config.optimizer;
        let collect_threshold_byte_size = config.hash_join_single_partition_threshold;
        let collect_threshold_num_rows = config.hash_join_single_partition_threshold_rows;
        new_plan
            .transform_up(|plan| {
                statistical_join_selection_subrule(
                    plan,
                    collect_threshold_byte_size,
                    collect_threshold_num_rows,
                )
            })
            .data()
    }

    fn name(&self) -> &str {
        "join_selection"
    }

    fn schema_check(&self) -> bool {
        true
    }
}

/// Tries to create a [`HashJoinExec`] in [`PartitionMode::CollectLeft`] when possible.
///
/// This function will first consider the given join type and check whether the
/// `CollectLeft` mode is applicable. Otherwise, it will try to swap the join sides.
/// When the `ignore_threshold` is false, this function will also check left
/// and right sizes in bytes or rows.
pub(crate) fn try_collect_left(
    hash_join: &HashJoinExec,
    ignore_threshold: bool,
    threshold_byte_size: usize,
    threshold_num_rows: usize,
) -> Result<Option<Arc<dyn ExecutionPlan>>> {
    let left = hash_join.left();
    let right = hash_join.right();

    let left_can_collect = ignore_threshold
        || supports_collect_by_thresholds(
            &**left,
            threshold_byte_size,
            threshold_num_rows,
        );
    let right_can_collect = ignore_threshold
        || supports_collect_by_thresholds(
            &**right,
            threshold_byte_size,
            threshold_num_rows,
        );

    match (left_can_collect, right_can_collect) {
        (true, true) => {
            if hash_join.join_type().supports_swap()
                && should_swap_join_order(&**left, &**right)?
            {
                Ok(Some(hash_join.swap_inputs(PartitionMode::CollectLeft)?))
            } else {
                Ok(Some(Arc::new(HashJoinExec::try_new(
                    Arc::clone(left),
                    Arc::clone(right),
                    hash_join.on().to_vec(),
                    hash_join.filter().cloned(),
                    hash_join.join_type(),
                    hash_join.projection.clone(),
                    PartitionMode::CollectLeft,
                    hash_join.null_equals_null(),
                )?)))
            }
        }
        (true, false) => Ok(Some(Arc::new(HashJoinExec::try_new(
            Arc::clone(left),
            Arc::clone(right),
            hash_join.on().to_vec(),
            hash_join.filter().cloned(),
            hash_join.join_type(),
            hash_join.projection.clone(),
            PartitionMode::CollectLeft,
            hash_join.null_equals_null(),
        )?))),
        (false, true) => {
            if hash_join.join_type().supports_swap() {
                hash_join.swap_inputs(PartitionMode::CollectLeft).map(Some)
            } else {
                Ok(None)
            }
        }
        (false, false) => Ok(None),
    }
}

/// Creates a partitioned hash join execution plan, swapping inputs if beneficial.
///
/// Checks if the join order should be swapped based on the join type and input statistics.
/// If swapping is optimal and supported, creates a swapped partitioned hash join; otherwise,
/// creates a standard partitioned hash join.
pub(crate) fn partitioned_hash_join(
    hash_join: &HashJoinExec,
) -> Result<Arc<dyn ExecutionPlan>> {
    let left = hash_join.left();
    let right = hash_join.right();
    if hash_join.join_type().supports_swap() && should_swap_join_order(&**left, &**right)?
    {
        hash_join.swap_inputs(PartitionMode::Partitioned)
    } else {
        Ok(Arc::new(HashJoinExec::try_new(
            Arc::clone(left),
            Arc::clone(right),
            hash_join.on().to_vec(),
            hash_join.filter().cloned(),
            hash_join.join_type(),
            hash_join.projection.clone(),
            PartitionMode::Partitioned,
            hash_join.null_equals_null(),
        )?))
    }
}

/// This subrule tries to modify a given plan so that it can
/// optimize hash and cross joins in the plan according to available statistical information.
fn statistical_join_selection_subrule(
    plan: Arc<dyn ExecutionPlan>,
    collect_threshold_byte_size: usize,
    collect_threshold_num_rows: usize,
) -> Result<Transformed<Arc<dyn ExecutionPlan>>> {
    let transformed =
        if let Some(hash_join) = plan.as_any().downcast_ref::<HashJoinExec>() {
            match hash_join.partition_mode() {
                PartitionMode::Auto => try_collect_left(
                    hash_join,
                    false,
                    collect_threshold_byte_size,
                    collect_threshold_num_rows,
                )?
                .map_or_else(
                    || partitioned_hash_join(hash_join).map(Some),
                    |v| Ok(Some(v)),
                )?,
                PartitionMode::CollectLeft => try_collect_left(hash_join, true, 0, 0)?
                    .map_or_else(
                        || partitioned_hash_join(hash_join).map(Some),
                        |v| Ok(Some(v)),
                    )?,
                PartitionMode::Partitioned => {
                    let left = hash_join.left();
                    let right = hash_join.right();
                    if hash_join.join_type().supports_swap()
                        && should_swap_join_order(&**left, &**right)?
                    {
                        hash_join
                            .swap_inputs(PartitionMode::Partitioned)
                            .map(Some)?
                    } else {
                        None
                    }
                }
            }
        } else if let Some(cross_join) = plan.as_any().downcast_ref::<CrossJoinExec>() {
            let left = cross_join.left();
            let right = cross_join.right();
            if should_swap_join_order(&**left, &**right)? {
                cross_join.swap_inputs().map(Some)?
            } else {
                None
            }
        } else if let Some(nl_join) = plan.as_any().downcast_ref::<NestedLoopJoinExec>() {
            let left = nl_join.left();
            let right = nl_join.right();
            if nl_join.join_type().supports_swap()
                && should_swap_join_order(&**left, &**right)?
            {
                nl_join.swap_inputs().map(Some)?
            } else {
                None
            }
        } else {
            None
        };

    Ok(if let Some(transformed) = transformed {
        Transformed::yes(transformed)
    } else {
        Transformed::no(plan)
    })
}

/// Pipeline-fixing join selection subrule.
pub type PipelineFixerSubrule =
    dyn Fn(Arc<dyn ExecutionPlan>, &ConfigOptions) -> Result<Arc<dyn ExecutionPlan>>;

/// Converts a hash join to a symmetric hash join if both its inputs are
/// unbounded and incremental.
///
/// This subrule checks if a hash join can be replaced with a symmetric hash join when dealing
/// with unbounded (infinite) inputs on both sides. This replacement avoids pipeline breaking and
/// preserves query runnability. If the replacement is applicable, this subrule makes this change;
/// otherwise, it leaves the input unchanged.
///
/// # Arguments
/// * `input` - The current state of the pipeline, including the execution plan.
/// * `config_options` - Configuration options that might affect the transformation logic.
///
/// # Returns
/// An `Option` that contains the `Result` of the transformation. If the transformation is not applicable,
/// it returns `None`. If applicable, it returns `Some(Ok(...))` with the modified pipeline state,
/// or `Some(Err(...))` if an error occurs during the transformation.
fn hash_join_convert_symmetric_subrule(
    input: Arc<dyn ExecutionPlan>,
    config_options: &ConfigOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
    // Check if the current plan node is a HashJoinExec.
    if let Some(hash_join) = input.as_any().downcast_ref::<HashJoinExec>() {
        let left_unbounded = hash_join.left.boundedness().is_unbounded();
        let left_incremental = matches!(
            hash_join.left.pipeline_behavior(),
            EmissionType::Incremental | EmissionType::Both
        );
        let right_unbounded = hash_join.right.boundedness().is_unbounded();
        let right_incremental = matches!(
            hash_join.right.pipeline_behavior(),
            EmissionType::Incremental | EmissionType::Both
        );
        // Process only if both left and right sides are unbounded and incrementally emit.
        if left_unbounded && right_unbounded & left_incremental & right_incremental {
            // Determine the partition mode based on configuration.
            let mode = if config_options.optimizer.repartition_joins {
                StreamJoinPartitionMode::Partitioned
            } else {
                StreamJoinPartitionMode::SinglePartition
            };
            // A closure to determine the required sort order for each side of the join in the SymmetricHashJoinExec.
            // This function checks if the columns involved in the filter have any specific ordering requirements.
            // If the child nodes (left or right side of the join) already have a defined order and the columns used in the
            // filter predicate are ordered, this function captures that ordering requirement. The identified order is then
            // used in the SymmetricHashJoinExec to maintain bounded memory during join operations.
            // However, if the child nodes do not have an inherent order, or if the filter columns are unordered,
            // the function concludes that no specific order is required for the SymmetricHashJoinExec. This approach
            // ensures that the symmetric hash join operation only imposes ordering constraints when necessary,
            // based on the properties of the child nodes and the filter condition.
            let determine_order = |side: JoinSide| -> Option<LexOrdering> {
                hash_join
                    .filter()
                    .map(|filter| {
                        filter.column_indices().iter().any(
                            |ColumnIndex {
                                 index,
                                 side: column_side,
                             }| {
                                // Skip if column side does not match the join side.
                                if *column_side != side {
                                    return false;
                                }
                                // Retrieve equivalence properties and schema based on the side.
                                let (equivalence, schema) = match side {
                                    JoinSide::Left => (
                                        hash_join.left().equivalence_properties(),
                                        hash_join.left().schema(),
                                    ),
                                    JoinSide::Right => (
                                        hash_join.right().equivalence_properties(),
                                        hash_join.right().schema(),
                                    ),
                                    JoinSide::None => return false,
                                };

                                let name = schema.field(*index).name();
                                let col = Arc::new(Column::new(name, *index)) as _;
                                // Check if the column is ordered.
                                equivalence.get_expr_properties(col).sort_properties
                                    != SortProperties::Unordered
                            },
                        )
                    })
                    .unwrap_or(false)
                    .then(|| {
                        match side {
                            JoinSide::Left => hash_join.left().output_ordering(),
                            JoinSide::Right => hash_join.right().output_ordering(),
                            JoinSide::None => unreachable!(),
                        }
                        .map(|p| LexOrdering::new(p.to_vec()))
                    })
                    .flatten()
            };

            // Determine the sort order for both left and right sides.
            let left_order = determine_order(JoinSide::Left);
            let right_order = determine_order(JoinSide::Right);

            return SymmetricHashJoinExec::try_new(
                Arc::clone(hash_join.left()),
                Arc::clone(hash_join.right()),
                hash_join.on().to_vec(),
                hash_join.filter().cloned(),
                hash_join.join_type(),
                hash_join.null_equals_null(),
                left_order,
                right_order,
                mode,
            )
            .map(|exec| Arc::new(exec) as _);
        }
    }
    Ok(input)
}

/// This subrule will swap build/probe sides of a hash join depending on whether
/// one of its inputs may produce an infinite stream of records. The rule ensures
/// that the left (build) side of the hash join always operates on an input stream
/// that will produce a finite set of records. If the left side can not be chosen
/// to be "finite", the join sides stay the same as the original query.
/// ```text
/// For example, this rule makes the following transformation:
///
///
///
///           +--------------+              +--------------+
///           |              |  unbounded   |              |
///    Left   | Infinite     |    true      | Hash         |\true
///           | Data source  |--------------| Repartition  | \   +--------------+       +--------------+
///           |              |              |              |  \  |              |       |              |
///           +--------------+              +--------------+   - |  Hash Join   |-------| Projection   |
///                                                            - |              |       |              |
///           +--------------+              +--------------+  /  +--------------+       +--------------+
///           |              |  unbounded   |              | /
///    Right  | Finite       |    false     | Hash         |/false
///           | Data Source  |--------------| Repartition  |
///           |              |              |              |
///           +--------------+              +--------------+
///
///
///
///           +--------------+              +--------------+
///           |              |  unbounded   |              |
///    Left   | Finite       |    false     | Hash         |\false
///           | Data source  |--------------| Repartition  | \   +--------------+       +--------------+
///           |              |              |              |  \  |              | true  |              | true
///           +--------------+              +--------------+   - |  Hash Join   |-------| Projection   |-----
///                                                            - |              |       |              |
///           +--------------+              +--------------+  /  +--------------+       +--------------+
///           |              |  unbounded   |              | /
///    Right  | Infinite     |    true      | Hash         |/true
///           | Data Source  |--------------| Repartition  |
///           |              |              |              |
///           +--------------+              +--------------+
///
/// ```
pub fn hash_join_swap_subrule(
    mut input: Arc<dyn ExecutionPlan>,
    _config_options: &ConfigOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
    if let Some(hash_join) = input.as_any().downcast_ref::<HashJoinExec>() {
        if hash_join.left.boundedness().is_unbounded()
            && !hash_join.right.boundedness().is_unbounded()
            && matches!(
                *hash_join.join_type(),
                JoinType::Inner
                    | JoinType::Left
                    | JoinType::LeftSemi
                    | JoinType::LeftAnti
            )
        {
            input = swap_join_according_to_unboundedness(hash_join)?;
        }
    }
    Ok(input)
}

/// This function swaps sides of a hash join to make it runnable even if one of
/// its inputs are infinite. Note that this is not always possible; i.e.
/// [`JoinType::Full`], [`JoinType::Right`], [`JoinType::RightAnti`] and
/// [`JoinType::RightSemi`] can not run with an unbounded left side, even if
/// we swap join sides. Therefore, we do not consider them here.
/// This function is crate public as it is useful for downstream projects
/// to implement, or experiment with, their own join selection rules.
pub(crate) fn swap_join_according_to_unboundedness(
    hash_join: &HashJoinExec,
) -> Result<Arc<dyn ExecutionPlan>> {
    let partition_mode = hash_join.partition_mode();
    let join_type = hash_join.join_type();
    match (*partition_mode, *join_type) {
        (
            _,
            JoinType::Right | JoinType::RightSemi | JoinType::RightAnti | JoinType::Full,
        ) => internal_err!("{join_type} join cannot be swapped for unbounded input."),
        (PartitionMode::Partitioned, _) => {
            hash_join.swap_inputs(PartitionMode::Partitioned)
        }
        (PartitionMode::CollectLeft, _) => {
            hash_join.swap_inputs(PartitionMode::CollectLeft)
        }
        (PartitionMode::Auto, _) => {
            internal_err!("Auto is not acceptable for unbounded input here.")
        }
    }
}

/// Apply given `PipelineFixerSubrule`s to a given plan. This plan, along with
/// auxiliary boundedness information, is in the `PipelineStatePropagator` object.
fn apply_subrules(
    mut input: Arc<dyn ExecutionPlan>,
    subrules: &Vec<Box<PipelineFixerSubrule>>,
    config_options: &ConfigOptions,
) -> Result<Transformed<Arc<dyn ExecutionPlan>>> {
    for subrule in subrules {
        input = subrule(input, config_options)?;
    }
    Ok(Transformed::yes(input))
}

// See tests in datafusion/core/tests/physical_optimizer