datafusion_physical_optimizer/
output_requirements.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! The GlobalOrderRequire optimizer rule either:
//! - Adds an auxiliary `OutputRequirementExec` operator to keep track of global
//!   ordering and distribution requirement across rules, or
//! - Removes the auxiliary `OutputRequirementExec` operator from the physical plan.
//!   Since the `OutputRequirementExec` operator is only a helper operator, it
//!   shouldn't occur in the final plan (i.e. the executed plan).

use std::sync::Arc;

use datafusion_execution::TaskContext;
use datafusion_physical_plan::sorts::sort::SortExec;
use datafusion_physical_plan::{
    DisplayAs, DisplayFormatType, ExecutionPlan, SendableRecordBatchStream,
};

use datafusion_common::config::ConfigOptions;
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::{Result, Statistics};
use datafusion_physical_expr::{Distribution, LexRequirement, PhysicalSortRequirement};
use datafusion_physical_plan::sorts::sort_preserving_merge::SortPreservingMergeExec;
use datafusion_physical_plan::{ExecutionPlanProperties, PlanProperties};

use crate::PhysicalOptimizerRule;

/// This rule either adds or removes [`OutputRequirements`]s to/from the physical
/// plan according to its `mode` attribute, which is set by the constructors
/// `new_add_mode` and `new_remove_mode`. With this rule, we can keep track of
/// the global requirements (ordering and distribution) across rules.
///
/// The primary usecase of this node and rule is to specify and preserve the desired output
/// ordering and distribution the entire plan. When sending to a single client, a single partition may
/// be desirable, but when sending to a multi-partitioned writer, keeping multiple partitions may be
/// better.
#[derive(Debug)]
pub struct OutputRequirements {
    mode: RuleMode,
}

impl OutputRequirements {
    /// Create a new rule which works in `Add` mode; i.e. it simply adds a
    /// top-level [`OutputRequirementExec`] into the physical plan to keep track
    /// of global ordering and distribution requirements if there are any.
    /// Note that this rule should run at the beginning.
    pub fn new_add_mode() -> Self {
        Self {
            mode: RuleMode::Add,
        }
    }

    /// Create a new rule which works in `Remove` mode; i.e. it simply removes
    /// the top-level [`OutputRequirementExec`] from the physical plan if there is
    /// any. We do this because a `OutputRequirementExec` is an ancillary,
    /// non-executable operator whose sole purpose is to track global
    /// requirements during optimization. Therefore, a
    /// `OutputRequirementExec` should not appear in the final plan.
    pub fn new_remove_mode() -> Self {
        Self {
            mode: RuleMode::Remove,
        }
    }
}

#[derive(Debug, Ord, PartialOrd, PartialEq, Eq, Hash)]
enum RuleMode {
    Add,
    Remove,
}

/// An ancillary, non-executable operator whose sole purpose is to track global
/// requirements during optimization. It imposes
/// - the ordering requirement in its `order_requirement` attribute.
/// - the distribution requirement in its `dist_requirement` attribute.
///
/// See [`OutputRequirements`] for more details
#[derive(Debug)]
pub struct OutputRequirementExec {
    input: Arc<dyn ExecutionPlan>,
    order_requirement: Option<LexRequirement>,
    dist_requirement: Distribution,
    cache: PlanProperties,
}

impl OutputRequirementExec {
    pub fn new(
        input: Arc<dyn ExecutionPlan>,
        requirements: Option<LexRequirement>,
        dist_requirement: Distribution,
    ) -> Self {
        let cache = Self::compute_properties(&input);
        Self {
            input,
            order_requirement: requirements,
            dist_requirement,
            cache,
        }
    }

    pub fn input(&self) -> Arc<dyn ExecutionPlan> {
        Arc::clone(&self.input)
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(input: &Arc<dyn ExecutionPlan>) -> PlanProperties {
        PlanProperties::new(
            input.equivalence_properties().clone(), // Equivalence Properties
            input.output_partitioning().clone(),    // Output Partitioning
            input.execution_mode(),                 // Execution Mode
        )
    }
}

impl DisplayAs for OutputRequirementExec {
    fn fmt_as(
        &self,
        _t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        write!(f, "OutputRequirementExec")
    }
}

impl ExecutionPlan for OutputRequirementExec {
    fn name(&self) -> &'static str {
        "OutputRequirementExec"
    }

    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
        vec![false]
    }

    fn required_input_distribution(&self) -> Vec<Distribution> {
        vec![self.dist_requirement.clone()]
    }

    fn maintains_input_order(&self) -> Vec<bool> {
        vec![true]
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
        vec![self.order_requirement.clone()]
    }

    fn with_new_children(
        self: Arc<Self>,
        mut children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(Self::new(
            children.remove(0), // has a single child
            self.order_requirement.clone(),
            self.dist_requirement.clone(),
        )))
    }

    fn execute(
        &self,
        _partition: usize,
        _context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        unreachable!();
    }

    fn statistics(&self) -> Result<Statistics> {
        self.input.statistics()
    }
}

impl PhysicalOptimizerRule for OutputRequirements {
    fn optimize(
        &self,
        plan: Arc<dyn ExecutionPlan>,
        _config: &ConfigOptions,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        match self.mode {
            RuleMode::Add => require_top_ordering(plan),
            RuleMode::Remove => plan
                .transform_up(|plan| {
                    if let Some(sort_req) =
                        plan.as_any().downcast_ref::<OutputRequirementExec>()
                    {
                        Ok(Transformed::yes(sort_req.input()))
                    } else {
                        Ok(Transformed::no(plan))
                    }
                })
                .data(),
        }
    }

    fn name(&self) -> &str {
        "OutputRequirements"
    }

    fn schema_check(&self) -> bool {
        true
    }
}

/// This functions adds ancillary `OutputRequirementExec` to the physical plan, so that
/// global requirements are not lost during optimization.
fn require_top_ordering(plan: Arc<dyn ExecutionPlan>) -> Result<Arc<dyn ExecutionPlan>> {
    let (new_plan, is_changed) = require_top_ordering_helper(plan)?;
    if is_changed {
        Ok(new_plan)
    } else {
        // Add `OutputRequirementExec` to the top, with no specified ordering and distribution requirement.
        Ok(Arc::new(OutputRequirementExec::new(
            new_plan,
            // there is no ordering requirement
            None,
            Distribution::UnspecifiedDistribution,
        )) as _)
    }
}

/// Helper function that adds an ancillary `OutputRequirementExec` to the given plan.
/// First entry in the tuple is resulting plan, second entry indicates whether any
/// `OutputRequirementExec` is added to the plan.
fn require_top_ordering_helper(
    plan: Arc<dyn ExecutionPlan>,
) -> Result<(Arc<dyn ExecutionPlan>, bool)> {
    let mut children = plan.children();
    // Global ordering defines desired ordering in the final result.
    if children.len() != 1 {
        Ok((plan, false))
    } else if let Some(sort_exec) = plan.as_any().downcast_ref::<SortExec>() {
        // In case of constant columns, output ordering of SortExec would give an empty set.
        // Therefore; we check the sort expression field of the SortExec to assign the requirements.
        let req_ordering = sort_exec.expr();
        let req_dist = sort_exec.required_input_distribution()[0].clone();
        let reqs = PhysicalSortRequirement::from_sort_exprs(req_ordering);
        Ok((
            Arc::new(OutputRequirementExec::new(plan, Some(reqs), req_dist)) as _,
            true,
        ))
    } else if let Some(spm) = plan.as_any().downcast_ref::<SortPreservingMergeExec>() {
        let reqs = PhysicalSortRequirement::from_sort_exprs(spm.expr());
        Ok((
            Arc::new(OutputRequirementExec::new(
                plan,
                Some(reqs),
                Distribution::SinglePartition,
            )) as _,
            true,
        ))
    } else if plan.maintains_input_order()[0]
        && plan.required_input_ordering()[0].is_none()
    {
        // Keep searching for a `SortExec` as long as ordering is maintained,
        // and on-the-way operators do not themselves require an ordering.
        // When an operator requires an ordering, any `SortExec` below can not
        // be responsible for (i.e. the originator of) the global ordering.
        let (new_child, is_changed) =
            require_top_ordering_helper(Arc::clone(children.swap_remove(0)))?;
        Ok((plan.with_new_children(vec![new_child])?, is_changed))
    } else {
        // Stop searching, there is no global ordering desired for the query.
        Ok((plan, false))
    }
}

// See tests in datafusion/core/tests/physical_optimizer