datafusion_physical_optimizer/output_requirements.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! The GlobalOrderRequire optimizer rule either:
//! - Adds an auxiliary `OutputRequirementExec` operator to keep track of global
//! ordering and distribution requirement across rules, or
//! - Removes the auxiliary `OutputRequirementExec` operator from the physical plan.
//! Since the `OutputRequirementExec` operator is only a helper operator, it
//! shouldn't occur in the final plan (i.e. the executed plan).
use std::sync::Arc;
use datafusion_execution::TaskContext;
use datafusion_physical_plan::sorts::sort::SortExec;
use datafusion_physical_plan::{
DisplayAs, DisplayFormatType, ExecutionPlan, SendableRecordBatchStream,
};
use datafusion_common::config::ConfigOptions;
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::{Result, Statistics};
use datafusion_physical_expr::{Distribution, LexRequirement, PhysicalSortRequirement};
use datafusion_physical_plan::sorts::sort_preserving_merge::SortPreservingMergeExec;
use datafusion_physical_plan::{ExecutionPlanProperties, PlanProperties};
use crate::PhysicalOptimizerRule;
/// This rule either adds or removes [`OutputRequirements`]s to/from the physical
/// plan according to its `mode` attribute, which is set by the constructors
/// `new_add_mode` and `new_remove_mode`. With this rule, we can keep track of
/// the global requirements (ordering and distribution) across rules.
///
/// The primary usecase of this node and rule is to specify and preserve the desired output
/// ordering and distribution the entire plan. When sending to a single client, a single partition may
/// be desirable, but when sending to a multi-partitioned writer, keeping multiple partitions may be
/// better.
#[derive(Debug)]
pub struct OutputRequirements {
mode: RuleMode,
}
impl OutputRequirements {
/// Create a new rule which works in `Add` mode; i.e. it simply adds a
/// top-level [`OutputRequirementExec`] into the physical plan to keep track
/// of global ordering and distribution requirements if there are any.
/// Note that this rule should run at the beginning.
pub fn new_add_mode() -> Self {
Self {
mode: RuleMode::Add,
}
}
/// Create a new rule which works in `Remove` mode; i.e. it simply removes
/// the top-level [`OutputRequirementExec`] from the physical plan if there is
/// any. We do this because a `OutputRequirementExec` is an ancillary,
/// non-executable operator whose sole purpose is to track global
/// requirements during optimization. Therefore, a
/// `OutputRequirementExec` should not appear in the final plan.
pub fn new_remove_mode() -> Self {
Self {
mode: RuleMode::Remove,
}
}
}
#[derive(Debug, Ord, PartialOrd, PartialEq, Eq, Hash)]
enum RuleMode {
Add,
Remove,
}
/// An ancillary, non-executable operator whose sole purpose is to track global
/// requirements during optimization. It imposes
/// - the ordering requirement in its `order_requirement` attribute.
/// - the distribution requirement in its `dist_requirement` attribute.
///
/// See [`OutputRequirements`] for more details
#[derive(Debug)]
pub struct OutputRequirementExec {
input: Arc<dyn ExecutionPlan>,
order_requirement: Option<LexRequirement>,
dist_requirement: Distribution,
cache: PlanProperties,
}
impl OutputRequirementExec {
pub fn new(
input: Arc<dyn ExecutionPlan>,
requirements: Option<LexRequirement>,
dist_requirement: Distribution,
) -> Self {
let cache = Self::compute_properties(&input);
Self {
input,
order_requirement: requirements,
dist_requirement,
cache,
}
}
pub fn input(&self) -> Arc<dyn ExecutionPlan> {
Arc::clone(&self.input)
}
/// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
fn compute_properties(input: &Arc<dyn ExecutionPlan>) -> PlanProperties {
PlanProperties::new(
input.equivalence_properties().clone(), // Equivalence Properties
input.output_partitioning().clone(), // Output Partitioning
input.execution_mode(), // Execution Mode
)
}
}
impl DisplayAs for OutputRequirementExec {
fn fmt_as(
&self,
_t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
write!(f, "OutputRequirementExec")
}
}
impl ExecutionPlan for OutputRequirementExec {
fn name(&self) -> &'static str {
"OutputRequirementExec"
}
fn as_any(&self) -> &dyn std::any::Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
vec![false]
}
fn required_input_distribution(&self) -> Vec<Distribution> {
vec![self.dist_requirement.clone()]
}
fn maintains_input_order(&self) -> Vec<bool> {
vec![true]
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![&self.input]
}
fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
vec![self.order_requirement.clone()]
}
fn with_new_children(
self: Arc<Self>,
mut children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(Self::new(
children.remove(0), // has a single child
self.order_requirement.clone(),
self.dist_requirement.clone(),
)))
}
fn execute(
&self,
_partition: usize,
_context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
unreachable!();
}
fn statistics(&self) -> Result<Statistics> {
self.input.statistics()
}
}
impl PhysicalOptimizerRule for OutputRequirements {
fn optimize(
&self,
plan: Arc<dyn ExecutionPlan>,
_config: &ConfigOptions,
) -> Result<Arc<dyn ExecutionPlan>> {
match self.mode {
RuleMode::Add => require_top_ordering(plan),
RuleMode::Remove => plan
.transform_up(|plan| {
if let Some(sort_req) =
plan.as_any().downcast_ref::<OutputRequirementExec>()
{
Ok(Transformed::yes(sort_req.input()))
} else {
Ok(Transformed::no(plan))
}
})
.data(),
}
}
fn name(&self) -> &str {
"OutputRequirements"
}
fn schema_check(&self) -> bool {
true
}
}
/// This functions adds ancillary `OutputRequirementExec` to the physical plan, so that
/// global requirements are not lost during optimization.
fn require_top_ordering(plan: Arc<dyn ExecutionPlan>) -> Result<Arc<dyn ExecutionPlan>> {
let (new_plan, is_changed) = require_top_ordering_helper(plan)?;
if is_changed {
Ok(new_plan)
} else {
// Add `OutputRequirementExec` to the top, with no specified ordering and distribution requirement.
Ok(Arc::new(OutputRequirementExec::new(
new_plan,
// there is no ordering requirement
None,
Distribution::UnspecifiedDistribution,
)) as _)
}
}
/// Helper function that adds an ancillary `OutputRequirementExec` to the given plan.
/// First entry in the tuple is resulting plan, second entry indicates whether any
/// `OutputRequirementExec` is added to the plan.
fn require_top_ordering_helper(
plan: Arc<dyn ExecutionPlan>,
) -> Result<(Arc<dyn ExecutionPlan>, bool)> {
let mut children = plan.children();
// Global ordering defines desired ordering in the final result.
if children.len() != 1 {
Ok((plan, false))
} else if let Some(sort_exec) = plan.as_any().downcast_ref::<SortExec>() {
// In case of constant columns, output ordering of SortExec would give an empty set.
// Therefore; we check the sort expression field of the SortExec to assign the requirements.
let req_ordering = sort_exec.expr();
let req_dist = sort_exec.required_input_distribution()[0].clone();
let reqs = PhysicalSortRequirement::from_sort_exprs(req_ordering);
Ok((
Arc::new(OutputRequirementExec::new(plan, Some(reqs), req_dist)) as _,
true,
))
} else if let Some(spm) = plan.as_any().downcast_ref::<SortPreservingMergeExec>() {
let reqs = PhysicalSortRequirement::from_sort_exprs(spm.expr());
Ok((
Arc::new(OutputRequirementExec::new(
plan,
Some(reqs),
Distribution::SinglePartition,
)) as _,
true,
))
} else if plan.maintains_input_order()[0]
&& plan.required_input_ordering()[0].is_none()
{
// Keep searching for a `SortExec` as long as ordering is maintained,
// and on-the-way operators do not themselves require an ordering.
// When an operator requires an ordering, any `SortExec` below can not
// be responsible for (i.e. the originator of) the global ordering.
let (new_child, is_changed) =
require_top_ordering_helper(Arc::clone(children.swap_remove(0)))?;
Ok((plan.with_new_children(vec![new_child])?, is_changed))
} else {
// Stop searching, there is no global ordering desired for the query.
Ok((plan, false))
}
}
// See tests in datafusion/core/tests/physical_optimizer