1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines the projection execution plan. A projection determines which columns or expressions
//! are returned from a query. The SQL statement `SELECT a, b, a+b FROM t1` is an example
//! of a projection on table `t1` where the expressions `a`, `b`, and `a+b` are the
//! projection expressions. `SELECT` without `FROM` will only evaluate expressions.

use std::any::Any;
use std::collections::HashMap;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use super::expressions::Column;
use super::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use super::{
    DisplayAs, ExecutionPlanProperties, PlanProperties, RecordBatchStream,
    SendableRecordBatchStream, Statistics,
};
use crate::{
    ColumnStatistics, DisplayFormatType, ExecutionPlan, Partitioning, PhysicalExpr,
};

use arrow::datatypes::{Field, Schema, SchemaRef};
use arrow::record_batch::{RecordBatch, RecordBatchOptions};
use datafusion_common::stats::Precision;
use datafusion_common::Result;
use datafusion_execution::TaskContext;
use datafusion_physical_expr::equivalence::ProjectionMapping;
use datafusion_physical_expr::expressions::{Literal, UnKnownColumn};

use futures::stream::{Stream, StreamExt};
use log::trace;

/// Execution plan for a projection
#[derive(Debug, Clone)]
pub struct ProjectionExec {
    /// The projection expressions stored as tuples of (expression, output column name)
    pub(crate) expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
    /// The schema once the projection has been applied to the input
    schema: SchemaRef,
    /// The input plan
    input: Arc<dyn ExecutionPlan>,
    /// Execution metrics
    metrics: ExecutionPlanMetricsSet,
    /// Cache holding plan properties like equivalences, output partitioning etc.
    cache: PlanProperties,
}

impl ProjectionExec {
    /// Create a projection on an input
    pub fn try_new(
        expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
        input: Arc<dyn ExecutionPlan>,
    ) -> Result<Self> {
        let input_schema = input.schema();

        let fields: Result<Vec<Field>> = expr
            .iter()
            .map(|(e, name)| {
                let mut field = Field::new(
                    name,
                    e.data_type(&input_schema)?,
                    e.nullable(&input_schema)?,
                );
                field.set_metadata(
                    get_field_metadata(e, &input_schema).unwrap_or_default(),
                );

                Ok(field)
            })
            .collect();

        let schema = Arc::new(Schema::new_with_metadata(
            fields?,
            input_schema.metadata().clone(),
        ));

        // construct a map from the input expressions to the output expression of the Projection
        let projection_mapping = ProjectionMapping::try_new(&expr, &input_schema)?;
        let cache =
            Self::compute_properties(&input, &projection_mapping, Arc::clone(&schema))?;
        Ok(Self {
            expr,
            schema,
            input,
            metrics: ExecutionPlanMetricsSet::new(),
            cache,
        })
    }

    /// The projection expressions stored as tuples of (expression, output column name)
    pub fn expr(&self) -> &[(Arc<dyn PhysicalExpr>, String)] {
        &self.expr
    }

    /// The input plan
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(
        input: &Arc<dyn ExecutionPlan>,
        projection_mapping: &ProjectionMapping,
        schema: SchemaRef,
    ) -> Result<PlanProperties> {
        // Calculate equivalence properties:
        let mut input_eq_properties = input.equivalence_properties().clone();
        input_eq_properties.substitute_oeq_class(projection_mapping)?;
        let eq_properties = input_eq_properties.project(projection_mapping, schema);

        // Calculate output partitioning, which needs to respect aliases:
        let input_partition = input.output_partitioning();
        let output_partitioning = if let Partitioning::Hash(exprs, part) = input_partition
        {
            let normalized_exprs = exprs
                .iter()
                .map(|expr| {
                    input_eq_properties
                        .project_expr(expr, projection_mapping)
                        .unwrap_or_else(|| {
                            Arc::new(UnKnownColumn::new(&expr.to_string()))
                        })
                })
                .collect();
            Partitioning::Hash(normalized_exprs, *part)
        } else {
            input_partition.clone()
        };

        Ok(PlanProperties::new(
            eq_properties,
            output_partitioning,
            input.execution_mode(),
        ))
    }
}

impl DisplayAs for ProjectionExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                let expr: Vec<String> = self
                    .expr
                    .iter()
                    .map(|(e, alias)| {
                        let e = e.to_string();
                        if &e != alias {
                            format!("{e} as {alias}")
                        } else {
                            e
                        }
                    })
                    .collect();

                write!(f, "ProjectionExec: expr=[{}]", expr.join(", "))
            }
        }
    }
}

impl ExecutionPlan for ProjectionExec {
    fn name(&self) -> &'static str {
        "ProjectionExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    fn maintains_input_order(&self) -> Vec<bool> {
        // tell optimizer this operator doesn't reorder its input
        vec![true]
    }

    fn with_new_children(
        self: Arc<Self>,
        mut children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        ProjectionExec::try_new(self.expr.clone(), children.swap_remove(0))
            .map(|p| Arc::new(p) as _)
    }

    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
        let all_simple_exprs = self
            .expr
            .iter()
            .all(|(e, _)| e.as_any().is::<Column>() || e.as_any().is::<Literal>());
        // If expressions are all either column_expr or Literal, then all computations in this projection are reorder or rename,
        // and projection would not benefit from the repartition, benefits_from_input_partitioning will return false.
        vec![!all_simple_exprs]
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        trace!("Start ProjectionExec::execute for partition {} of context session_id {} and task_id {:?}", partition, context.session_id(), context.task_id());
        Ok(Box::pin(ProjectionStream {
            schema: Arc::clone(&self.schema),
            expr: self.expr.iter().map(|x| Arc::clone(&x.0)).collect(),
            input: self.input.execute(partition, context)?,
            baseline_metrics: BaselineMetrics::new(&self.metrics, partition),
        }))
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn statistics(&self) -> Result<Statistics> {
        Ok(stats_projection(
            self.input.statistics()?,
            self.expr.iter().map(|(e, _)| Arc::clone(e)),
            Arc::clone(&self.schema),
        ))
    }

    fn supports_limit_pushdown(&self) -> bool {
        true
    }
}

/// If e is a direct column reference, returns the field level
/// metadata for that field, if any. Otherwise returns None
fn get_field_metadata(
    e: &Arc<dyn PhysicalExpr>,
    input_schema: &Schema,
) -> Option<HashMap<String, String>> {
    // Look up field by index in schema (not NAME as there can be more than one
    // column with the same name)
    e.as_any()
        .downcast_ref::<Column>()
        .map(|column| input_schema.field(column.index()).metadata())
        .cloned()
}

fn stats_projection(
    mut stats: Statistics,
    exprs: impl Iterator<Item = Arc<dyn PhysicalExpr>>,
    schema: SchemaRef,
) -> Statistics {
    let mut primitive_row_size = 0;
    let mut primitive_row_size_possible = true;
    let mut column_statistics = vec![];
    for expr in exprs {
        let col_stats = if let Some(col) = expr.as_any().downcast_ref::<Column>() {
            stats.column_statistics[col.index()].clone()
        } else {
            // TODO stats: estimate more statistics from expressions
            // (expressions should compute their statistics themselves)
            ColumnStatistics::new_unknown()
        };
        column_statistics.push(col_stats);
        if let Ok(data_type) = expr.data_type(&schema) {
            if let Some(value) = data_type.primitive_width() {
                primitive_row_size += value;
                continue;
            }
        }
        primitive_row_size_possible = false;
    }

    if primitive_row_size_possible {
        stats.total_byte_size =
            Precision::Exact(primitive_row_size).multiply(&stats.num_rows);
    }
    stats.column_statistics = column_statistics;
    stats
}

impl ProjectionStream {
    fn batch_project(&self, batch: &RecordBatch) -> Result<RecordBatch> {
        // records time on drop
        let _timer = self.baseline_metrics.elapsed_compute().timer();
        let arrays = self
            .expr
            .iter()
            .map(|expr| {
                expr.evaluate(batch)
                    .and_then(|v| v.into_array(batch.num_rows()))
            })
            .collect::<Result<Vec<_>>>()?;

        if arrays.is_empty() {
            let options =
                RecordBatchOptions::new().with_row_count(Some(batch.num_rows()));
            RecordBatch::try_new_with_options(Arc::clone(&self.schema), arrays, &options)
                .map_err(Into::into)
        } else {
            RecordBatch::try_new(Arc::clone(&self.schema), arrays).map_err(Into::into)
        }
    }
}

/// Projection iterator
struct ProjectionStream {
    schema: SchemaRef,
    expr: Vec<Arc<dyn PhysicalExpr>>,
    input: SendableRecordBatchStream,
    baseline_metrics: BaselineMetrics,
}

impl Stream for ProjectionStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        let poll = self.input.poll_next_unpin(cx).map(|x| match x {
            Some(Ok(batch)) => Some(self.batch_project(&batch)),
            other => other,
        });

        self.baseline_metrics.record_poll(poll)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // same number of record batches
        self.input.size_hint()
    }
}

impl RecordBatchStream for ProjectionStream {
    /// Get the schema
    fn schema(&self) -> SchemaRef {
        Arc::clone(&self.schema)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::common::collect;
    use crate::expressions;
    use crate::test;

    use arrow_schema::DataType;
    use datafusion_common::ScalarValue;

    #[tokio::test]
    async fn project_no_column() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());

        let exec = test::scan_partitioned(1);
        let expected = collect(exec.execute(0, Arc::clone(&task_ctx))?)
            .await
            .unwrap();

        let projection = ProjectionExec::try_new(vec![], exec)?;
        let stream = projection.execute(0, Arc::clone(&task_ctx))?;
        let output = collect(stream).await.unwrap();
        assert_eq!(output.len(), expected.len());

        Ok(())
    }

    fn get_stats() -> Statistics {
        Statistics {
            num_rows: Precision::Exact(5),
            total_byte_size: Precision::Exact(23),
            column_statistics: vec![
                ColumnStatistics {
                    distinct_count: Precision::Exact(5),
                    max_value: Precision::Exact(ScalarValue::Int64(Some(21))),
                    min_value: Precision::Exact(ScalarValue::Int64(Some(-4))),
                    null_count: Precision::Exact(0),
                },
                ColumnStatistics {
                    distinct_count: Precision::Exact(1),
                    max_value: Precision::Exact(ScalarValue::from("x")),
                    min_value: Precision::Exact(ScalarValue::from("a")),
                    null_count: Precision::Exact(3),
                },
                ColumnStatistics {
                    distinct_count: Precision::Absent,
                    max_value: Precision::Exact(ScalarValue::Float32(Some(1.1))),
                    min_value: Precision::Exact(ScalarValue::Float32(Some(0.1))),
                    null_count: Precision::Absent,
                },
            ],
        }
    }

    fn get_schema() -> Schema {
        let field_0 = Field::new("col0", DataType::Int64, false);
        let field_1 = Field::new("col1", DataType::Utf8, false);
        let field_2 = Field::new("col2", DataType::Float32, false);
        Schema::new(vec![field_0, field_1, field_2])
    }
    #[tokio::test]
    async fn test_stats_projection_columns_only() {
        let source = get_stats();
        let schema = get_schema();

        let exprs: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(expressions::Column::new("col1", 1)),
            Arc::new(expressions::Column::new("col0", 0)),
        ];

        let result = stats_projection(source, exprs.into_iter(), Arc::new(schema));

        let expected = Statistics {
            num_rows: Precision::Exact(5),
            total_byte_size: Precision::Exact(23),
            column_statistics: vec![
                ColumnStatistics {
                    distinct_count: Precision::Exact(1),
                    max_value: Precision::Exact(ScalarValue::from("x")),
                    min_value: Precision::Exact(ScalarValue::from("a")),
                    null_count: Precision::Exact(3),
                },
                ColumnStatistics {
                    distinct_count: Precision::Exact(5),
                    max_value: Precision::Exact(ScalarValue::Int64(Some(21))),
                    min_value: Precision::Exact(ScalarValue::Int64(Some(-4))),
                    null_count: Precision::Exact(0),
                },
            ],
        };

        assert_eq!(result, expected);
    }

    #[tokio::test]
    async fn test_stats_projection_column_with_primitive_width_only() {
        let source = get_stats();
        let schema = get_schema();

        let exprs: Vec<Arc<dyn PhysicalExpr>> = vec![
            Arc::new(expressions::Column::new("col2", 2)),
            Arc::new(expressions::Column::new("col0", 0)),
        ];

        let result = stats_projection(source, exprs.into_iter(), Arc::new(schema));

        let expected = Statistics {
            num_rows: Precision::Exact(5),
            total_byte_size: Precision::Exact(60),
            column_statistics: vec![
                ColumnStatistics {
                    distinct_count: Precision::Absent,
                    max_value: Precision::Exact(ScalarValue::Float32(Some(1.1))),
                    min_value: Precision::Exact(ScalarValue::Float32(Some(0.1))),
                    null_count: Precision::Absent,
                },
                ColumnStatistics {
                    distinct_count: Precision::Exact(5),
                    max_value: Precision::Exact(ScalarValue::Int64(Some(21))),
                    min_value: Precision::Exact(ScalarValue::Int64(Some(-4))),
                    null_count: Precision::Exact(0),
                },
            ],
        };

        assert_eq!(result, expected);
    }
}