1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Partial Sort deals with input data that partially
//! satisfies the required sort order. Such an input data can be
//! partitioned into segments where each segment already has the
//! required information for lexicographic sorting so sorting
//! can be done without loading the entire dataset.
//!
//! Consider a sort plan having an input with ordering `a ASC, b ASC`
//!
//! ```text
//! +---+---+---+
//! | a | b | d |
//! +---+---+---+
//! | 0 | 0 | 3 |
//! | 0 | 0 | 2 |
//! | 0 | 1 | 1 |
//! | 0 | 2 | 0 |
//! +---+---+---+
//!```
//!
//! and required ordering for the plan is `a ASC, b ASC, d ASC`.
//! The first 3 rows(segment) can be sorted as the segment already
//! has the required information for the sort, but the last row
//! requires further information as the input can continue with a
//! batch with a starting row where a and b does not change as below
//!
//! ```text
//! +---+---+---+
//! | a | b | d |
//! +---+---+---+
//! | 0 | 2 | 4 |
//! +---+---+---+
//!```
//!
//! The plan concats incoming data with such last rows of previous input
//! and continues partial sorting of the segments.

use std::any::Any;
use std::fmt::Debug;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use crate::expressions::PhysicalSortExpr;
use crate::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use crate::sorts::sort::sort_batch;
use crate::{
    DisplayAs, DisplayFormatType, Distribution, ExecutionPlan, ExecutionPlanProperties,
    Partitioning, PlanProperties, SendableRecordBatchStream, Statistics,
};

use arrow::compute::concat_batches;
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::utils::evaluate_partition_ranges;
use datafusion_common::Result;
use datafusion_execution::{RecordBatchStream, TaskContext};
use datafusion_physical_expr::LexOrdering;

use futures::{ready, Stream, StreamExt};
use log::trace;

/// Partial Sort execution plan.
#[derive(Debug, Clone)]
pub struct PartialSortExec {
    /// Input schema
    pub(crate) input: Arc<dyn ExecutionPlan>,
    /// Sort expressions
    expr: Vec<PhysicalSortExpr>,
    /// Length of continuous matching columns of input that satisfy
    /// the required ordering for the sort
    common_prefix_length: usize,
    /// Containing all metrics set created during sort
    metrics_set: ExecutionPlanMetricsSet,
    /// Preserve partitions of input plan. If false, the input partitions
    /// will be sorted and merged into a single output partition.
    preserve_partitioning: bool,
    /// Fetch highest/lowest n results
    fetch: Option<usize>,
    /// Cache holding plan properties like equivalences, output partitioning etc.
    cache: PlanProperties,
}

impl PartialSortExec {
    /// Create a new partial sort execution plan
    pub fn new(
        expr: Vec<PhysicalSortExpr>,
        input: Arc<dyn ExecutionPlan>,
        common_prefix_length: usize,
    ) -> Self {
        assert!(common_prefix_length > 0);
        let preserve_partitioning = false;
        let cache = Self::compute_properties(&input, expr.clone(), preserve_partitioning);
        Self {
            input,
            expr,
            common_prefix_length,
            metrics_set: ExecutionPlanMetricsSet::new(),
            preserve_partitioning,
            fetch: None,
            cache,
        }
    }

    /// Whether this `PartialSortExec` preserves partitioning of the children
    pub fn preserve_partitioning(&self) -> bool {
        self.preserve_partitioning
    }

    /// Specify the partitioning behavior of this partial sort exec
    ///
    /// If `preserve_partitioning` is true, sorts each partition
    /// individually, producing one sorted stream for each input partition.
    ///
    /// If `preserve_partitioning` is false, sorts and merges all
    /// input partitions producing a single, sorted partition.
    pub fn with_preserve_partitioning(mut self, preserve_partitioning: bool) -> Self {
        self.preserve_partitioning = preserve_partitioning;
        self.cache = self
            .cache
            .with_partitioning(Self::output_partitioning_helper(
                &self.input,
                self.preserve_partitioning,
            ));
        self
    }

    /// Modify how many rows to include in the result
    ///
    /// If None, then all rows will be returned, in sorted order.
    /// If Some, then only the top `fetch` rows will be returned.
    /// This can reduce the memory pressure required by the sort
    /// operation since rows that are not going to be included
    /// can be dropped.
    pub fn with_fetch(mut self, fetch: Option<usize>) -> Self {
        self.fetch = fetch;
        self
    }

    /// Input schema
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }

    /// Sort expressions
    pub fn expr(&self) -> &[PhysicalSortExpr] {
        &self.expr
    }

    /// If `Some(fetch)`, limits output to only the first "fetch" items
    pub fn fetch(&self) -> Option<usize> {
        self.fetch
    }

    fn output_partitioning_helper(
        input: &Arc<dyn ExecutionPlan>,
        preserve_partitioning: bool,
    ) -> Partitioning {
        // Get output partitioning:
        if preserve_partitioning {
            input.output_partitioning().clone()
        } else {
            Partitioning::UnknownPartitioning(1)
        }
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(
        input: &Arc<dyn ExecutionPlan>,
        sort_exprs: LexOrdering,
        preserve_partitioning: bool,
    ) -> PlanProperties {
        // Calculate equivalence properties; i.e. reset the ordering equivalence
        // class with the new ordering:
        let eq_properties = input
            .equivalence_properties()
            .clone()
            .with_reorder(sort_exprs);

        // Get output partitioning:
        let output_partitioning =
            Self::output_partitioning_helper(input, preserve_partitioning);

        // Determine execution mode:
        let mode = input.execution_mode();

        PlanProperties::new(eq_properties, output_partitioning, mode)
    }
}

impl DisplayAs for PartialSortExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                let expr = PhysicalSortExpr::format_list(&self.expr);
                let common_prefix_length = self.common_prefix_length;
                match self.fetch {
                    Some(fetch) => {
                        write!(f, "PartialSortExec: TopK(fetch={fetch}), expr=[{expr}], common_prefix_length=[{common_prefix_length}]", )
                    }
                    None => write!(f, "PartialSortExec: expr=[{expr}], common_prefix_length=[{common_prefix_length}]"),
                }
            }
        }
    }
}

impl ExecutionPlan for PartialSortExec {
    fn name(&self) -> &'static str {
        "PartialSortExec"
    }

    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn required_input_distribution(&self) -> Vec<Distribution> {
        if self.preserve_partitioning {
            vec![Distribution::UnspecifiedDistribution]
        } else {
            vec![Distribution::SinglePartition]
        }
    }

    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
        vec![false]
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        let new_partial_sort = PartialSortExec::new(
            self.expr.clone(),
            Arc::clone(&children[0]),
            self.common_prefix_length,
        )
        .with_fetch(self.fetch)
        .with_preserve_partitioning(self.preserve_partitioning);

        Ok(Arc::new(new_partial_sort))
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        trace!("Start PartialSortExec::execute for partition {} of context session_id {} and task_id {:?}", partition, context.session_id(), context.task_id());

        let input = self.input.execute(partition, Arc::clone(&context))?;

        trace!(
            "End PartialSortExec's input.execute for partition: {}",
            partition
        );

        // Make sure common prefix length is larger than 0
        // Otherwise, we should use SortExec.
        assert!(self.common_prefix_length > 0);

        Ok(Box::pin(PartialSortStream {
            input,
            expr: self.expr.clone(),
            common_prefix_length: self.common_prefix_length,
            in_mem_batches: vec![],
            fetch: self.fetch,
            is_closed: false,
            baseline_metrics: BaselineMetrics::new(&self.metrics_set, partition),
        }))
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics_set.clone_inner())
    }

    fn statistics(&self) -> Result<Statistics> {
        self.input.statistics()
    }
}

struct PartialSortStream {
    /// The input plan
    input: SendableRecordBatchStream,
    /// Sort expressions
    expr: Vec<PhysicalSortExpr>,
    /// Length of prefix common to input ordering and required ordering of plan
    /// should be more than 0 otherwise PartialSort is not applicable
    common_prefix_length: usize,
    /// Used as a buffer for part of the input not ready for sort
    in_mem_batches: Vec<RecordBatch>,
    /// Fetch top N results
    fetch: Option<usize>,
    /// Whether the stream has finished returning all of its data or not
    is_closed: bool,
    /// Execution metrics
    baseline_metrics: BaselineMetrics,
}

impl Stream for PartialSortStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        let poll = self.poll_next_inner(cx);
        self.baseline_metrics.record_poll(poll)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // we can't predict the size of incoming batches so re-use the size hint from the input
        self.input.size_hint()
    }
}

impl RecordBatchStream for PartialSortStream {
    fn schema(&self) -> SchemaRef {
        self.input.schema()
    }
}

impl PartialSortStream {
    fn poll_next_inner(
        self: &mut Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Result<RecordBatch>>> {
        if self.is_closed {
            return Poll::Ready(None);
        }
        let result = match ready!(self.input.poll_next_unpin(cx)) {
            Some(Ok(batch)) => {
                if let Some(slice_point) =
                    self.get_slice_point(self.common_prefix_length, &batch)?
                {
                    self.in_mem_batches.push(batch.slice(0, slice_point));
                    let remaining_batch =
                        batch.slice(slice_point, batch.num_rows() - slice_point);
                    let sorted_batch = self.sort_in_mem_batches();
                    self.in_mem_batches.push(remaining_batch);
                    sorted_batch
                } else {
                    self.in_mem_batches.push(batch);
                    Ok(RecordBatch::new_empty(self.schema()))
                }
            }
            Some(Err(e)) => Err(e),
            None => {
                self.is_closed = true;
                // once input is consumed, sort the rest of the inserted batches
                self.sort_in_mem_batches()
            }
        };

        Poll::Ready(Some(result))
    }

    /// Returns a sorted RecordBatch from in_mem_batches and clears in_mem_batches
    ///
    /// If fetch is specified for PartialSortStream `sort_in_mem_batches` will limit
    /// the last RecordBatch returned and will mark the stream as closed
    fn sort_in_mem_batches(self: &mut Pin<&mut Self>) -> Result<RecordBatch> {
        let input_batch = concat_batches(&self.schema(), &self.in_mem_batches)?;
        self.in_mem_batches.clear();
        let result = sort_batch(&input_batch, &self.expr, self.fetch)?;
        if let Some(remaining_fetch) = self.fetch {
            // remaining_fetch - result.num_rows() is always be >= 0
            // because result length of sort_batch with limit cannot be
            // more than the requested limit
            self.fetch = Some(remaining_fetch - result.num_rows());
            if remaining_fetch == result.num_rows() {
                self.is_closed = true;
            }
        }
        Ok(result)
    }

    /// Return the end index of the second last partition if the batch
    /// can be partitioned based on its already sorted columns
    ///
    /// Return None if the batch cannot be partitioned, which means the
    /// batch does not have the information for a safe sort
    fn get_slice_point(
        &self,
        common_prefix_len: usize,
        batch: &RecordBatch,
    ) -> Result<Option<usize>> {
        let common_prefix_sort_keys = (0..common_prefix_len)
            .map(|idx| self.expr[idx].evaluate_to_sort_column(batch))
            .collect::<Result<Vec<_>>>()?;
        let partition_points =
            evaluate_partition_ranges(batch.num_rows(), &common_prefix_sort_keys)?;
        // If partition points are [0..100], [100..200], [200..300]
        // we should return 200, which is the safest and furthest partition boundary
        // Please note that we shouldn't return 300 (which is number of rows in the batch),
        // because this boundary may change with new data.
        if partition_points.len() >= 2 {
            Ok(Some(partition_points[partition_points.len() - 2].end))
        } else {
            Ok(None)
        }
    }
}

#[cfg(test)]
mod tests {
    use std::collections::HashMap;

    use arrow::array::*;
    use arrow::compute::SortOptions;
    use arrow::datatypes::*;
    use futures::FutureExt;
    use itertools::Itertools;

    use datafusion_common::assert_batches_eq;

    use crate::collect;
    use crate::expressions::col;
    use crate::memory::MemoryExec;
    use crate::sorts::sort::SortExec;
    use crate::test;
    use crate::test::assert_is_pending;
    use crate::test::exec::{assert_strong_count_converges_to_zero, BlockingExec};

    use super::*;

    #[tokio::test]
    async fn test_partial_sort() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let source = test::build_table_scan_i32(
            ("a", &vec![0, 0, 0, 1, 1, 1]),
            ("b", &vec![1, 1, 2, 2, 3, 3]),
            ("c", &vec![1, 0, 5, 4, 3, 2]),
        );
        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, false),
            Field::new("b", DataType::Int32, false),
            Field::new("c", DataType::Int32, false),
        ]);
        let option_asc = SortOptions {
            descending: false,
            nulls_first: false,
        };

        let partial_sort_exec = Arc::new(PartialSortExec::new(
            vec![
                PhysicalSortExpr {
                    expr: col("a", &schema)?,
                    options: option_asc,
                },
                PhysicalSortExpr {
                    expr: col("b", &schema)?,
                    options: option_asc,
                },
                PhysicalSortExpr {
                    expr: col("c", &schema)?,
                    options: option_asc,
                },
            ],
            Arc::clone(&source),
            2,
        )) as Arc<dyn ExecutionPlan>;

        let result = collect(partial_sort_exec, Arc::clone(&task_ctx)).await?;

        let expected_after_sort = [
            "+---+---+---+",
            "| a | b | c |",
            "+---+---+---+",
            "| 0 | 1 | 0 |",
            "| 0 | 1 | 1 |",
            "| 0 | 2 | 5 |",
            "| 1 | 2 | 4 |",
            "| 1 | 3 | 2 |",
            "| 1 | 3 | 3 |",
            "+---+---+---+",
        ];
        assert_eq!(2, result.len());
        assert_batches_eq!(expected_after_sort, &result);
        assert_eq!(
            task_ctx.runtime_env().memory_pool.reserved(),
            0,
            "The sort should have returned all memory used back to the memory manager"
        );

        Ok(())
    }

    #[tokio::test]
    async fn test_partial_sort_with_fetch() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let source = test::build_table_scan_i32(
            ("a", &vec![0, 0, 1, 1, 1]),
            ("b", &vec![1, 2, 2, 3, 3]),
            ("c", &vec![4, 3, 2, 1, 0]),
        );
        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, false),
            Field::new("b", DataType::Int32, false),
            Field::new("c", DataType::Int32, false),
        ]);
        let option_asc = SortOptions {
            descending: false,
            nulls_first: false,
        };

        for common_prefix_length in [1, 2] {
            let partial_sort_exec = Arc::new(
                PartialSortExec::new(
                    vec![
                        PhysicalSortExpr {
                            expr: col("a", &schema)?,
                            options: option_asc,
                        },
                        PhysicalSortExpr {
                            expr: col("b", &schema)?,
                            options: option_asc,
                        },
                        PhysicalSortExpr {
                            expr: col("c", &schema)?,
                            options: option_asc,
                        },
                    ],
                    Arc::clone(&source),
                    common_prefix_length,
                )
                .with_fetch(Some(4)),
            ) as Arc<dyn ExecutionPlan>;

            let result = collect(partial_sort_exec, Arc::clone(&task_ctx)).await?;

            let expected_after_sort = [
                "+---+---+---+",
                "| a | b | c |",
                "+---+---+---+",
                "| 0 | 1 | 4 |",
                "| 0 | 2 | 3 |",
                "| 1 | 2 | 2 |",
                "| 1 | 3 | 0 |",
                "+---+---+---+",
            ];
            assert_eq!(2, result.len());
            assert_batches_eq!(expected_after_sort, &result);
            assert_eq!(
                task_ctx.runtime_env().memory_pool.reserved(),
                0,
                "The sort should have returned all memory used back to the memory manager"
            );
        }

        Ok(())
    }

    #[tokio::test]
    async fn test_partial_sort2() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let source_tables = [
            test::build_table_scan_i32(
                ("a", &vec![0, 0, 0, 0, 1, 1, 1, 1]),
                ("b", &vec![1, 1, 3, 3, 4, 4, 2, 2]),
                ("c", &vec![7, 6, 5, 4, 3, 2, 1, 0]),
            ),
            test::build_table_scan_i32(
                ("a", &vec![0, 0, 0, 0, 1, 1, 1, 1]),
                ("b", &vec![1, 1, 3, 3, 2, 2, 4, 4]),
                ("c", &vec![7, 6, 5, 4, 1, 0, 3, 2]),
            ),
        ];
        let schema = Schema::new(vec![
            Field::new("a", DataType::Int32, false),
            Field::new("b", DataType::Int32, false),
            Field::new("c", DataType::Int32, false),
        ]);
        let option_asc = SortOptions {
            descending: false,
            nulls_first: false,
        };
        for (common_prefix_length, source) in
            [(1, &source_tables[0]), (2, &source_tables[1])]
        {
            let partial_sort_exec = Arc::new(PartialSortExec::new(
                vec![
                    PhysicalSortExpr {
                        expr: col("a", &schema)?,
                        options: option_asc,
                    },
                    PhysicalSortExpr {
                        expr: col("b", &schema)?,
                        options: option_asc,
                    },
                    PhysicalSortExpr {
                        expr: col("c", &schema)?,
                        options: option_asc,
                    },
                ],
                Arc::clone(source),
                common_prefix_length,
            ));

            let result = collect(partial_sort_exec, Arc::clone(&task_ctx)).await?;
            assert_eq!(2, result.len());
            assert_eq!(
                task_ctx.runtime_env().memory_pool.reserved(),
                0,
                "The sort should have returned all memory used back to the memory manager"
            );
            let expected = [
                "+---+---+---+",
                "| a | b | c |",
                "+---+---+---+",
                "| 0 | 1 | 6 |",
                "| 0 | 1 | 7 |",
                "| 0 | 3 | 4 |",
                "| 0 | 3 | 5 |",
                "| 1 | 2 | 0 |",
                "| 1 | 2 | 1 |",
                "| 1 | 4 | 2 |",
                "| 1 | 4 | 3 |",
                "+---+---+---+",
            ];
            assert_batches_eq!(expected, &result);
        }
        Ok(())
    }

    fn prepare_partitioned_input() -> Arc<dyn ExecutionPlan> {
        let batch1 = test::build_table_i32(
            ("a", &vec![1; 100]),
            ("b", &(0..100).rev().collect()),
            ("c", &(0..100).rev().collect()),
        );
        let batch2 = test::build_table_i32(
            ("a", &[&vec![1; 25][..], &vec![2; 75][..]].concat()),
            ("b", &(100..200).rev().collect()),
            ("c", &(0..100).collect()),
        );
        let batch3 = test::build_table_i32(
            ("a", &[&vec![3; 50][..], &vec![4; 50][..]].concat()),
            ("b", &(150..250).rev().collect()),
            ("c", &(0..100).rev().collect()),
        );
        let batch4 = test::build_table_i32(
            ("a", &vec![4; 100]),
            ("b", &(50..150).rev().collect()),
            ("c", &(0..100).rev().collect()),
        );
        let schema = batch1.schema();
        Arc::new(
            MemoryExec::try_new(
                &[vec![batch1, batch2, batch3, batch4]],
                Arc::clone(&schema),
                None,
            )
            .unwrap(),
        ) as Arc<dyn ExecutionPlan>
    }

    #[tokio::test]
    async fn test_partitioned_input_partial_sort() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let mem_exec = prepare_partitioned_input();
        let option_asc = SortOptions {
            descending: false,
            nulls_first: false,
        };
        let option_desc = SortOptions {
            descending: false,
            nulls_first: false,
        };
        let schema = mem_exec.schema();
        let partial_sort_executor = PartialSortExec::new(
            vec![
                PhysicalSortExpr {
                    expr: col("a", &schema)?,
                    options: option_asc,
                },
                PhysicalSortExpr {
                    expr: col("b", &schema)?,
                    options: option_desc,
                },
                PhysicalSortExpr {
                    expr: col("c", &schema)?,
                    options: option_asc,
                },
            ],
            Arc::clone(&mem_exec),
            1,
        );
        let partial_sort_exec =
            Arc::new(partial_sort_executor.clone()) as Arc<dyn ExecutionPlan>;
        let sort_exec = Arc::new(SortExec::new(
            partial_sort_executor.expr,
            partial_sort_executor.input,
        )) as Arc<dyn ExecutionPlan>;
        let result = collect(partial_sort_exec, Arc::clone(&task_ctx)).await?;
        assert_eq!(
            result.iter().map(|r| r.num_rows()).collect_vec(),
            [0, 125, 125, 0, 150]
        );

        assert_eq!(
            task_ctx.runtime_env().memory_pool.reserved(),
            0,
            "The sort should have returned all memory used back to the memory manager"
        );
        let partial_sort_result = concat_batches(&schema, &result).unwrap();
        let sort_result = collect(sort_exec, Arc::clone(&task_ctx)).await?;
        assert_eq!(sort_result[0], partial_sort_result);

        Ok(())
    }

    #[tokio::test]
    async fn test_partitioned_input_partial_sort_with_fetch() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let mem_exec = prepare_partitioned_input();
        let schema = mem_exec.schema();
        let option_asc = SortOptions {
            descending: false,
            nulls_first: false,
        };
        let option_desc = SortOptions {
            descending: false,
            nulls_first: false,
        };
        for (fetch_size, expected_batch_num_rows) in [
            (Some(50), vec![0, 50]),
            (Some(120), vec![0, 120]),
            (Some(150), vec![0, 125, 25]),
            (Some(250), vec![0, 125, 125]),
        ] {
            let partial_sort_executor = PartialSortExec::new(
                vec![
                    PhysicalSortExpr {
                        expr: col("a", &schema)?,
                        options: option_asc,
                    },
                    PhysicalSortExpr {
                        expr: col("b", &schema)?,
                        options: option_desc,
                    },
                    PhysicalSortExpr {
                        expr: col("c", &schema)?,
                        options: option_asc,
                    },
                ],
                Arc::clone(&mem_exec),
                1,
            )
            .with_fetch(fetch_size);

            let partial_sort_exec =
                Arc::new(partial_sort_executor.clone()) as Arc<dyn ExecutionPlan>;
            let sort_exec = Arc::new(
                SortExec::new(partial_sort_executor.expr, partial_sort_executor.input)
                    .with_fetch(fetch_size),
            ) as Arc<dyn ExecutionPlan>;
            let result = collect(partial_sort_exec, Arc::clone(&task_ctx)).await?;
            assert_eq!(
                result.iter().map(|r| r.num_rows()).collect_vec(),
                expected_batch_num_rows
            );

            assert_eq!(
                task_ctx.runtime_env().memory_pool.reserved(),
                0,
                "The sort should have returned all memory used back to the memory manager"
            );
            let partial_sort_result = concat_batches(&schema, &result)?;
            let sort_result = collect(sort_exec, Arc::clone(&task_ctx)).await?;
            assert_eq!(sort_result[0], partial_sort_result);
        }

        Ok(())
    }

    #[tokio::test]
    async fn test_sort_metadata() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let field_metadata: HashMap<String, String> =
            vec![("foo".to_string(), "bar".to_string())]
                .into_iter()
                .collect();
        let schema_metadata: HashMap<String, String> =
            vec![("baz".to_string(), "barf".to_string())]
                .into_iter()
                .collect();

        let mut field = Field::new("field_name", DataType::UInt64, true);
        field.set_metadata(field_metadata.clone());
        let schema = Schema::new_with_metadata(vec![field], schema_metadata.clone());
        let schema = Arc::new(schema);

        let data: ArrayRef =
            Arc::new(vec![1, 1, 2].into_iter().map(Some).collect::<UInt64Array>());

        let batch = RecordBatch::try_new(Arc::clone(&schema), vec![data])?;
        let input = Arc::new(MemoryExec::try_new(
            &[vec![batch]],
            Arc::clone(&schema),
            None,
        )?);

        let partial_sort_exec = Arc::new(PartialSortExec::new(
            vec![PhysicalSortExpr {
                expr: col("field_name", &schema)?,
                options: SortOptions::default(),
            }],
            input,
            1,
        ));

        let result: Vec<RecordBatch> = collect(partial_sort_exec, task_ctx).await?;
        let expected_batch = vec![
            RecordBatch::try_new(
                Arc::clone(&schema),
                vec![Arc::new(
                    vec![1, 1].into_iter().map(Some).collect::<UInt64Array>(),
                )],
            )?,
            RecordBatch::try_new(
                Arc::clone(&schema),
                vec![Arc::new(
                    vec![2].into_iter().map(Some).collect::<UInt64Array>(),
                )],
            )?,
        ];

        // Data is correct
        assert_eq!(&expected_batch, &result);

        // explicitly ensure the metadata is present
        assert_eq!(result[0].schema().fields()[0].metadata(), &field_metadata);
        assert_eq!(result[0].schema().metadata(), &schema_metadata);

        Ok(())
    }

    #[tokio::test]
    async fn test_lex_sort_by_float() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Float32, true),
            Field::new("b", DataType::Float64, true),
            Field::new("c", DataType::Float64, true),
        ]));
        let option_asc = SortOptions {
            descending: false,
            nulls_first: true,
        };
        let option_desc = SortOptions {
            descending: true,
            nulls_first: true,
        };

        // define data.
        let batch = RecordBatch::try_new(
            Arc::clone(&schema),
            vec![
                Arc::new(Float32Array::from(vec![
                    Some(1.0_f32),
                    Some(1.0_f32),
                    Some(1.0_f32),
                    Some(2.0_f32),
                    Some(2.0_f32),
                    Some(3.0_f32),
                    Some(3.0_f32),
                    Some(3.0_f32),
                ])),
                Arc::new(Float64Array::from(vec![
                    Some(20.0_f64),
                    Some(20.0_f64),
                    Some(40.0_f64),
                    Some(40.0_f64),
                    Some(f64::NAN),
                    None,
                    None,
                    Some(f64::NAN),
                ])),
                Arc::new(Float64Array::from(vec![
                    Some(10.0_f64),
                    Some(20.0_f64),
                    Some(10.0_f64),
                    Some(100.0_f64),
                    Some(f64::NAN),
                    Some(100.0_f64),
                    None,
                    Some(f64::NAN),
                ])),
            ],
        )?;

        let partial_sort_exec = Arc::new(PartialSortExec::new(
            vec![
                PhysicalSortExpr {
                    expr: col("a", &schema)?,
                    options: option_asc,
                },
                PhysicalSortExpr {
                    expr: col("b", &schema)?,
                    options: option_asc,
                },
                PhysicalSortExpr {
                    expr: col("c", &schema)?,
                    options: option_desc,
                },
            ],
            Arc::new(MemoryExec::try_new(&[vec![batch]], schema, None)?),
            2,
        ));

        let expected = [
            "+-----+------+-------+",
            "| a   | b    | c     |",
            "+-----+------+-------+",
            "| 1.0 | 20.0 | 20.0  |",
            "| 1.0 | 20.0 | 10.0  |",
            "| 1.0 | 40.0 | 10.0  |",
            "| 2.0 | 40.0 | 100.0 |",
            "| 2.0 | NaN  | NaN   |",
            "| 3.0 |      |       |",
            "| 3.0 |      | 100.0 |",
            "| 3.0 | NaN  | NaN   |",
            "+-----+------+-------+",
        ];

        assert_eq!(
            DataType::Float32,
            *partial_sort_exec.schema().field(0).data_type()
        );
        assert_eq!(
            DataType::Float64,
            *partial_sort_exec.schema().field(1).data_type()
        );
        assert_eq!(
            DataType::Float64,
            *partial_sort_exec.schema().field(2).data_type()
        );

        let result: Vec<RecordBatch> = collect(
            Arc::clone(&partial_sort_exec) as Arc<dyn ExecutionPlan>,
            task_ctx,
        )
        .await?;
        assert_batches_eq!(expected, &result);
        assert_eq!(result.len(), 2);
        let metrics = partial_sort_exec.metrics().unwrap();
        assert!(metrics.elapsed_compute().unwrap() > 0);
        assert_eq!(metrics.output_rows().unwrap(), 8);

        let columns = result[0].columns();

        assert_eq!(DataType::Float32, *columns[0].data_type());
        assert_eq!(DataType::Float64, *columns[1].data_type());
        assert_eq!(DataType::Float64, *columns[2].data_type());

        Ok(())
    }

    #[tokio::test]
    async fn test_drop_cancel() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let schema = Arc::new(Schema::new(vec![
            Field::new("a", DataType::Float32, true),
            Field::new("b", DataType::Float32, true),
        ]));

        let blocking_exec = Arc::new(BlockingExec::new(Arc::clone(&schema), 1));
        let refs = blocking_exec.refs();
        let sort_exec = Arc::new(PartialSortExec::new(
            vec![PhysicalSortExpr {
                expr: col("a", &schema)?,
                options: SortOptions::default(),
            }],
            blocking_exec,
            1,
        ));

        let fut = collect(sort_exec, Arc::clone(&task_ctx));
        let mut fut = fut.boxed();

        assert_is_pending(&mut fut);
        drop(fut);
        assert_strong_count_converges_to_zero(refs).await;

        assert_eq!(
            task_ctx.runtime_env().memory_pool.reserved(),
            0,
            "The sort should have returned all memory used back to the memory manager"
        );

        Ok(())
    }
}