1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Execution plan for writing data to [`DataSink`]s
use std::any::Any;
use std::fmt;
use std::fmt::Debug;
use std::sync::Arc;
use super::{
execute_input_stream, DisplayAs, DisplayFormatType, ExecutionPlan,
ExecutionPlanProperties, Partitioning, PlanProperties, SendableRecordBatchStream,
};
use crate::metrics::MetricsSet;
use crate::stream::RecordBatchStreamAdapter;
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use arrow_array::{ArrayRef, UInt64Array};
use arrow_schema::{DataType, Field, Schema};
use datafusion_common::{internal_err, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{
Distribution, EquivalenceProperties, PhysicalSortRequirement,
};
use async_trait::async_trait;
use futures::StreamExt;
/// `DataSink` implements writing streams of [`RecordBatch`]es to
/// user defined destinations.
///
/// The `Display` impl is used to format the sink for explain plan
/// output.
#[async_trait]
pub trait DataSink: DisplayAs + Debug + Send + Sync {
/// Returns the data sink as [`Any`](std::any::Any) so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// Return a snapshot of the [MetricsSet] for this
/// [DataSink].
///
/// See [ExecutionPlan::metrics()] for more details
fn metrics(&self) -> Option<MetricsSet>;
// TODO add desired input ordering
// How does this sink want its input ordered?
/// Writes the data to the sink, returns the number of values written
///
/// This method will be called exactly once during each DML
/// statement. Thus prior to return, the sink should do any commit
/// or rollback required.
async fn write_all(
&self,
data: SendableRecordBatchStream,
context: &Arc<TaskContext>,
) -> Result<u64>;
}
#[deprecated(since = "38.0.0", note = "Use [`DataSinkExec`] instead")]
pub type FileSinkExec = DataSinkExec;
/// Execution plan for writing record batches to a [`DataSink`]
///
/// Returns a single row with the number of values written
pub struct DataSinkExec {
/// Input plan that produces the record batches to be written.
input: Arc<dyn ExecutionPlan>,
/// Sink to which to write
sink: Arc<dyn DataSink>,
/// Schema of the sink for validating the input data
sink_schema: SchemaRef,
/// Schema describing the structure of the output data.
count_schema: SchemaRef,
/// Optional required sort order for output data.
sort_order: Option<Vec<PhysicalSortRequirement>>,
cache: PlanProperties,
}
impl fmt::Debug for DataSinkExec {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "DataSinkExec schema: {:?}", self.count_schema)
}
}
impl DataSinkExec {
/// Create a plan to write to `sink`
pub fn new(
input: Arc<dyn ExecutionPlan>,
sink: Arc<dyn DataSink>,
sink_schema: SchemaRef,
sort_order: Option<Vec<PhysicalSortRequirement>>,
) -> Self {
let count_schema = make_count_schema();
let cache = Self::create_schema(&input, count_schema);
Self {
input,
sink,
sink_schema,
count_schema: make_count_schema(),
sort_order,
cache,
}
}
/// Input execution plan
pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
&self.input
}
/// Returns insert sink
pub fn sink(&self) -> &dyn DataSink {
self.sink.as_ref()
}
/// Optional sort order for output data
pub fn sort_order(&self) -> &Option<Vec<PhysicalSortRequirement>> {
&self.sort_order
}
fn create_schema(
input: &Arc<dyn ExecutionPlan>,
schema: SchemaRef,
) -> PlanProperties {
let eq_properties = EquivalenceProperties::new(schema);
PlanProperties::new(
eq_properties,
Partitioning::UnknownPartitioning(1),
input.execution_mode(),
)
}
}
impl DisplayAs for DataSinkExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "DataSinkExec: sink=")?;
self.sink.fmt_as(t, f)
}
}
}
}
impl ExecutionPlan for DataSinkExec {
fn name(&self) -> &'static str {
"DataSinkExec"
}
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
// DataSink is responsible for dynamically partitioning its
// own input at execution time.
vec![false]
}
fn required_input_distribution(&self) -> Vec<Distribution> {
// DataSink is responsible for dynamically partitioning its
// own input at execution time, and so requires a single input partition.
vec![Distribution::SinglePartition; self.children().len()]
}
fn required_input_ordering(&self) -> Vec<Option<Vec<PhysicalSortRequirement>>> {
// The required input ordering is set externally (e.g. by a `ListingTable`).
// Otherwise, there is no specific requirement (i.e. `sort_expr` is `None`).
vec![self.sort_order.as_ref().cloned()]
}
fn maintains_input_order(&self) -> Vec<bool> {
// Maintains ordering in the sense that the written file will reflect
// the ordering of the input. For more context, see:
//
// https://github.com/apache/datafusion/pull/6354#discussion_r1195284178
vec![true]
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![&self.input]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(Self::new(
Arc::clone(&children[0]),
Arc::clone(&self.sink),
Arc::clone(&self.sink_schema),
self.sort_order.clone(),
)))
}
/// Execute the plan and return a stream of `RecordBatch`es for
/// the specified partition.
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
if partition != 0 {
return internal_err!("DataSinkExec can only be called on partition 0!");
}
let data = execute_input_stream(
Arc::clone(&self.input),
Arc::clone(&self.sink_schema),
0,
Arc::clone(&context),
)?;
let count_schema = Arc::clone(&self.count_schema);
let sink = Arc::clone(&self.sink);
let stream = futures::stream::once(async move {
sink.write_all(data, &context).await.map(make_count_batch)
})
.boxed();
Ok(Box::pin(RecordBatchStreamAdapter::new(
count_schema,
stream,
)))
}
/// Returns the metrics of the underlying [DataSink]
fn metrics(&self) -> Option<MetricsSet> {
self.sink.metrics()
}
}
/// Create a output record batch with a count
///
/// ```text
/// +-------+,
/// | count |,
/// +-------+,
/// | 6 |,
/// +-------+,
/// ```
fn make_count_batch(count: u64) -> RecordBatch {
let array = Arc::new(UInt64Array::from(vec![count])) as ArrayRef;
RecordBatch::try_from_iter_with_nullable(vec![("count", array, false)]).unwrap()
}
fn make_count_schema() -> SchemaRef {
// define a schema.
Arc::new(Schema::new(vec![Field::new(
"count",
DataType::UInt64,
false,
)]))
}