1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines the ANALYZE operator

use std::any::Any;
use std::sync::Arc;

use super::stream::{RecordBatchReceiverStream, RecordBatchStreamAdapter};
use super::{
    DisplayAs, Distribution, ExecutionPlanProperties, PlanProperties,
    SendableRecordBatchStream,
};
use crate::display::DisplayableExecutionPlan;
use crate::{DisplayFormatType, ExecutionPlan, Partitioning};

use arrow::{array::StringBuilder, datatypes::SchemaRef, record_batch::RecordBatch};
use datafusion_common::instant::Instant;
use datafusion_common::{internal_err, DataFusionError, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::EquivalenceProperties;

use futures::StreamExt;

/// `EXPLAIN ANALYZE` execution plan operator. This operator runs its input,
/// discards the results, and then prints out an annotated plan with metrics
#[derive(Debug, Clone)]
pub struct AnalyzeExec {
    /// control how much extra to print
    verbose: bool,
    /// if statistics should be displayed
    show_statistics: bool,
    /// The input plan (the plan being analyzed)
    pub(crate) input: Arc<dyn ExecutionPlan>,
    /// The output schema for RecordBatches of this exec node
    schema: SchemaRef,
    cache: PlanProperties,
}

impl AnalyzeExec {
    /// Create a new AnalyzeExec
    pub fn new(
        verbose: bool,
        show_statistics: bool,
        input: Arc<dyn ExecutionPlan>,
        schema: SchemaRef,
    ) -> Self {
        let cache = Self::compute_properties(&input, Arc::clone(&schema));
        AnalyzeExec {
            verbose,
            show_statistics,
            input,
            schema,
            cache,
        }
    }

    /// access to verbose
    pub fn verbose(&self) -> bool {
        self.verbose
    }

    /// access to show_statistics
    pub fn show_statistics(&self) -> bool {
        self.show_statistics
    }

    /// The input plan
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(
        input: &Arc<dyn ExecutionPlan>,
        schema: SchemaRef,
    ) -> PlanProperties {
        let eq_properties = EquivalenceProperties::new(schema);
        let output_partitioning = Partitioning::UnknownPartitioning(1);
        let exec_mode = input.execution_mode();
        PlanProperties::new(eq_properties, output_partitioning, exec_mode)
    }
}

impl DisplayAs for AnalyzeExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(f, "AnalyzeExec verbose={}", self.verbose)
            }
        }
    }
}

impl ExecutionPlan for AnalyzeExec {
    fn name(&self) -> &'static str {
        "AnalyzeExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    /// AnalyzeExec is handled specially so this value is ignored
    fn required_input_distribution(&self) -> Vec<Distribution> {
        vec![]
    }

    fn with_new_children(
        self: Arc<Self>,
        mut children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(Self::new(
            self.verbose,
            self.show_statistics,
            children.pop().unwrap(),
            Arc::clone(&self.schema),
        )))
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        if 0 != partition {
            return internal_err!(
                "AnalyzeExec invalid partition. Expected 0, got {partition}"
            );
        }

        // Gather futures that will run each input partition in
        // parallel (on a separate tokio task) using a JoinSet to
        // cancel outstanding futures on drop
        let num_input_partitions = self.input.output_partitioning().partition_count();
        let mut builder =
            RecordBatchReceiverStream::builder(self.schema(), num_input_partitions);

        for input_partition in 0..num_input_partitions {
            builder.run_input(
                Arc::clone(&self.input),
                input_partition,
                Arc::clone(&context),
            );
        }

        // Create future that computes thefinal output
        let start = Instant::now();
        let captured_input = Arc::clone(&self.input);
        let captured_schema = Arc::clone(&self.schema);
        let verbose = self.verbose;
        let show_statistics = self.show_statistics;

        // future that gathers the results from all the tasks in the
        // JoinSet that computes the overall row count and final
        // record batch
        let mut input_stream = builder.build();
        let output = async move {
            let mut total_rows = 0;
            while let Some(batch) = input_stream.next().await.transpose()? {
                total_rows += batch.num_rows();
            }

            let duration = Instant::now() - start;
            create_output_batch(
                verbose,
                show_statistics,
                total_rows,
                duration,
                captured_input,
                captured_schema,
            )
        };

        Ok(Box::pin(RecordBatchStreamAdapter::new(
            Arc::clone(&self.schema),
            futures::stream::once(output),
        )))
    }
}

/// Creates the output of AnalyzeExec as a RecordBatch
fn create_output_batch(
    verbose: bool,
    show_statistics: bool,
    total_rows: usize,
    duration: std::time::Duration,
    input: Arc<dyn ExecutionPlan>,
    schema: SchemaRef,
) -> Result<RecordBatch> {
    let mut type_builder = StringBuilder::with_capacity(1, 1024);
    let mut plan_builder = StringBuilder::with_capacity(1, 1024);

    // TODO use some sort of enum rather than strings?
    type_builder.append_value("Plan with Metrics");

    let annotated_plan = DisplayableExecutionPlan::with_metrics(input.as_ref())
        .set_show_statistics(show_statistics)
        .indent(verbose)
        .to_string();
    plan_builder.append_value(annotated_plan);

    // Verbose output
    // TODO make this more sophisticated
    if verbose {
        type_builder.append_value("Plan with Full Metrics");

        let annotated_plan = DisplayableExecutionPlan::with_full_metrics(input.as_ref())
            .set_show_statistics(show_statistics)
            .indent(verbose)
            .to_string();
        plan_builder.append_value(annotated_plan);

        type_builder.append_value("Output Rows");
        plan_builder.append_value(total_rows.to_string());

        type_builder.append_value("Duration");
        plan_builder.append_value(format!("{duration:?}"));
    }

    RecordBatch::try_new(
        schema,
        vec![
            Arc::new(type_builder.finish()),
            Arc::new(plan_builder.finish()),
        ],
    )
    .map_err(DataFusionError::from)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        collect,
        test::{
            assert_is_pending,
            exec::{assert_strong_count_converges_to_zero, BlockingExec},
        },
    };

    use arrow::datatypes::{DataType, Field, Schema};
    use futures::FutureExt;

    #[tokio::test]
    async fn test_drop_cancel() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let schema =
            Arc::new(Schema::new(vec![Field::new("a", DataType::Float32, true)]));

        let blocking_exec = Arc::new(BlockingExec::new(Arc::clone(&schema), 1));
        let refs = blocking_exec.refs();
        let analyze_exec = Arc::new(AnalyzeExec::new(true, false, blocking_exec, schema));

        let fut = collect(analyze_exec, task_ctx);
        let mut fut = fut.boxed();

        assert_is_pending(&mut fut);
        drop(fut);
        assert_strong_count_converges_to_zero(refs).await;

        Ok(())
    }
}