1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Execution plan for reading in-memory batches of data
use std::any::Any;
use std::fmt;
use std::sync::Arc;
use std::task::{Context, Poll};
use super::expressions::PhysicalSortExpr;
use super::{
common, DisplayAs, DisplayFormatType, ExecutionMode, ExecutionPlan, Partitioning,
PlanProperties, RecordBatchStream, SendableRecordBatchStream, Statistics,
};
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::{internal_err, project_schema, Result};
use datafusion_execution::memory_pool::MemoryReservation;
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{EquivalenceProperties, LexOrdering};
use futures::Stream;
/// Execution plan for reading in-memory batches of data
pub struct MemoryExec {
/// The partitions to query
partitions: Vec<Vec<RecordBatch>>,
/// Schema representing the data before projection
schema: SchemaRef,
/// Schema representing the data after the optional projection is applied
projected_schema: SchemaRef,
/// Optional projection
projection: Option<Vec<usize>>,
// Sort information: one or more equivalent orderings
sort_information: Vec<LexOrdering>,
cache: PlanProperties,
/// if partition sizes should be displayed
show_sizes: bool,
}
impl fmt::Debug for MemoryExec {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "partitions: [...]")?;
write!(f, "schema: {:?}", self.projected_schema)?;
write!(f, "projection: {:?}", self.projection)?;
if let Some(sort_info) = &self.sort_information.first() {
write!(f, ", output_ordering: {:?}", sort_info)?;
}
Ok(())
}
}
impl DisplayAs for MemoryExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
let partition_sizes: Vec<_> =
self.partitions.iter().map(|b| b.len()).collect();
let output_ordering = self
.sort_information
.first()
.map(|output_ordering| {
format!(
", output_ordering={}",
PhysicalSortExpr::format_list(output_ordering)
)
})
.unwrap_or_default();
if self.show_sizes {
write!(
f,
"MemoryExec: partitions={}, partition_sizes={partition_sizes:?}{output_ordering}",
partition_sizes.len(),
)
} else {
write!(f, "MemoryExec: partitions={}", partition_sizes.len(),)
}
}
}
}
}
impl ExecutionPlan for MemoryExec {
fn name(&self) -> &'static str {
"MemoryExec"
}
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
// this is a leaf node and has no children
vec![]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
// MemoryExec has no children
if children.is_empty() {
Ok(self)
} else {
internal_err!("Children cannot be replaced in {self:?}")
}
}
fn execute(
&self,
partition: usize,
_context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
Ok(Box::pin(MemoryStream::try_new(
self.partitions[partition].clone(),
Arc::clone(&self.projected_schema),
self.projection.clone(),
)?))
}
/// We recompute the statistics dynamically from the arrow metadata as it is pretty cheap to do so
fn statistics(&self) -> Result<Statistics> {
Ok(common::compute_record_batch_statistics(
&self.partitions,
&self.schema,
self.projection.clone(),
))
}
}
impl MemoryExec {
/// Create a new execution plan for reading in-memory record batches
/// The provided `schema` should not have the projection applied.
pub fn try_new(
partitions: &[Vec<RecordBatch>],
schema: SchemaRef,
projection: Option<Vec<usize>>,
) -> Result<Self> {
let projected_schema = project_schema(&schema, projection.as_ref())?;
let cache =
Self::compute_properties(Arc::clone(&projected_schema), &[], partitions);
Ok(Self {
partitions: partitions.to_vec(),
schema,
projected_schema,
projection,
sort_information: vec![],
cache,
show_sizes: true,
})
}
/// set `show_sizes` to determine whether to display partition sizes
pub fn with_show_sizes(mut self, show_sizes: bool) -> Self {
self.show_sizes = show_sizes;
self
}
pub fn partitions(&self) -> &[Vec<RecordBatch>] {
&self.partitions
}
pub fn projection(&self) -> &Option<Vec<usize>> {
&self.projection
}
/// A memory table can be ordered by multiple expressions simultaneously.
/// [`EquivalenceProperties`] keeps track of expressions that describe the
/// global ordering of the schema. These columns are not necessarily same; e.g.
/// ```text
/// ┌-------┐
/// | a | b |
/// |---|---|
/// | 1 | 9 |
/// | 2 | 8 |
/// | 3 | 7 |
/// | 5 | 5 |
/// └---┴---┘
/// ```
/// where both `a ASC` and `b DESC` can describe the table ordering. With
/// [`EquivalenceProperties`], we can keep track of these equivalences
/// and treat `a ASC` and `b DESC` as the same ordering requirement.
pub fn with_sort_information(mut self, sort_information: Vec<LexOrdering>) -> Self {
self.sort_information = sort_information;
// We need to update equivalence properties when updating sort information.
let eq_properties = EquivalenceProperties::new_with_orderings(
self.schema(),
&self.sort_information,
);
self.cache = self.cache.with_eq_properties(eq_properties);
self
}
pub fn original_schema(&self) -> SchemaRef {
Arc::clone(&self.schema)
}
/// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
fn compute_properties(
schema: SchemaRef,
orderings: &[LexOrdering],
partitions: &[Vec<RecordBatch>],
) -> PlanProperties {
let eq_properties = EquivalenceProperties::new_with_orderings(schema, orderings);
PlanProperties::new(
eq_properties, // Equivalence Properties
Partitioning::UnknownPartitioning(partitions.len()), // Output Partitioning
ExecutionMode::Bounded, // Execution Mode
)
}
}
/// Iterator over batches
pub struct MemoryStream {
/// Vector of record batches
data: Vec<RecordBatch>,
/// Optional memory reservation bound to the data, freed on drop
reservation: Option<MemoryReservation>,
/// Schema representing the data
schema: SchemaRef,
/// Optional projection for which columns to load
projection: Option<Vec<usize>>,
/// Index into the data
index: usize,
}
impl MemoryStream {
/// Create an iterator for a vector of record batches
pub fn try_new(
data: Vec<RecordBatch>,
schema: SchemaRef,
projection: Option<Vec<usize>>,
) -> Result<Self> {
Ok(Self {
data,
reservation: None,
schema,
projection,
index: 0,
})
}
/// Set the memory reservation for the data
pub(super) fn with_reservation(mut self, reservation: MemoryReservation) -> Self {
self.reservation = Some(reservation);
self
}
}
impl Stream for MemoryStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
_: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
Poll::Ready(if self.index < self.data.len() {
self.index += 1;
let batch = &self.data[self.index - 1];
// return just the columns requested
let batch = match self.projection.as_ref() {
Some(columns) => batch.project(columns)?,
None => batch.clone(),
};
Some(Ok(batch))
} else {
None
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.data.len(), Some(self.data.len()))
}
}
impl RecordBatchStream for MemoryStream {
/// Get the schema
fn schema(&self) -> SchemaRef {
Arc::clone(&self.schema)
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use crate::memory::MemoryExec;
use crate::ExecutionPlan;
use arrow_schema::{DataType, Field, Schema, SortOptions};
use datafusion_physical_expr::expressions::col;
use datafusion_physical_expr::PhysicalSortExpr;
#[test]
fn test_memory_order_eq() -> datafusion_common::Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Int64, false),
Field::new("b", DataType::Int64, false),
Field::new("c", DataType::Int64, false),
]));
let sort1 = vec![
PhysicalSortExpr {
expr: col("a", &schema)?,
options: SortOptions::default(),
},
PhysicalSortExpr {
expr: col("b", &schema)?,
options: SortOptions::default(),
},
];
let sort2 = vec![PhysicalSortExpr {
expr: col("c", &schema)?,
options: SortOptions::default(),
}];
let mut expected_output_order = vec![];
expected_output_order.extend(sort1.clone());
expected_output_order.extend(sort2.clone());
let sort_information = vec![sort1.clone(), sort2.clone()];
let mem_exec = MemoryExec::try_new(&[vec![]], schema, None)?
.with_sort_information(sort_information);
assert_eq!(
mem_exec.properties().output_ordering().unwrap(),
expected_output_order
);
let eq_properties = mem_exec.properties().equivalence_properties();
assert!(eq_properties.oeq_class().contains(&sort1));
assert!(eq_properties.oeq_class().contains(&sort2));
Ok(())
}
}