1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Generic plans for deferred execution: [`StreamingTableExec`] and [`PartitionStream`]

use std::any::Any;
use std::sync::Arc;

use super::{DisplayAs, DisplayFormatType, ExecutionMode, PlanProperties};
use crate::display::{display_orderings, ProjectSchemaDisplay};
use crate::stream::RecordBatchStreamAdapter;
use crate::{ExecutionPlan, Partitioning, SendableRecordBatchStream};

use arrow::datatypes::SchemaRef;
use arrow_schema::Schema;
use datafusion_common::{internal_err, plan_err, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{EquivalenceProperties, LexOrdering};

use crate::limit::LimitStream;
use crate::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use async_trait::async_trait;
use futures::stream::StreamExt;
use log::debug;

/// A partition that can be converted into a [`SendableRecordBatchStream`]
///
/// Combined with [`StreamingTableExec`], you can use this trait to implement
/// [`ExecutionPlan`] for a custom source with less boiler plate than
/// implementing `ExecutionPlan` directly for many use cases.
pub trait PartitionStream: Send + Sync {
    /// Returns the schema of this partition
    fn schema(&self) -> &SchemaRef;

    /// Returns a stream yielding this partitions values
    fn execute(&self, ctx: Arc<TaskContext>) -> SendableRecordBatchStream;
}

/// An [`ExecutionPlan`] for one or more [`PartitionStream`]s.
///
/// If your source can be represented as one or more [`PartitionStream`]s, you can
/// use this struct to implement [`ExecutionPlan`].
pub struct StreamingTableExec {
    partitions: Vec<Arc<dyn PartitionStream>>,
    projection: Option<Arc<[usize]>>,
    projected_schema: SchemaRef,
    projected_output_ordering: Vec<LexOrdering>,
    infinite: bool,
    limit: Option<usize>,
    cache: PlanProperties,
    metrics: ExecutionPlanMetricsSet,
}

impl StreamingTableExec {
    /// Try to create a new [`StreamingTableExec`] returning an error if the schema is incorrect
    pub fn try_new(
        schema: SchemaRef,
        partitions: Vec<Arc<dyn PartitionStream>>,
        projection: Option<&Vec<usize>>,
        projected_output_ordering: impl IntoIterator<Item = LexOrdering>,
        infinite: bool,
        limit: Option<usize>,
    ) -> Result<Self> {
        for x in partitions.iter() {
            let partition_schema = x.schema();
            if !schema.eq(partition_schema) {
                debug!(
                    "Target schema does not match with partition schema. \
                        Target_schema: {schema:?}. Partition Schema: {partition_schema:?}"
                );
                return plan_err!("Mismatch between schema and batches");
            }
        }

        let projected_schema = match projection {
            Some(p) => Arc::new(schema.project(p)?),
            None => schema,
        };
        let projected_output_ordering =
            projected_output_ordering.into_iter().collect::<Vec<_>>();
        let cache = Self::compute_properties(
            Arc::clone(&projected_schema),
            &projected_output_ordering,
            &partitions,
            infinite,
        );
        Ok(Self {
            partitions,
            projected_schema,
            projection: projection.cloned().map(Into::into),
            projected_output_ordering,
            infinite,
            limit,
            cache,
            metrics: ExecutionPlanMetricsSet::new(),
        })
    }

    pub fn partitions(&self) -> &Vec<Arc<dyn PartitionStream>> {
        &self.partitions
    }

    pub fn partition_schema(&self) -> &SchemaRef {
        self.partitions[0].schema()
    }

    pub fn projection(&self) -> &Option<Arc<[usize]>> {
        &self.projection
    }

    pub fn projected_schema(&self) -> &Schema {
        &self.projected_schema
    }

    pub fn projected_output_ordering(&self) -> impl IntoIterator<Item = LexOrdering> {
        self.projected_output_ordering.clone()
    }

    pub fn is_infinite(&self) -> bool {
        self.infinite
    }

    pub fn limit(&self) -> Option<usize> {
        self.limit
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(
        schema: SchemaRef,
        orderings: &[LexOrdering],
        partitions: &[Arc<dyn PartitionStream>],
        is_infinite: bool,
    ) -> PlanProperties {
        // Calculate equivalence properties:
        let eq_properties = EquivalenceProperties::new_with_orderings(schema, orderings);

        // Get output partitioning:
        let output_partitioning = Partitioning::UnknownPartitioning(partitions.len());

        // Determine execution mode:
        let mode = if is_infinite {
            ExecutionMode::Unbounded
        } else {
            ExecutionMode::Bounded
        };

        PlanProperties::new(eq_properties, output_partitioning, mode)
    }
}

impl std::fmt::Debug for StreamingTableExec {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("LazyMemTableExec").finish_non_exhaustive()
    }
}

impl DisplayAs for StreamingTableExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(
                    f,
                    "StreamingTableExec: partition_sizes={:?}",
                    self.partitions.len(),
                )?;
                if !self.projected_schema.fields().is_empty() {
                    write!(
                        f,
                        ", projection={}",
                        ProjectSchemaDisplay(&self.projected_schema)
                    )?;
                }
                if self.infinite {
                    write!(f, ", infinite_source=true")?;
                }
                if let Some(fetch) = self.limit {
                    write!(f, ", fetch={fetch}")?;
                }

                display_orderings(f, &self.projected_output_ordering)?;

                Ok(())
            }
        }
    }
}

#[async_trait]
impl ExecutionPlan for StreamingTableExec {
    fn name(&self) -> &'static str {
        "StreamingTableExec"
    }

    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        if children.is_empty() {
            Ok(self)
        } else {
            internal_err!("Children cannot be replaced in {self:?}")
        }
    }

    fn execute(
        &self,
        partition: usize,
        ctx: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        let stream = self.partitions[partition].execute(ctx);
        let projected_stream = match self.projection.clone() {
            Some(projection) => Box::pin(RecordBatchStreamAdapter::new(
                Arc::clone(&self.projected_schema),
                stream.map(move |x| {
                    x.and_then(|b| b.project(projection.as_ref()).map_err(Into::into))
                }),
            )),
            None => stream,
        };
        Ok(match self.limit {
            None => projected_stream,
            Some(fetch) => {
                let baseline_metrics = BaselineMetrics::new(&self.metrics, partition);
                Box::pin(LimitStream::new(
                    projected_stream,
                    0,
                    Some(fetch),
                    baseline_metrics,
                ))
            }
        })
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn with_fetch(&self, limit: Option<usize>) -> Option<Arc<dyn ExecutionPlan>> {
        Some(Arc::new(StreamingTableExec {
            partitions: self.partitions.clone(),
            projection: self.projection.clone(),
            projected_schema: Arc::clone(&self.projected_schema),
            projected_output_ordering: self.projected_output_ordering.clone(),
            infinite: self.infinite,
            limit,
            cache: self.cache.clone(),
            metrics: self.metrics.clone(),
        }))
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::collect_partitioned;
    use crate::streaming::PartitionStream;
    use crate::test::{make_partition, TestPartitionStream};
    use arrow::record_batch::RecordBatch;

    #[tokio::test]
    async fn test_no_limit() {
        let exec = TestBuilder::new()
            // make 2 batches, each with 100 rows
            .with_batches(vec![make_partition(100), make_partition(100)])
            .build();

        let counts = collect_num_rows(Arc::new(exec)).await;
        assert_eq!(counts, vec![200]);
    }

    #[tokio::test]
    async fn test_limit() {
        let exec = TestBuilder::new()
            // make 2 batches, each with 100 rows
            .with_batches(vec![make_partition(100), make_partition(100)])
            // limit to only the first 75 rows back
            .with_limit(Some(75))
            .build();

        let counts = collect_num_rows(Arc::new(exec)).await;
        assert_eq!(counts, vec![75]);
    }

    /// Runs the provided execution plan and returns a vector of the number of
    /// rows in each partition
    async fn collect_num_rows(exec: Arc<dyn ExecutionPlan>) -> Vec<usize> {
        let ctx = Arc::new(TaskContext::default());
        let partition_batches = collect_partitioned(exec, ctx).await.unwrap();
        partition_batches
            .into_iter()
            .map(|batches| batches.iter().map(|b| b.num_rows()).sum::<usize>())
            .collect()
    }

    #[derive(Default)]
    struct TestBuilder {
        schema: Option<SchemaRef>,
        partitions: Vec<Arc<dyn PartitionStream>>,
        projection: Option<Vec<usize>>,
        projected_output_ordering: Vec<LexOrdering>,
        infinite: bool,
        limit: Option<usize>,
    }

    impl TestBuilder {
        fn new() -> Self {
            Self::default()
        }

        /// Set the batches for the stream
        fn with_batches(mut self, batches: Vec<RecordBatch>) -> Self {
            let stream = TestPartitionStream::new_with_batches(batches);
            self.schema = Some(Arc::clone(stream.schema()));
            self.partitions = vec![Arc::new(stream)];
            self
        }

        /// Set the limit for the stream
        fn with_limit(mut self, limit: Option<usize>) -> Self {
            self.limit = limit;
            self
        }

        fn build(self) -> StreamingTableExec {
            StreamingTableExec::try_new(
                self.schema.unwrap(),
                self.partitions,
                self.projection.as_ref(),
                self.projected_output_ordering,
                self.infinite,
                self.limit,
            )
            .unwrap()
        }
    }
}