use std::any::Any;
use std::cmp::Ordering;
use std::collections::{HashMap, VecDeque};
use std::fmt::Formatter;
use std::fs::File;
use std::io::BufReader;
use std::mem::size_of;
use std::ops::Range;
use std::pin::Pin;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::Relaxed;
use std::sync::Arc;
use std::task::{Context, Poll};
use arrow::array::*;
use arrow::compute::{
self, concat_batches, filter_record_batch, is_not_null, take, SortOptions,
};
use arrow::datatypes::{DataType, SchemaRef, TimeUnit};
use arrow::error::ArrowError;
use arrow::ipc::reader::FileReader;
use arrow_array::types::UInt64Type;
use datafusion_common::{
exec_err, internal_err, not_impl_err, plan_err, DataFusionError, JoinSide, JoinType,
Result,
};
use datafusion_execution::disk_manager::RefCountedTempFile;
use datafusion_execution::memory_pool::{MemoryConsumer, MemoryReservation};
use datafusion_execution::runtime_env::RuntimeEnv;
use datafusion_execution::TaskContext;
use datafusion_physical_expr::equivalence::join_equivalence_properties;
use datafusion_physical_expr::{PhysicalExprRef, PhysicalSortRequirement};
use datafusion_physical_expr_common::sort_expr::{LexOrdering, LexRequirement};
use futures::{Stream, StreamExt};
use hashbrown::HashSet;
use crate::expressions::PhysicalSortExpr;
use crate::joins::utils::{
build_join_schema, check_join_is_valid, estimate_join_statistics,
symmetric_join_output_partitioning, JoinFilter, JoinOn, JoinOnRef,
};
use crate::metrics::{Count, ExecutionPlanMetricsSet, MetricBuilder, MetricsSet};
use crate::spill::spill_record_batches;
use crate::{
execution_mode_from_children, metrics, DisplayAs, DisplayFormatType, Distribution,
ExecutionPlan, ExecutionPlanProperties, PhysicalExpr, PlanProperties,
RecordBatchStream, SendableRecordBatchStream, Statistics,
};
#[derive(Debug, Clone)]
pub struct SortMergeJoinExec {
pub left: Arc<dyn ExecutionPlan>,
pub right: Arc<dyn ExecutionPlan>,
pub on: JoinOn,
pub filter: Option<JoinFilter>,
pub join_type: JoinType,
schema: SchemaRef,
metrics: ExecutionPlanMetricsSet,
left_sort_exprs: LexOrdering,
right_sort_exprs: LexOrdering,
pub sort_options: Vec<SortOptions>,
pub null_equals_null: bool,
cache: PlanProperties,
}
impl SortMergeJoinExec {
pub fn try_new(
left: Arc<dyn ExecutionPlan>,
right: Arc<dyn ExecutionPlan>,
on: JoinOn,
filter: Option<JoinFilter>,
join_type: JoinType,
sort_options: Vec<SortOptions>,
null_equals_null: bool,
) -> Result<Self> {
let left_schema = left.schema();
let right_schema = right.schema();
if join_type == JoinType::RightSemi {
return not_impl_err!(
"SortMergeJoinExec does not support JoinType::RightSemi"
);
}
check_join_is_valid(&left_schema, &right_schema, &on)?;
if sort_options.len() != on.len() {
return plan_err!(
"Expected number of sort options: {}, actual: {}",
on.len(),
sort_options.len()
);
}
let (left_sort_exprs, right_sort_exprs): (Vec<_>, Vec<_>) = on
.iter()
.zip(sort_options.iter())
.map(|((l, r), sort_op)| {
let left = PhysicalSortExpr {
expr: Arc::clone(l),
options: *sort_op,
};
let right = PhysicalSortExpr {
expr: Arc::clone(r),
options: *sort_op,
};
(left, right)
})
.unzip();
let schema =
Arc::new(build_join_schema(&left_schema, &right_schema, &join_type).0);
let cache =
Self::compute_properties(&left, &right, Arc::clone(&schema), join_type, &on);
Ok(Self {
left,
right,
on,
filter,
join_type,
schema,
metrics: ExecutionPlanMetricsSet::new(),
left_sort_exprs: LexOrdering::new(left_sort_exprs),
right_sort_exprs: LexOrdering::new(right_sort_exprs),
sort_options,
null_equals_null,
cache,
})
}
pub fn probe_side(join_type: &JoinType) -> JoinSide {
match join_type {
JoinType::Right | JoinType::RightSemi | JoinType::RightAnti => {
JoinSide::Right
}
JoinType::Inner
| JoinType::Left
| JoinType::Full
| JoinType::LeftAnti
| JoinType::LeftSemi
| JoinType::LeftMark => JoinSide::Left,
}
}
fn maintains_input_order(join_type: JoinType) -> Vec<bool> {
match join_type {
JoinType::Inner => vec![true, false],
JoinType::Left
| JoinType::LeftSemi
| JoinType::LeftAnti
| JoinType::LeftMark => vec![true, false],
JoinType::Right | JoinType::RightSemi | JoinType::RightAnti => {
vec![false, true]
}
_ => vec![false, false],
}
}
pub fn on(&self) -> &[(PhysicalExprRef, PhysicalExprRef)] {
&self.on
}
pub fn right(&self) -> &Arc<dyn ExecutionPlan> {
&self.right
}
pub fn join_type(&self) -> JoinType {
self.join_type
}
pub fn left(&self) -> &Arc<dyn ExecutionPlan> {
&self.left
}
fn compute_properties(
left: &Arc<dyn ExecutionPlan>,
right: &Arc<dyn ExecutionPlan>,
schema: SchemaRef,
join_type: JoinType,
join_on: JoinOnRef,
) -> PlanProperties {
let eq_properties = join_equivalence_properties(
left.equivalence_properties().clone(),
right.equivalence_properties().clone(),
&join_type,
schema,
&Self::maintains_input_order(join_type),
Some(Self::probe_side(&join_type)),
join_on,
);
let output_partitioning =
symmetric_join_output_partitioning(left, right, &join_type);
let mode = execution_mode_from_children([left, right]);
PlanProperties::new(eq_properties, output_partitioning, mode)
}
}
impl DisplayAs for SortMergeJoinExec {
fn fmt_as(&self, t: DisplayFormatType, f: &mut Formatter) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
let on = self
.on
.iter()
.map(|(c1, c2)| format!("({}, {})", c1, c2))
.collect::<Vec<String>>()
.join(", ");
write!(
f,
"SortMergeJoin: join_type={:?}, on=[{}]{}",
self.join_type,
on,
self.filter.as_ref().map_or("".to_string(), |f| format!(
", filter={}",
f.expression()
))
)
}
}
}
}
impl ExecutionPlan for SortMergeJoinExec {
fn name(&self) -> &'static str {
"SortMergeJoinExec"
}
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn required_input_distribution(&self) -> Vec<Distribution> {
let (left_expr, right_expr) = self
.on
.iter()
.map(|(l, r)| (Arc::clone(l), Arc::clone(r)))
.unzip();
vec![
Distribution::HashPartitioned(left_expr),
Distribution::HashPartitioned(right_expr),
]
}
fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
vec![
Some(PhysicalSortRequirement::from_sort_exprs(
self.left_sort_exprs.iter(),
)),
Some(PhysicalSortRequirement::from_sort_exprs(
self.right_sort_exprs.iter(),
)),
]
}
fn maintains_input_order(&self) -> Vec<bool> {
Self::maintains_input_order(self.join_type)
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![&self.left, &self.right]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
match &children[..] {
[left, right] => Ok(Arc::new(SortMergeJoinExec::try_new(
Arc::clone(left),
Arc::clone(right),
self.on.clone(),
self.filter.clone(),
self.join_type,
self.sort_options.clone(),
self.null_equals_null,
)?)),
_ => internal_err!("SortMergeJoin wrong number of children"),
}
}
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
let left_partitions = self.left.output_partitioning().partition_count();
let right_partitions = self.right.output_partitioning().partition_count();
if left_partitions != right_partitions {
return internal_err!(
"Invalid SortMergeJoinExec, partition count mismatch {left_partitions}!={right_partitions},\
consider using RepartitionExec"
);
}
let (on_left, on_right) = self.on.iter().cloned().unzip();
let (streamed, buffered, on_streamed, on_buffered) =
if SortMergeJoinExec::probe_side(&self.join_type) == JoinSide::Left {
(
Arc::clone(&self.left),
Arc::clone(&self.right),
on_left,
on_right,
)
} else {
(
Arc::clone(&self.right),
Arc::clone(&self.left),
on_right,
on_left,
)
};
let streamed = streamed.execute(partition, Arc::clone(&context))?;
let buffered = buffered.execute(partition, Arc::clone(&context))?;
let batch_size = context.session_config().batch_size();
let reservation = MemoryConsumer::new(format!("SMJStream[{partition}]"))
.register(context.memory_pool());
Ok(Box::pin(SMJStream::try_new(
Arc::clone(&self.schema),
self.sort_options.clone(),
self.null_equals_null,
streamed,
buffered,
on_streamed,
on_buffered,
self.filter.clone(),
self.join_type,
batch_size,
SortMergeJoinMetrics::new(partition, &self.metrics),
reservation,
context.runtime_env(),
)?))
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Result<Statistics> {
estimate_join_statistics(
Arc::clone(&self.left),
Arc::clone(&self.right),
self.on.clone(),
&self.join_type,
&self.schema,
)
}
}
#[allow(dead_code)]
struct SortMergeJoinMetrics {
join_time: metrics::Time,
input_batches: Count,
input_rows: Count,
output_batches: Count,
output_rows: Count,
peak_mem_used: metrics::Gauge,
spill_count: Count,
spilled_bytes: Count,
spilled_rows: Count,
}
impl SortMergeJoinMetrics {
#[allow(dead_code)]
pub fn new(partition: usize, metrics: &ExecutionPlanMetricsSet) -> Self {
let join_time = MetricBuilder::new(metrics).subset_time("join_time", partition);
let input_batches =
MetricBuilder::new(metrics).counter("input_batches", partition);
let input_rows = MetricBuilder::new(metrics).counter("input_rows", partition);
let output_batches =
MetricBuilder::new(metrics).counter("output_batches", partition);
let output_rows = MetricBuilder::new(metrics).output_rows(partition);
let peak_mem_used = MetricBuilder::new(metrics).gauge("peak_mem_used", partition);
let spill_count = MetricBuilder::new(metrics).spill_count(partition);
let spilled_bytes = MetricBuilder::new(metrics).spilled_bytes(partition);
let spilled_rows = MetricBuilder::new(metrics).spilled_rows(partition);
Self {
join_time,
input_batches,
input_rows,
output_batches,
output_rows,
peak_mem_used,
spill_count,
spilled_bytes,
spilled_rows,
}
}
}
#[derive(Debug, PartialEq, Eq)]
enum SMJState {
Init,
Polling,
JoinOutput,
Exhausted,
}
#[derive(Debug, PartialEq, Eq)]
enum StreamedState {
Init,
Polling,
Ready,
Exhausted,
}
#[derive(Debug, PartialEq, Eq)]
enum BufferedState {
Init,
PollingFirst,
PollingRest,
Ready,
Exhausted,
}
struct StreamedJoinedChunk {
buffered_batch_idx: Option<usize>,
streamed_indices: UInt64Builder,
buffered_indices: UInt64Builder,
}
struct StreamedBatch {
pub batch: RecordBatch,
pub idx: usize,
pub join_arrays: Vec<ArrayRef>,
pub output_indices: Vec<StreamedJoinedChunk>,
pub buffered_batch_idx: Option<usize>,
pub join_filter_matched_idxs: HashSet<u64>,
}
impl StreamedBatch {
fn new(batch: RecordBatch, on_column: &[Arc<dyn PhysicalExpr>]) -> Self {
let join_arrays = join_arrays(&batch, on_column);
StreamedBatch {
batch,
idx: 0,
join_arrays,
output_indices: vec![],
buffered_batch_idx: None,
join_filter_matched_idxs: HashSet::new(),
}
}
fn new_empty(schema: SchemaRef) -> Self {
StreamedBatch {
batch: RecordBatch::new_empty(schema),
idx: 0,
join_arrays: vec![],
output_indices: vec![],
buffered_batch_idx: None,
join_filter_matched_idxs: HashSet::new(),
}
}
fn append_output_pair(
&mut self,
buffered_batch_idx: Option<usize>,
buffered_idx: Option<usize>,
) {
if self.output_indices.is_empty() || self.buffered_batch_idx != buffered_batch_idx
{
self.output_indices.push(StreamedJoinedChunk {
buffered_batch_idx,
streamed_indices: UInt64Builder::with_capacity(1),
buffered_indices: UInt64Builder::with_capacity(1),
});
self.buffered_batch_idx = buffered_batch_idx;
};
let current_chunk = self.output_indices.last_mut().unwrap();
current_chunk.streamed_indices.append_value(self.idx as u64);
if let Some(idx) = buffered_idx {
current_chunk.buffered_indices.append_value(idx as u64);
} else {
current_chunk.buffered_indices.append_null();
}
}
}
#[derive(Debug)]
struct BufferedBatch {
pub batch: Option<RecordBatch>,
pub range: Range<usize>,
pub join_arrays: Vec<ArrayRef>,
pub null_joined: Vec<usize>,
pub size_estimation: usize,
pub join_filter_failed_map: HashMap<u64, bool>,
pub num_rows: usize,
pub spill_file: Option<RefCountedTempFile>,
}
impl BufferedBatch {
fn new(
batch: RecordBatch,
range: Range<usize>,
on_column: &[PhysicalExprRef],
) -> Self {
let join_arrays = join_arrays(&batch, on_column);
let size_estimation = batch.get_array_memory_size()
+ join_arrays
.iter()
.map(|arr| arr.get_array_memory_size())
.sum::<usize>()
+ batch.num_rows().next_power_of_two() * size_of::<usize>()
+ size_of::<Range<usize>>()
+ size_of::<usize>();
let num_rows = batch.num_rows();
BufferedBatch {
batch: Some(batch),
range,
join_arrays,
null_joined: vec![],
size_estimation,
join_filter_failed_map: HashMap::new(),
num_rows,
spill_file: None,
}
}
}
struct SMJStream {
pub state: SMJState,
pub schema: SchemaRef,
pub sort_options: Vec<SortOptions>,
pub null_equals_null: bool,
pub streamed_schema: SchemaRef,
pub buffered_schema: SchemaRef,
pub streamed: SendableRecordBatchStream,
pub buffered: SendableRecordBatchStream,
pub streamed_batch: StreamedBatch,
pub buffered_data: BufferedData,
pub streamed_joined: bool,
pub buffered_joined: bool,
pub streamed_state: StreamedState,
pub buffered_state: BufferedState,
pub current_ordering: Ordering,
pub on_streamed: Vec<PhysicalExprRef>,
pub on_buffered: Vec<PhysicalExprRef>,
pub filter: Option<JoinFilter>,
pub output_record_batches: JoinedRecordBatches,
pub output_size: usize,
pub batch_size: usize,
pub join_type: JoinType,
pub join_metrics: SortMergeJoinMetrics,
pub reservation: MemoryReservation,
pub runtime_env: Arc<RuntimeEnv>,
pub streamed_batch_counter: AtomicUsize,
}
struct JoinedRecordBatches {
pub batches: Vec<RecordBatch>,
pub filter_mask: BooleanBuilder,
pub row_indices: UInt64Builder,
pub batch_ids: Vec<usize>,
}
impl RecordBatchStream for SMJStream {
fn schema(&self) -> SchemaRef {
Arc::clone(&self.schema)
}
}
#[inline(always)]
fn last_index_for_row(
row_index: usize,
indices: &UInt64Array,
batch_ids: &[usize],
indices_len: usize,
) -> bool {
row_index == indices_len - 1
|| batch_ids[row_index] != batch_ids[row_index + 1]
|| indices.value(row_index) != indices.value(row_index + 1)
}
fn get_corrected_filter_mask(
join_type: JoinType,
row_indices: &UInt64Array,
batch_ids: &[usize],
filter_mask: &BooleanArray,
expected_size: usize,
) -> Option<BooleanArray> {
let row_indices_length = row_indices.len();
let mut corrected_mask: BooleanBuilder =
BooleanBuilder::with_capacity(row_indices_length);
let mut seen_true = false;
match join_type {
JoinType::Left | JoinType::Right => {
for i in 0..row_indices_length {
let last_index =
last_index_for_row(i, row_indices, batch_ids, row_indices_length);
if filter_mask.value(i) {
seen_true = true;
corrected_mask.append_value(true);
} else if seen_true || !filter_mask.value(i) && !last_index {
corrected_mask.append_null(); } else {
corrected_mask.append_value(false); }
if last_index {
seen_true = false;
}
}
let null_matched = expected_size - corrected_mask.len();
corrected_mask.extend(vec![Some(false); null_matched]);
Some(corrected_mask.finish())
}
JoinType::LeftMark => {
for i in 0..row_indices_length {
let last_index =
last_index_for_row(i, row_indices, batch_ids, row_indices_length);
if filter_mask.value(i) && !seen_true {
seen_true = true;
corrected_mask.append_value(true);
} else if seen_true || !filter_mask.value(i) && !last_index {
corrected_mask.append_null(); } else {
corrected_mask.append_value(false); }
if last_index {
seen_true = false;
}
}
let null_matched = expected_size - corrected_mask.len();
corrected_mask.extend(vec![Some(false); null_matched]);
Some(corrected_mask.finish())
}
JoinType::LeftSemi => {
for i in 0..row_indices_length {
let last_index =
last_index_for_row(i, row_indices, batch_ids, row_indices_length);
if filter_mask.value(i) && !seen_true {
seen_true = true;
corrected_mask.append_value(true);
} else {
corrected_mask.append_null(); }
if last_index {
seen_true = false;
}
}
Some(corrected_mask.finish())
}
JoinType::LeftAnti => {
for i in 0..row_indices_length {
let last_index =
last_index_for_row(i, row_indices, batch_ids, row_indices_length);
if filter_mask.value(i) {
seen_true = true;
}
if last_index {
if !seen_true {
corrected_mask.append_value(true);
} else {
corrected_mask.append_null();
}
seen_true = false;
} else {
corrected_mask.append_null();
}
}
let null_matched = expected_size - corrected_mask.len();
corrected_mask.extend(vec![Some(true); null_matched]);
Some(corrected_mask.finish())
}
_ => None,
}
}
impl Stream for SMJStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
let join_time = self.join_metrics.join_time.clone();
let _timer = join_time.timer();
loop {
match &self.state {
SMJState::Init => {
let streamed_exhausted =
self.streamed_state == StreamedState::Exhausted;
let buffered_exhausted =
self.buffered_state == BufferedState::Exhausted;
self.state = if streamed_exhausted && buffered_exhausted {
SMJState::Exhausted
} else {
match self.current_ordering {
Ordering::Less | Ordering::Equal => {
if !streamed_exhausted {
if self.filter.is_some()
&& matches!(
self.join_type,
JoinType::Left
| JoinType::LeftSemi
| JoinType::LeftMark
| JoinType::Right
| JoinType::LeftAnti
)
{
self.freeze_all()?;
if !self.output_record_batches.batches.is_empty()
{
let out_filtered_batch =
self.filter_joined_batch()?;
return Poll::Ready(Some(Ok(
out_filtered_batch,
)));
}
}
self.streamed_joined = false;
self.streamed_state = StreamedState::Init;
}
}
Ordering::Greater => {
if !buffered_exhausted {
self.buffered_joined = false;
self.buffered_state = BufferedState::Init;
}
}
}
SMJState::Polling
};
}
SMJState::Polling => {
if ![StreamedState::Exhausted, StreamedState::Ready]
.contains(&self.streamed_state)
{
match self.poll_streamed_row(cx)? {
Poll::Ready(_) => {}
Poll::Pending => return Poll::Pending,
}
}
if ![BufferedState::Exhausted, BufferedState::Ready]
.contains(&self.buffered_state)
{
match self.poll_buffered_batches(cx)? {
Poll::Ready(_) => {}
Poll::Pending => return Poll::Pending,
}
}
let streamed_exhausted =
self.streamed_state == StreamedState::Exhausted;
let buffered_exhausted =
self.buffered_state == BufferedState::Exhausted;
if streamed_exhausted && buffered_exhausted {
self.state = SMJState::Exhausted;
continue;
}
self.current_ordering = self.compare_streamed_buffered()?;
self.state = SMJState::JoinOutput;
}
SMJState::JoinOutput => {
self.join_partial()?;
if self.output_size < self.batch_size {
if self.buffered_data.scanning_finished() {
self.buffered_data.scanning_reset();
self.state = SMJState::Init;
}
} else {
self.freeze_all()?;
if !self.output_record_batches.batches.is_empty() {
let record_batch = self.output_record_batch_and_reset()?;
if self.filter.is_some()
&& matches!(
self.join_type,
JoinType::Left
| JoinType::LeftSemi
| JoinType::Right
| JoinType::LeftAnti
| JoinType::LeftMark
)
{
continue;
}
return Poll::Ready(Some(Ok(record_batch)));
}
return Poll::Pending;
}
}
SMJState::Exhausted => {
self.freeze_all()?;
if !self.output_record_batches.batches.is_empty() {
if self.filter.is_some()
&& matches!(
self.join_type,
JoinType::Left
| JoinType::LeftSemi
| JoinType::Right
| JoinType::LeftAnti
| JoinType::LeftMark
)
{
let out = self.filter_joined_batch()?;
return Poll::Ready(Some(Ok(out)));
} else {
let record_batch = self.output_record_batch_and_reset()?;
return Poll::Ready(Some(Ok(record_batch)));
}
} else {
return Poll::Ready(None);
}
}
}
}
}
}
impl SMJStream {
#[allow(clippy::too_many_arguments)]
pub fn try_new(
schema: SchemaRef,
sort_options: Vec<SortOptions>,
null_equals_null: bool,
streamed: SendableRecordBatchStream,
buffered: SendableRecordBatchStream,
on_streamed: Vec<Arc<dyn PhysicalExpr>>,
on_buffered: Vec<Arc<dyn PhysicalExpr>>,
filter: Option<JoinFilter>,
join_type: JoinType,
batch_size: usize,
join_metrics: SortMergeJoinMetrics,
reservation: MemoryReservation,
runtime_env: Arc<RuntimeEnv>,
) -> Result<Self> {
let streamed_schema = streamed.schema();
let buffered_schema = buffered.schema();
Ok(Self {
state: SMJState::Init,
sort_options,
null_equals_null,
schema,
streamed_schema: Arc::clone(&streamed_schema),
buffered_schema,
streamed,
buffered,
streamed_batch: StreamedBatch::new_empty(streamed_schema),
buffered_data: BufferedData::default(),
streamed_joined: false,
buffered_joined: false,
streamed_state: StreamedState::Init,
buffered_state: BufferedState::Init,
current_ordering: Ordering::Equal,
on_streamed,
on_buffered,
filter,
output_record_batches: JoinedRecordBatches {
batches: vec![],
filter_mask: BooleanBuilder::new(),
row_indices: UInt64Builder::new(),
batch_ids: vec![],
},
output_size: 0,
batch_size,
join_type,
join_metrics,
reservation,
runtime_env,
streamed_batch_counter: AtomicUsize::new(0),
})
}
fn poll_streamed_row(&mut self, cx: &mut Context) -> Poll<Option<Result<()>>> {
loop {
match &self.streamed_state {
StreamedState::Init => {
if self.streamed_batch.idx + 1 < self.streamed_batch.batch.num_rows()
{
self.streamed_batch.idx += 1;
self.streamed_state = StreamedState::Ready;
return Poll::Ready(Some(Ok(())));
} else {
self.streamed_state = StreamedState::Polling;
}
}
StreamedState::Polling => match self.streamed.poll_next_unpin(cx)? {
Poll::Pending => {
return Poll::Pending;
}
Poll::Ready(None) => {
self.streamed_state = StreamedState::Exhausted;
}
Poll::Ready(Some(batch)) => {
if batch.num_rows() > 0 {
self.freeze_streamed()?;
self.join_metrics.input_batches.add(1);
self.join_metrics.input_rows.add(batch.num_rows());
self.streamed_batch =
StreamedBatch::new(batch, &self.on_streamed);
self.streamed_batch_counter
.fetch_add(1, std::sync::atomic::Ordering::SeqCst);
self.streamed_state = StreamedState::Ready;
}
}
},
StreamedState::Ready => {
return Poll::Ready(Some(Ok(())));
}
StreamedState::Exhausted => {
return Poll::Ready(None);
}
}
}
}
fn free_reservation(&mut self, buffered_batch: BufferedBatch) -> Result<()> {
if buffered_batch.spill_file.is_none() && buffered_batch.batch.is_some() {
self.reservation
.try_shrink(buffered_batch.size_estimation)?;
}
Ok(())
}
fn allocate_reservation(&mut self, mut buffered_batch: BufferedBatch) -> Result<()> {
match self.reservation.try_grow(buffered_batch.size_estimation) {
Ok(_) => {
self.join_metrics
.peak_mem_used
.set_max(self.reservation.size());
Ok(())
}
Err(_) if self.runtime_env.disk_manager.tmp_files_enabled() => {
let spill_file = self
.runtime_env
.disk_manager
.create_tmp_file("sort_merge_join_buffered_spill")?;
if let Some(batch) = buffered_batch.batch {
spill_record_batches(
vec![batch],
spill_file.path().into(),
Arc::clone(&self.buffered_schema),
)?;
buffered_batch.spill_file = Some(spill_file);
buffered_batch.batch = None;
self.join_metrics.spill_count.add(1);
self.join_metrics
.spilled_bytes
.add(buffered_batch.size_estimation);
self.join_metrics.spilled_rows.add(buffered_batch.num_rows);
Ok(())
} else {
internal_err!("Buffered batch has empty body")
}
}
Err(e) => exec_err!("{}. Disk spilling disabled.", e.message()),
}?;
self.buffered_data.batches.push_back(buffered_batch);
Ok(())
}
fn poll_buffered_batches(&mut self, cx: &mut Context) -> Poll<Option<Result<()>>> {
loop {
match &self.buffered_state {
BufferedState::Init => {
while !self.buffered_data.batches.is_empty() {
let head_batch = self.buffered_data.head_batch();
if head_batch.range.end == head_batch.num_rows {
self.freeze_dequeuing_buffered()?;
if let Some(buffered_batch) =
self.buffered_data.batches.pop_front()
{
self.free_reservation(buffered_batch)?;
}
} else {
break;
}
}
if self.buffered_data.batches.is_empty() {
self.buffered_state = BufferedState::PollingFirst;
} else {
let tail_batch = self.buffered_data.tail_batch_mut();
tail_batch.range.start = tail_batch.range.end;
tail_batch.range.end += 1;
self.buffered_state = BufferedState::PollingRest;
}
}
BufferedState::PollingFirst => match self.buffered.poll_next_unpin(cx)? {
Poll::Pending => {
return Poll::Pending;
}
Poll::Ready(None) => {
self.buffered_state = BufferedState::Exhausted;
return Poll::Ready(None);
}
Poll::Ready(Some(batch)) => {
self.join_metrics.input_batches.add(1);
self.join_metrics.input_rows.add(batch.num_rows());
if batch.num_rows() > 0 {
let buffered_batch =
BufferedBatch::new(batch, 0..1, &self.on_buffered);
self.allocate_reservation(buffered_batch)?;
self.buffered_state = BufferedState::PollingRest;
}
}
},
BufferedState::PollingRest => {
if self.buffered_data.tail_batch().range.end
< self.buffered_data.tail_batch().num_rows
{
while self.buffered_data.tail_batch().range.end
< self.buffered_data.tail_batch().num_rows
{
if is_join_arrays_equal(
&self.buffered_data.head_batch().join_arrays,
self.buffered_data.head_batch().range.start,
&self.buffered_data.tail_batch().join_arrays,
self.buffered_data.tail_batch().range.end,
)? {
self.buffered_data.tail_batch_mut().range.end += 1;
} else {
self.buffered_state = BufferedState::Ready;
return Poll::Ready(Some(Ok(())));
}
}
} else {
match self.buffered.poll_next_unpin(cx)? {
Poll::Pending => {
return Poll::Pending;
}
Poll::Ready(None) => {
self.buffered_state = BufferedState::Ready;
}
Poll::Ready(Some(batch)) => {
self.join_metrics.input_batches.add(1);
self.join_metrics.input_rows.add(batch.num_rows());
if batch.num_rows() > 0 {
let buffered_batch = BufferedBatch::new(
batch,
0..0,
&self.on_buffered,
);
self.allocate_reservation(buffered_batch)?;
}
}
}
}
}
BufferedState::Ready => {
return Poll::Ready(Some(Ok(())));
}
BufferedState::Exhausted => {
return Poll::Ready(None);
}
}
}
}
fn compare_streamed_buffered(&self) -> Result<Ordering> {
if self.streamed_state == StreamedState::Exhausted {
return Ok(Ordering::Greater);
}
if !self.buffered_data.has_buffered_rows() {
return Ok(Ordering::Less);
}
compare_join_arrays(
&self.streamed_batch.join_arrays,
self.streamed_batch.idx,
&self.buffered_data.head_batch().join_arrays,
self.buffered_data.head_batch().range.start,
&self.sort_options,
self.null_equals_null,
)
}
fn join_partial(&mut self) -> Result<()> {
let mut join_streamed = false;
let mut join_buffered = false;
let mut mark_row_as_match = false;
match self.current_ordering {
Ordering::Less => {
if matches!(
self.join_type,
JoinType::Left
| JoinType::Right
| JoinType::RightSemi
| JoinType::Full
| JoinType::LeftAnti
| JoinType::LeftMark
) {
join_streamed = !self.streamed_joined;
}
}
Ordering::Equal => {
if matches!(self.join_type, JoinType::LeftSemi | JoinType::LeftMark) {
mark_row_as_match = matches!(self.join_type, JoinType::LeftMark);
if self.filter.is_some() {
join_streamed = !self
.streamed_batch
.join_filter_matched_idxs
.contains(&(self.streamed_batch.idx as u64))
&& !self.streamed_joined;
join_buffered = join_streamed;
} else {
join_streamed = !self.streamed_joined;
}
}
if matches!(
self.join_type,
JoinType::Inner | JoinType::Left | JoinType::Right | JoinType::Full
) {
join_streamed = true;
join_buffered = true;
};
if matches!(self.join_type, JoinType::LeftAnti) && self.filter.is_some() {
join_streamed = !self.streamed_joined;
join_buffered = join_streamed;
}
}
Ordering::Greater => {
if matches!(self.join_type, JoinType::Full) {
join_buffered = !self.buffered_joined;
};
}
}
if !join_streamed && !join_buffered {
self.buffered_data.scanning_finish();
return Ok(());
}
if join_buffered {
while !self.buffered_data.scanning_finished()
&& self.output_size < self.batch_size
{
let scanning_idx = self.buffered_data.scanning_idx();
if join_streamed {
self.streamed_batch.append_output_pair(
Some(self.buffered_data.scanning_batch_idx),
Some(scanning_idx),
);
} else {
self.buffered_data
.scanning_batch_mut()
.null_joined
.push(scanning_idx);
}
self.output_size += 1;
self.buffered_data.scanning_advance();
if self.buffered_data.scanning_finished() {
self.streamed_joined = join_streamed;
self.buffered_joined = true;
}
}
} else {
let scanning_batch_idx = if self.buffered_data.scanning_finished() {
None
} else {
Some(self.buffered_data.scanning_batch_idx)
};
let scanning_idx = mark_row_as_match.then_some(0);
self.streamed_batch
.append_output_pair(scanning_batch_idx, scanning_idx);
self.output_size += 1;
self.buffered_data.scanning_finish();
self.streamed_joined = true;
}
Ok(())
}
fn freeze_all(&mut self) -> Result<()> {
self.freeze_streamed()?;
self.freeze_buffered(self.buffered_data.batches.len(), false)?;
Ok(())
}
fn freeze_dequeuing_buffered(&mut self) -> Result<()> {
self.freeze_streamed()?;
self.freeze_buffered(1, true)?;
Ok(())
}
fn freeze_buffered(
&mut self,
batch_count: usize,
output_not_matched_filter: bool,
) -> Result<()> {
if !matches!(self.join_type, JoinType::Full) {
return Ok(());
}
for buffered_batch in self.buffered_data.batches.range_mut(..batch_count) {
let buffered_indices = UInt64Array::from_iter_values(
buffered_batch.null_joined.iter().map(|&index| index as u64),
);
if let Some(record_batch) = produce_buffered_null_batch(
&self.schema,
&self.streamed_schema,
&buffered_indices,
buffered_batch,
)? {
self.output_record_batches.batches.push(record_batch);
}
buffered_batch.null_joined.clear();
if output_not_matched_filter {
let not_matched_buffered_indices = buffered_batch
.join_filter_failed_map
.iter()
.filter_map(|(idx, failed)| if *failed { Some(*idx) } else { None })
.collect::<Vec<_>>();
let buffered_indices = UInt64Array::from_iter_values(
not_matched_buffered_indices.iter().copied(),
);
if let Some(record_batch) = produce_buffered_null_batch(
&self.schema,
&self.streamed_schema,
&buffered_indices,
buffered_batch,
)? {
self.output_record_batches.batches.push(record_batch);
}
buffered_batch.join_filter_failed_map.clear();
}
}
Ok(())
}
fn freeze_streamed(&mut self) -> Result<()> {
for chunk in self.streamed_batch.output_indices.iter_mut() {
let streamed_indices = chunk.streamed_indices.finish();
if streamed_indices.is_empty() {
continue;
}
let mut streamed_columns = self
.streamed_batch
.batch
.columns()
.iter()
.map(|column| take(column, &streamed_indices, None))
.collect::<Result<Vec<_>, ArrowError>>()?;
let buffered_indices: UInt64Array = chunk.buffered_indices.finish();
let mut buffered_columns = if matches!(self.join_type, JoinType::LeftMark) {
vec![Arc::new(is_not_null(&buffered_indices)?) as ArrayRef]
} else if matches!(self.join_type, JoinType::LeftSemi | JoinType::LeftAnti) {
vec![]
} else if let Some(buffered_idx) = chunk.buffered_batch_idx {
get_buffered_columns(
&self.buffered_data,
buffered_idx,
&buffered_indices,
)?
} else {
create_unmatched_columns(
self.join_type,
&self.buffered_schema,
buffered_indices.len(),
)
};
let streamed_columns_length = streamed_columns.len();
let filter_columns = if chunk.buffered_batch_idx.is_some() {
if matches!(self.join_type, JoinType::Right) {
get_filter_column(&self.filter, &buffered_columns, &streamed_columns)
} else if matches!(
self.join_type,
JoinType::LeftSemi | JoinType::LeftAnti | JoinType::LeftMark
) {
let buffered_columns = get_buffered_columns(
&self.buffered_data,
chunk.buffered_batch_idx.unwrap(),
&buffered_indices,
)?;
get_filter_column(&self.filter, &streamed_columns, &buffered_columns)
} else {
get_filter_column(&self.filter, &streamed_columns, &buffered_columns)
}
} else {
vec![]
};
let columns = if matches!(self.join_type, JoinType::Right) {
buffered_columns.extend(streamed_columns);
buffered_columns
} else {
streamed_columns.extend(buffered_columns);
streamed_columns
};
let output_batch = RecordBatch::try_new(Arc::clone(&self.schema), columns)?;
if !filter_columns.is_empty() {
if let Some(f) = &self.filter {
let filter_batch = RecordBatch::try_new(
Arc::new(f.schema().clone()),
filter_columns,
)?;
let filter_result = f
.expression()
.evaluate(&filter_batch)?
.into_array(filter_batch.num_rows())?;
let pre_mask =
datafusion_common::cast::as_boolean_array(&filter_result)?;
let mask = if pre_mask.null_count() > 0 {
compute::prep_null_mask_filter(
datafusion_common::cast::as_boolean_array(&filter_result)?,
)
} else {
pre_mask.clone()
};
if matches!(
self.join_type,
JoinType::Left
| JoinType::LeftSemi
| JoinType::Right
| JoinType::LeftAnti
| JoinType::LeftMark
) {
self.output_record_batches
.batches
.push(output_batch.clone());
} else {
let filtered_batch = filter_record_batch(&output_batch, &mask)?;
self.output_record_batches.batches.push(filtered_batch);
}
self.output_record_batches.filter_mask.extend(&mask);
self.output_record_batches
.row_indices
.extend(&streamed_indices);
self.output_record_batches.batch_ids.extend(vec![
self.streamed_batch_counter.load(Relaxed);
streamed_indices.len()
]);
if matches!(self.join_type, JoinType::Full) {
let not_mask = if mask.null_count() > 0 {
compute::not(&compute::prep_null_mask_filter(&mask))?
} else {
compute::not(&mask)?
};
let null_joined_batch =
filter_record_batch(&output_batch, ¬_mask)?;
let buffered_columns = self
.buffered_schema
.fields()
.iter()
.map(|f| {
new_null_array(
f.data_type(),
null_joined_batch.num_rows(),
)
})
.collect::<Vec<_>>();
let columns = {
let mut streamed_columns = null_joined_batch
.columns()
.iter()
.take(streamed_columns_length)
.cloned()
.collect::<Vec<_>>();
streamed_columns.extend(buffered_columns);
streamed_columns
};
let null_joined_streamed_batch =
RecordBatch::try_new(Arc::clone(&self.schema), columns)?;
self.output_record_batches
.batches
.push(null_joined_streamed_batch);
if matches!(self.join_type, JoinType::Full) {
let buffered_batch = &mut self.buffered_data.batches
[chunk.buffered_batch_idx.unwrap()];
for i in 0..pre_mask.len() {
if buffered_indices.is_null(i) {
continue;
}
let buffered_index = buffered_indices.value(i);
buffered_batch.join_filter_failed_map.insert(
buffered_index,
*buffered_batch
.join_filter_failed_map
.get(&buffered_index)
.unwrap_or(&true)
&& !pre_mask.value(i),
);
}
}
}
} else {
self.output_record_batches.batches.push(output_batch);
}
} else {
self.output_record_batches.batches.push(output_batch);
}
}
self.streamed_batch.output_indices.clear();
Ok(())
}
fn output_record_batch_and_reset(&mut self) -> Result<RecordBatch> {
let record_batch =
concat_batches(&self.schema, &self.output_record_batches.batches)?;
self.join_metrics.output_batches.add(1);
self.join_metrics.output_rows.add(record_batch.num_rows());
if record_batch.num_rows() == 0 || record_batch.num_rows() > self.output_size {
self.output_size = 0;
} else {
self.output_size -= record_batch.num_rows();
}
if !(self.filter.is_some()
&& matches!(
self.join_type,
JoinType::Left
| JoinType::LeftSemi
| JoinType::Right
| JoinType::LeftAnti
| JoinType::LeftMark
))
{
self.output_record_batches.batches.clear();
}
Ok(record_batch)
}
fn filter_joined_batch(&mut self) -> Result<RecordBatch> {
let record_batch = self.output_record_batch_and_reset()?;
let out_indices = self.output_record_batches.row_indices.finish();
let out_mask = self.output_record_batches.filter_mask.finish();
let maybe_corrected_mask = get_corrected_filter_mask(
self.join_type,
&out_indices,
&self.output_record_batches.batch_ids,
&out_mask,
record_batch.num_rows(),
);
let corrected_mask = if let Some(ref filtered_join_mask) = maybe_corrected_mask {
filtered_join_mask
} else {
&out_mask
};
let mut filtered_record_batch =
filter_record_batch(&record_batch, corrected_mask)?;
let buffered_columns_length = self.buffered_schema.fields.len();
let streamed_columns_length = self.streamed_schema.fields.len();
if matches!(
self.join_type,
JoinType::Left | JoinType::LeftMark | JoinType::Right
) {
let null_mask = compute::not(corrected_mask)?;
let null_joined_batch = filter_record_batch(&record_batch, &null_mask)?;
let mut buffered_columns = create_unmatched_columns(
self.join_type,
&self.buffered_schema,
null_joined_batch.num_rows(),
);
let columns = if matches!(self.join_type, JoinType::Right) {
let streamed_columns = null_joined_batch
.columns()
.iter()
.skip(buffered_columns_length)
.cloned()
.collect::<Vec<_>>();
buffered_columns.extend(streamed_columns);
buffered_columns
} else {
let mut streamed_columns = null_joined_batch
.columns()
.iter()
.take(streamed_columns_length)
.cloned()
.collect::<Vec<_>>();
streamed_columns.extend(buffered_columns);
streamed_columns
};
let null_joined_streamed_batch =
RecordBatch::try_new(Arc::clone(&self.schema), columns)?;
filtered_record_batch = concat_batches(
&self.schema,
&[filtered_record_batch, null_joined_streamed_batch],
)?;
} else if matches!(self.join_type, JoinType::LeftSemi | JoinType::LeftAnti) {
let output_column_indices = (0..streamed_columns_length).collect::<Vec<_>>();
filtered_record_batch =
filtered_record_batch.project(&output_column_indices)?;
}
self.output_record_batches.batches.clear();
self.output_record_batches.batch_ids = vec![];
self.output_record_batches.filter_mask = BooleanBuilder::new();
self.output_record_batches.row_indices = UInt64Builder::new();
Ok(filtered_record_batch)
}
}
fn create_unmatched_columns(
join_type: JoinType,
schema: &SchemaRef,
size: usize,
) -> Vec<ArrayRef> {
if matches!(join_type, JoinType::LeftMark) {
vec![Arc::new(BooleanArray::from(vec![false; size])) as ArrayRef]
} else {
schema
.fields()
.iter()
.map(|f| new_null_array(f.data_type(), size))
.collect::<Vec<_>>()
}
}
fn get_filter_column(
join_filter: &Option<JoinFilter>,
streamed_columns: &[ArrayRef],
buffered_columns: &[ArrayRef],
) -> Vec<ArrayRef> {
let mut filter_columns = vec![];
if let Some(f) = join_filter {
let left_columns = f
.column_indices()
.iter()
.filter(|col_index| col_index.side == JoinSide::Left)
.map(|i| Arc::clone(&streamed_columns[i.index]))
.collect::<Vec<_>>();
let right_columns = f
.column_indices()
.iter()
.filter(|col_index| col_index.side == JoinSide::Right)
.map(|i| Arc::clone(&buffered_columns[i.index]))
.collect::<Vec<_>>();
filter_columns.extend(left_columns);
filter_columns.extend(right_columns);
}
filter_columns
}
fn produce_buffered_null_batch(
schema: &SchemaRef,
streamed_schema: &SchemaRef,
buffered_indices: &PrimitiveArray<UInt64Type>,
buffered_batch: &BufferedBatch,
) -> Result<Option<RecordBatch>> {
if buffered_indices.is_empty() {
return Ok(None);
}
let buffered_columns =
get_buffered_columns_from_batch(buffered_batch, buffered_indices)?;
let mut streamed_columns = streamed_schema
.fields()
.iter()
.map(|f| new_null_array(f.data_type(), buffered_indices.len()))
.collect::<Vec<_>>();
streamed_columns.extend(buffered_columns);
Ok(Some(RecordBatch::try_new(
Arc::clone(schema),
streamed_columns,
)?))
}
#[inline(always)]
fn get_buffered_columns(
buffered_data: &BufferedData,
buffered_batch_idx: usize,
buffered_indices: &UInt64Array,
) -> Result<Vec<ArrayRef>> {
get_buffered_columns_from_batch(
&buffered_data.batches[buffered_batch_idx],
buffered_indices,
)
}
#[inline(always)]
fn get_buffered_columns_from_batch(
buffered_batch: &BufferedBatch,
buffered_indices: &UInt64Array,
) -> Result<Vec<ArrayRef>> {
match (&buffered_batch.spill_file, &buffered_batch.batch) {
(None, Some(batch)) => Ok(batch
.columns()
.iter()
.map(|column| take(column, &buffered_indices, None))
.collect::<Result<Vec<_>, ArrowError>>()
.map_err(Into::<DataFusionError>::into)?),
(Some(spill_file), None) => {
let mut buffered_cols: Vec<ArrayRef> =
Vec::with_capacity(buffered_indices.len());
let file = BufReader::new(File::open(spill_file.path())?);
let reader = FileReader::try_new(file, None)?;
for batch in reader {
batch?.columns().iter().for_each(|column| {
buffered_cols.extend(take(column, &buffered_indices, None))
});
}
Ok(buffered_cols)
}
(spill, batch) => internal_err!("Unexpected buffered batch spill status. Spill exists: {}. In-memory exists: {}", spill.is_some(), batch.is_some()),
}
}
#[derive(Debug, Default)]
struct BufferedData {
pub batches: VecDeque<BufferedBatch>,
pub scanning_batch_idx: usize,
pub scanning_offset: usize,
}
impl BufferedData {
pub fn head_batch(&self) -> &BufferedBatch {
self.batches.front().unwrap()
}
pub fn tail_batch(&self) -> &BufferedBatch {
self.batches.back().unwrap()
}
pub fn tail_batch_mut(&mut self) -> &mut BufferedBatch {
self.batches.back_mut().unwrap()
}
pub fn has_buffered_rows(&self) -> bool {
self.batches.iter().any(|batch| !batch.range.is_empty())
}
pub fn scanning_reset(&mut self) {
self.scanning_batch_idx = 0;
self.scanning_offset = 0;
}
pub fn scanning_advance(&mut self) {
self.scanning_offset += 1;
while !self.scanning_finished() && self.scanning_batch_finished() {
self.scanning_batch_idx += 1;
self.scanning_offset = 0;
}
}
pub fn scanning_batch(&self) -> &BufferedBatch {
&self.batches[self.scanning_batch_idx]
}
pub fn scanning_batch_mut(&mut self) -> &mut BufferedBatch {
&mut self.batches[self.scanning_batch_idx]
}
pub fn scanning_idx(&self) -> usize {
self.scanning_batch().range.start + self.scanning_offset
}
pub fn scanning_batch_finished(&self) -> bool {
self.scanning_offset == self.scanning_batch().range.len()
}
pub fn scanning_finished(&self) -> bool {
self.scanning_batch_idx == self.batches.len()
}
pub fn scanning_finish(&mut self) {
self.scanning_batch_idx = self.batches.len();
self.scanning_offset = 0;
}
}
fn join_arrays(batch: &RecordBatch, on_column: &[PhysicalExprRef]) -> Vec<ArrayRef> {
on_column
.iter()
.map(|c| {
let num_rows = batch.num_rows();
let c = c.evaluate(batch).unwrap();
c.into_array(num_rows).unwrap()
})
.collect()
}
fn compare_join_arrays(
left_arrays: &[ArrayRef],
left: usize,
right_arrays: &[ArrayRef],
right: usize,
sort_options: &[SortOptions],
null_equals_null: bool,
) -> Result<Ordering> {
let mut res = Ordering::Equal;
for ((left_array, right_array), sort_options) in
left_arrays.iter().zip(right_arrays).zip(sort_options)
{
macro_rules! compare_value {
($T:ty) => {{
let left_array = left_array.as_any().downcast_ref::<$T>().unwrap();
let right_array = right_array.as_any().downcast_ref::<$T>().unwrap();
match (left_array.is_null(left), right_array.is_null(right)) {
(false, false) => {
let left_value = &left_array.value(left);
let right_value = &right_array.value(right);
res = left_value.partial_cmp(right_value).unwrap();
if sort_options.descending {
res = res.reverse();
}
}
(true, false) => {
res = if sort_options.nulls_first {
Ordering::Less
} else {
Ordering::Greater
};
}
(false, true) => {
res = if sort_options.nulls_first {
Ordering::Greater
} else {
Ordering::Less
};
}
_ => {
res = if null_equals_null {
Ordering::Equal
} else {
Ordering::Less
};
}
}
}};
}
match left_array.data_type() {
DataType::Null => {}
DataType::Boolean => compare_value!(BooleanArray),
DataType::Int8 => compare_value!(Int8Array),
DataType::Int16 => compare_value!(Int16Array),
DataType::Int32 => compare_value!(Int32Array),
DataType::Int64 => compare_value!(Int64Array),
DataType::UInt8 => compare_value!(UInt8Array),
DataType::UInt16 => compare_value!(UInt16Array),
DataType::UInt32 => compare_value!(UInt32Array),
DataType::UInt64 => compare_value!(UInt64Array),
DataType::Float32 => compare_value!(Float32Array),
DataType::Float64 => compare_value!(Float64Array),
DataType::Utf8 => compare_value!(StringArray),
DataType::LargeUtf8 => compare_value!(LargeStringArray),
DataType::Decimal128(..) => compare_value!(Decimal128Array),
DataType::Timestamp(time_unit, None) => match time_unit {
TimeUnit::Second => compare_value!(TimestampSecondArray),
TimeUnit::Millisecond => compare_value!(TimestampMillisecondArray),
TimeUnit::Microsecond => compare_value!(TimestampMicrosecondArray),
TimeUnit::Nanosecond => compare_value!(TimestampNanosecondArray),
},
DataType::Date32 => compare_value!(Date32Array),
DataType::Date64 => compare_value!(Date64Array),
dt => {
return not_impl_err!(
"Unsupported data type in sort merge join comparator: {}",
dt
);
}
}
if !res.is_eq() {
break;
}
}
Ok(res)
}
fn is_join_arrays_equal(
left_arrays: &[ArrayRef],
left: usize,
right_arrays: &[ArrayRef],
right: usize,
) -> Result<bool> {
let mut is_equal = true;
for (left_array, right_array) in left_arrays.iter().zip(right_arrays) {
macro_rules! compare_value {
($T:ty) => {{
match (left_array.is_null(left), right_array.is_null(right)) {
(false, false) => {
let left_array =
left_array.as_any().downcast_ref::<$T>().unwrap();
let right_array =
right_array.as_any().downcast_ref::<$T>().unwrap();
if left_array.value(left) != right_array.value(right) {
is_equal = false;
}
}
(true, false) => is_equal = false,
(false, true) => is_equal = false,
_ => {}
}
}};
}
match left_array.data_type() {
DataType::Null => {}
DataType::Boolean => compare_value!(BooleanArray),
DataType::Int8 => compare_value!(Int8Array),
DataType::Int16 => compare_value!(Int16Array),
DataType::Int32 => compare_value!(Int32Array),
DataType::Int64 => compare_value!(Int64Array),
DataType::UInt8 => compare_value!(UInt8Array),
DataType::UInt16 => compare_value!(UInt16Array),
DataType::UInt32 => compare_value!(UInt32Array),
DataType::UInt64 => compare_value!(UInt64Array),
DataType::Float32 => compare_value!(Float32Array),
DataType::Float64 => compare_value!(Float64Array),
DataType::Utf8 => compare_value!(StringArray),
DataType::LargeUtf8 => compare_value!(LargeStringArray),
DataType::Decimal128(..) => compare_value!(Decimal128Array),
DataType::Timestamp(time_unit, None) => match time_unit {
TimeUnit::Second => compare_value!(TimestampSecondArray),
TimeUnit::Millisecond => compare_value!(TimestampMillisecondArray),
TimeUnit::Microsecond => compare_value!(TimestampMicrosecondArray),
TimeUnit::Nanosecond => compare_value!(TimestampNanosecondArray),
},
DataType::Date32 => compare_value!(Date32Array),
DataType::Date64 => compare_value!(Date64Array),
dt => {
return not_impl_err!(
"Unsupported data type in sort merge join comparator: {}",
dt
);
}
}
if !is_equal {
return Ok(false);
}
}
Ok(true)
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow::array::{Date32Array, Date64Array, Int32Array};
use arrow::compute::{concat_batches, filter_record_batch, SortOptions};
use arrow::datatypes::{DataType, Field, Schema};
use arrow::record_batch::RecordBatch;
use arrow_array::builder::{BooleanBuilder, UInt64Builder};
use arrow_array::{BooleanArray, UInt64Array};
use datafusion_common::JoinType::*;
use datafusion_common::{
assert_batches_eq, assert_batches_sorted_eq, assert_contains, JoinType, Result,
};
use datafusion_execution::config::SessionConfig;
use datafusion_execution::disk_manager::DiskManagerConfig;
use datafusion_execution::runtime_env::RuntimeEnvBuilder;
use datafusion_execution::TaskContext;
use crate::expressions::Column;
use crate::joins::sort_merge_join::{get_corrected_filter_mask, JoinedRecordBatches};
use crate::joins::utils::JoinOn;
use crate::joins::SortMergeJoinExec;
use crate::memory::MemoryExec;
use crate::test::build_table_i32;
use crate::{common, ExecutionPlan};
fn build_table(
a: (&str, &Vec<i32>),
b: (&str, &Vec<i32>),
c: (&str, &Vec<i32>),
) -> Arc<dyn ExecutionPlan> {
let batch = build_table_i32(a, b, c);
let schema = batch.schema();
Arc::new(MemoryExec::try_new(&[vec![batch]], schema, None).unwrap())
}
fn build_table_from_batches(batches: Vec<RecordBatch>) -> Arc<dyn ExecutionPlan> {
let schema = batches.first().unwrap().schema();
Arc::new(MemoryExec::try_new(&[batches], schema, None).unwrap())
}
fn build_date_table(
a: (&str, &Vec<i32>),
b: (&str, &Vec<i32>),
c: (&str, &Vec<i32>),
) -> Arc<dyn ExecutionPlan> {
let schema = Schema::new(vec![
Field::new(a.0, DataType::Date32, false),
Field::new(b.0, DataType::Date32, false),
Field::new(c.0, DataType::Date32, false),
]);
let batch = RecordBatch::try_new(
Arc::new(schema),
vec![
Arc::new(Date32Array::from(a.1.clone())),
Arc::new(Date32Array::from(b.1.clone())),
Arc::new(Date32Array::from(c.1.clone())),
],
)
.unwrap();
let schema = batch.schema();
Arc::new(MemoryExec::try_new(&[vec![batch]], schema, None).unwrap())
}
fn build_date64_table(
a: (&str, &Vec<i64>),
b: (&str, &Vec<i64>),
c: (&str, &Vec<i64>),
) -> Arc<dyn ExecutionPlan> {
let schema = Schema::new(vec![
Field::new(a.0, DataType::Date64, false),
Field::new(b.0, DataType::Date64, false),
Field::new(c.0, DataType::Date64, false),
]);
let batch = RecordBatch::try_new(
Arc::new(schema),
vec![
Arc::new(Date64Array::from(a.1.clone())),
Arc::new(Date64Array::from(b.1.clone())),
Arc::new(Date64Array::from(c.1.clone())),
],
)
.unwrap();
let schema = batch.schema();
Arc::new(MemoryExec::try_new(&[vec![batch]], schema, None).unwrap())
}
pub fn build_table_i32_nullable(
a: (&str, &Vec<Option<i32>>),
b: (&str, &Vec<Option<i32>>),
c: (&str, &Vec<Option<i32>>),
) -> Arc<dyn ExecutionPlan> {
let schema = Arc::new(Schema::new(vec![
Field::new(a.0, DataType::Int32, true),
Field::new(b.0, DataType::Int32, true),
Field::new(c.0, DataType::Int32, true),
]));
let batch = RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(a.1.clone())),
Arc::new(Int32Array::from(b.1.clone())),
Arc::new(Int32Array::from(c.1.clone())),
],
)
.unwrap();
Arc::new(MemoryExec::try_new(&[vec![batch]], schema, None).unwrap())
}
fn join(
left: Arc<dyn ExecutionPlan>,
right: Arc<dyn ExecutionPlan>,
on: JoinOn,
join_type: JoinType,
) -> Result<SortMergeJoinExec> {
let sort_options = vec![SortOptions::default(); on.len()];
SortMergeJoinExec::try_new(left, right, on, None, join_type, sort_options, false)
}
fn join_with_options(
left: Arc<dyn ExecutionPlan>,
right: Arc<dyn ExecutionPlan>,
on: JoinOn,
join_type: JoinType,
sort_options: Vec<SortOptions>,
null_equals_null: bool,
) -> Result<SortMergeJoinExec> {
SortMergeJoinExec::try_new(
left,
right,
on,
None,
join_type,
sort_options,
null_equals_null,
)
}
async fn join_collect(
left: Arc<dyn ExecutionPlan>,
right: Arc<dyn ExecutionPlan>,
on: JoinOn,
join_type: JoinType,
) -> Result<(Vec<String>, Vec<RecordBatch>)> {
let sort_options = vec![SortOptions::default(); on.len()];
join_collect_with_options(left, right, on, join_type, sort_options, false).await
}
async fn join_collect_with_options(
left: Arc<dyn ExecutionPlan>,
right: Arc<dyn ExecutionPlan>,
on: JoinOn,
join_type: JoinType,
sort_options: Vec<SortOptions>,
null_equals_null: bool,
) -> Result<(Vec<String>, Vec<RecordBatch>)> {
let task_ctx = Arc::new(TaskContext::default());
let join = join_with_options(
left,
right,
on,
join_type,
sort_options,
null_equals_null,
)?;
let columns = columns(&join.schema());
let stream = join.execute(0, task_ctx)?;
let batches = common::collect(stream).await?;
Ok((columns, batches))
}
async fn join_collect_batch_size_equals_two(
left: Arc<dyn ExecutionPlan>,
right: Arc<dyn ExecutionPlan>,
on: JoinOn,
join_type: JoinType,
) -> Result<(Vec<String>, Vec<RecordBatch>)> {
let task_ctx = TaskContext::default()
.with_session_config(SessionConfig::new().with_batch_size(2));
let task_ctx = Arc::new(task_ctx);
let join = join(left, right, on, join_type)?;
let columns = columns(&join.schema());
let stream = join.execute(0, task_ctx)?;
let batches = common::collect(stream).await?;
Ok((columns, batches))
}
#[tokio::test]
async fn join_inner_one() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 3]),
("b1", &vec![4, 5, 5]), ("c1", &vec![7, 8, 9]),
);
let right = build_table(
("a2", &vec![10, 20, 30]),
("b1", &vec![4, 5, 6]),
("c2", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b1", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Inner).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b1 | c2 |",
"+----+----+----+----+----+----+",
"| 1 | 4 | 7 | 10 | 4 | 70 |",
"| 2 | 5 | 8 | 20 | 5 | 80 |",
"| 3 | 5 | 9 | 20 | 5 | 80 |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_inner_two() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 2]),
("b2", &vec![1, 2, 2]),
("c1", &vec![7, 8, 9]),
);
let right = build_table(
("a1", &vec![1, 2, 3]),
("b2", &vec![1, 2, 2]),
("c2", &vec![70, 80, 90]),
);
let on = vec![
(
Arc::new(Column::new_with_schema("a1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("a1", &right.schema())?) as _,
),
(
Arc::new(Column::new_with_schema("b2", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
),
];
let (_columns, batches) = join_collect(left, right, on, Inner).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b2 | c1 | a1 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| 1 | 1 | 7 | 1 | 1 | 70 |",
"| 2 | 2 | 8 | 2 | 2 | 80 |",
"| 2 | 2 | 9 | 2 | 2 | 80 |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_inner_two_two() -> Result<()> {
let left = build_table(
("a1", &vec![1, 1, 2]),
("b2", &vec![1, 1, 2]),
("c1", &vec![7, 8, 9]),
);
let right = build_table(
("a1", &vec![1, 1, 3]),
("b2", &vec![1, 1, 2]),
("c2", &vec![70, 80, 90]),
);
let on = vec![
(
Arc::new(Column::new_with_schema("a1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("a1", &right.schema())?) as _,
),
(
Arc::new(Column::new_with_schema("b2", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
),
];
let (_columns, batches) = join_collect(left, right, on, Inner).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b2 | c1 | a1 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| 1 | 1 | 7 | 1 | 1 | 70 |",
"| 1 | 1 | 7 | 1 | 1 | 80 |",
"| 1 | 1 | 8 | 1 | 1 | 70 |",
"| 1 | 1 | 8 | 1 | 1 | 80 |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_inner_with_nulls() -> Result<()> {
let left = build_table_i32_nullable(
("a1", &vec![Some(1), Some(1), Some(2), Some(2)]),
("b2", &vec![None, Some(1), Some(2), Some(2)]), ("c1", &vec![Some(1), None, Some(8), Some(9)]), );
let right = build_table_i32_nullable(
("a1", &vec![Some(1), Some(1), Some(2), Some(3)]),
("b2", &vec![None, Some(1), Some(2), Some(2)]),
("c2", &vec![Some(10), Some(70), Some(80), Some(90)]),
);
let on = vec![
(
Arc::new(Column::new_with_schema("a1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("a1", &right.schema())?) as _,
),
(
Arc::new(Column::new_with_schema("b2", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
),
];
let (_, batches) = join_collect(left, right, on, Inner).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b2 | c1 | a1 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| 1 | 1 | | 1 | 1 | 70 |",
"| 2 | 2 | 8 | 2 | 2 | 80 |",
"| 2 | 2 | 9 | 2 | 2 | 80 |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_inner_with_nulls_with_options() -> Result<()> {
let left = build_table_i32_nullable(
("a1", &vec![Some(2), Some(2), Some(1), Some(1)]),
("b2", &vec![Some(2), Some(2), Some(1), None]), ("c1", &vec![Some(9), Some(8), None, Some(1)]), );
let right = build_table_i32_nullable(
("a1", &vec![Some(3), Some(2), Some(1), Some(1)]),
("b2", &vec![Some(2), Some(2), Some(1), None]),
("c2", &vec![Some(90), Some(80), Some(70), Some(10)]),
);
let on = vec![
(
Arc::new(Column::new_with_schema("a1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("a1", &right.schema())?) as _,
),
(
Arc::new(Column::new_with_schema("b2", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
),
];
let (_, batches) = join_collect_with_options(
left,
right,
on,
Inner,
vec![
SortOptions {
descending: true,
nulls_first: false,
};
2
],
true,
)
.await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b2 | c1 | a1 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| 2 | 2 | 9 | 2 | 2 | 80 |",
"| 2 | 2 | 8 | 2 | 2 | 80 |",
"| 1 | 1 | | 1 | 1 | 70 |",
"| 1 | | 1 | 1 | | 10 |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_inner_output_two_batches() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 2]),
("b2", &vec![1, 2, 2]),
("c1", &vec![7, 8, 9]),
);
let right = build_table(
("a1", &vec![1, 2, 3]),
("b2", &vec![1, 2, 2]),
("c2", &vec![70, 80, 90]),
);
let on = vec![
(
Arc::new(Column::new_with_schema("a1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("a1", &right.schema())?) as _,
),
(
Arc::new(Column::new_with_schema("b2", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
),
];
let (_, batches) =
join_collect_batch_size_equals_two(left, right, on, Inner).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b2 | c1 | a1 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| 1 | 1 | 7 | 1 | 1 | 70 |",
"| 2 | 2 | 8 | 2 | 2 | 80 |",
"| 2 | 2 | 9 | 2 | 2 | 80 |",
"+----+----+----+----+----+----+",
];
assert_eq!(batches.len(), 2);
assert_eq!(batches[0].num_rows(), 2);
assert_eq!(batches[1].num_rows(), 1);
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_left_one() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 3]),
("b1", &vec![4, 5, 7]), ("c1", &vec![7, 8, 9]),
);
let right = build_table(
("a2", &vec![10, 20, 30]),
("b1", &vec![4, 5, 6]),
("c2", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b1", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Left).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b1 | c2 |",
"+----+----+----+----+----+----+",
"| 1 | 4 | 7 | 10 | 4 | 70 |",
"| 2 | 5 | 8 | 20 | 5 | 80 |",
"| 3 | 7 | 9 | | | |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_right_one() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 3]),
("b1", &vec![4, 5, 7]),
("c1", &vec![7, 8, 9]),
);
let right = build_table(
("a2", &vec![10, 20, 30]),
("b1", &vec![4, 5, 6]), ("c2", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b1", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Right).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b1 | c2 |",
"+----+----+----+----+----+----+",
"| 1 | 4 | 7 | 10 | 4 | 70 |",
"| 2 | 5 | 8 | 20 | 5 | 80 |",
"| | | | 30 | 6 | 90 |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_full_one() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 3]),
("b1", &vec![4, 5, 7]), ("c1", &vec![7, 8, 9]),
);
let right = build_table(
("a2", &vec![10, 20, 30]),
("b2", &vec![4, 5, 6]),
("c2", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema()).unwrap()) as _,
Arc::new(Column::new_with_schema("b2", &right.schema()).unwrap()) as _,
)];
let (_, batches) = join_collect(left, right, on, Full).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| | | | 30 | 6 | 90 |",
"| 1 | 4 | 7 | 10 | 4 | 70 |",
"| 2 | 5 | 8 | 20 | 5 | 80 |",
"| 3 | 7 | 9 | | | |",
"+----+----+----+----+----+----+",
];
assert_batches_sorted_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_anti() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 2, 3, 5]),
("b1", &vec![4, 5, 5, 7, 7]), ("c1", &vec![7, 8, 8, 9, 11]),
);
let right = build_table(
("a2", &vec![10, 20, 30]),
("b1", &vec![4, 5, 6]),
("c2", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b1", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, LeftAnti).await?;
let expected = [
"+----+----+----+",
"| a1 | b1 | c1 |",
"+----+----+----+",
"| 3 | 7 | 9 |",
"| 5 | 7 | 11 |",
"+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_semi() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 2, 3]),
("b1", &vec![4, 5, 5, 7]), ("c1", &vec![7, 8, 8, 9]),
);
let right = build_table(
("a2", &vec![10, 20, 30]),
("b1", &vec![4, 5, 6]), ("c2", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b1", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, LeftSemi).await?;
let expected = [
"+----+----+----+",
"| a1 | b1 | c1 |",
"+----+----+----+",
"| 1 | 4 | 7 |",
"| 2 | 5 | 8 |",
"| 2 | 5 | 8 |",
"+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_left_mark() -> Result<()> {
let left = build_table(
("a1", &vec![1, 2, 2, 3]),
("b1", &vec![4, 5, 5, 7]), ("c1", &vec![7, 8, 8, 9]),
);
let right = build_table(
("a2", &vec![10, 20, 30, 40]),
("b1", &vec![4, 4, 5, 6]), ("c2", &vec![60, 70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b1", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, LeftMark).await?;
let expected = [
"+----+----+----+-------+",
"| a1 | b1 | c1 | mark |",
"+----+----+----+-------+",
"| 1 | 4 | 7 | true |",
"| 2 | 5 | 8 | true |",
"| 2 | 5 | 8 | true |",
"| 3 | 7 | 9 | false |",
"+----+----+----+-------+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_with_duplicated_column_names() -> Result<()> {
let left = build_table(
("a", &vec![1, 2, 3]),
("b", &vec![4, 5, 7]),
("c", &vec![7, 8, 9]),
);
let right = build_table(
("a", &vec![10, 20, 30]),
("b", &vec![1, 2, 7]),
("c", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("a", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Inner).await?;
let expected = [
"+---+---+---+----+---+----+",
"| a | b | c | a | b | c |",
"+---+---+---+----+---+----+",
"| 1 | 4 | 7 | 10 | 1 | 70 |",
"| 2 | 5 | 8 | 20 | 2 | 80 |",
"+---+---+---+----+---+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_date32() -> Result<()> {
let left = build_date_table(
("a1", &vec![1, 2, 3]),
("b1", &vec![19107, 19108, 19108]), ("c1", &vec![7, 8, 9]),
);
let right = build_date_table(
("a2", &vec![10, 20, 30]),
("b1", &vec![19107, 19108, 19109]),
("c2", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b1", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Inner).await?;
let expected = ["+------------+------------+------------+------------+------------+------------+",
"| a1 | b1 | c1 | a2 | b1 | c2 |",
"+------------+------------+------------+------------+------------+------------+",
"| 1970-01-02 | 2022-04-25 | 1970-01-08 | 1970-01-11 | 2022-04-25 | 1970-03-12 |",
"| 1970-01-03 | 2022-04-26 | 1970-01-09 | 1970-01-21 | 2022-04-26 | 1970-03-22 |",
"| 1970-01-04 | 2022-04-26 | 1970-01-10 | 1970-01-21 | 2022-04-26 | 1970-03-22 |",
"+------------+------------+------------+------------+------------+------------+"];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_date64() -> Result<()> {
let left = build_date64_table(
("a1", &vec![1, 2, 3]),
("b1", &vec![1650703441000, 1650903441000, 1650903441000]), ("c1", &vec![7, 8, 9]),
);
let right = build_date64_table(
("a2", &vec![10, 20, 30]),
("b1", &vec![1650703441000, 1650503441000, 1650903441000]),
("c2", &vec![70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b1", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Inner).await?;
let expected = ["+-------------------------+---------------------+-------------------------+-------------------------+---------------------+-------------------------+",
"| a1 | b1 | c1 | a2 | b1 | c2 |",
"+-------------------------+---------------------+-------------------------+-------------------------+---------------------+-------------------------+",
"| 1970-01-01T00:00:00.001 | 2022-04-23T08:44:01 | 1970-01-01T00:00:00.007 | 1970-01-01T00:00:00.010 | 2022-04-23T08:44:01 | 1970-01-01T00:00:00.070 |",
"| 1970-01-01T00:00:00.002 | 2022-04-25T16:17:21 | 1970-01-01T00:00:00.008 | 1970-01-01T00:00:00.030 | 2022-04-25T16:17:21 | 1970-01-01T00:00:00.090 |",
"| 1970-01-01T00:00:00.003 | 2022-04-25T16:17:21 | 1970-01-01T00:00:00.009 | 1970-01-01T00:00:00.030 | 2022-04-25T16:17:21 | 1970-01-01T00:00:00.090 |",
"+-------------------------+---------------------+-------------------------+-------------------------+---------------------+-------------------------+"];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_left_sort_order() -> Result<()> {
let left = build_table(
("a1", &vec![0, 1, 2, 3, 4, 5]),
("b1", &vec![3, 4, 5, 6, 6, 7]),
("c1", &vec![4, 5, 6, 7, 8, 9]),
);
let right = build_table(
("a2", &vec![0, 10, 20, 30, 40]),
("b2", &vec![2, 4, 6, 6, 8]),
("c2", &vec![50, 60, 70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Left).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| 0 | 3 | 4 | | | |",
"| 1 | 4 | 5 | 10 | 4 | 60 |",
"| 2 | 5 | 6 | | | |",
"| 3 | 6 | 7 | 20 | 6 | 70 |",
"| 3 | 6 | 7 | 30 | 6 | 80 |",
"| 4 | 6 | 8 | 20 | 6 | 70 |",
"| 4 | 6 | 8 | 30 | 6 | 80 |",
"| 5 | 7 | 9 | | | |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_right_sort_order() -> Result<()> {
let left = build_table(
("a1", &vec![0, 1, 2, 3]),
("b1", &vec![3, 4, 5, 7]),
("c1", &vec![6, 7, 8, 9]),
);
let right = build_table(
("a2", &vec![0, 10, 20, 30]),
("b2", &vec![2, 4, 5, 6]),
("c2", &vec![60, 70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Right).await?;
let expected = [
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| | | | 0 | 2 | 60 |",
"| 1 | 4 | 7 | 10 | 4 | 70 |",
"| 2 | 5 | 8 | 20 | 5 | 80 |",
"| | | | 30 | 6 | 90 |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_left_multiple_batches() -> Result<()> {
let left_batch_1 = build_table_i32(
("a1", &vec![0, 1, 2]),
("b1", &vec![3, 4, 5]),
("c1", &vec![4, 5, 6]),
);
let left_batch_2 = build_table_i32(
("a1", &vec![3, 4, 5, 6]),
("b1", &vec![6, 6, 7, 9]),
("c1", &vec![7, 8, 9, 9]),
);
let right_batch_1 = build_table_i32(
("a2", &vec![0, 10, 20]),
("b2", &vec![2, 4, 6]),
("c2", &vec![50, 60, 70]),
);
let right_batch_2 = build_table_i32(
("a2", &vec![30, 40]),
("b2", &vec![6, 8]),
("c2", &vec![80, 90]),
);
let left = build_table_from_batches(vec![left_batch_1, left_batch_2]);
let right = build_table_from_batches(vec![right_batch_1, right_batch_2]);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Left).await?;
let expected = vec![
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| 0 | 3 | 4 | | | |",
"| 1 | 4 | 5 | 10 | 4 | 60 |",
"| 2 | 5 | 6 | | | |",
"| 3 | 6 | 7 | 20 | 6 | 70 |",
"| 3 | 6 | 7 | 30 | 6 | 80 |",
"| 4 | 6 | 8 | 20 | 6 | 70 |",
"| 4 | 6 | 8 | 30 | 6 | 80 |",
"| 5 | 7 | 9 | | | |",
"| 6 | 9 | 9 | | | |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_right_multiple_batches() -> Result<()> {
let right_batch_1 = build_table_i32(
("a2", &vec![0, 1, 2]),
("b2", &vec![3, 4, 5]),
("c2", &vec![4, 5, 6]),
);
let right_batch_2 = build_table_i32(
("a2", &vec![3, 4, 5, 6]),
("b2", &vec![6, 6, 7, 9]),
("c2", &vec![7, 8, 9, 9]),
);
let left_batch_1 = build_table_i32(
("a1", &vec![0, 10, 20]),
("b1", &vec![2, 4, 6]),
("c1", &vec![50, 60, 70]),
);
let left_batch_2 = build_table_i32(
("a1", &vec![30, 40]),
("b1", &vec![6, 8]),
("c1", &vec![80, 90]),
);
let left = build_table_from_batches(vec![left_batch_1, left_batch_2]);
let right = build_table_from_batches(vec![right_batch_1, right_batch_2]);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Right).await?;
let expected = vec![
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| | | | 0 | 3 | 4 |",
"| 10 | 4 | 60 | 1 | 4 | 5 |",
"| | | | 2 | 5 | 6 |",
"| 20 | 6 | 70 | 3 | 6 | 7 |",
"| 30 | 6 | 80 | 3 | 6 | 7 |",
"| 20 | 6 | 70 | 4 | 6 | 8 |",
"| 30 | 6 | 80 | 4 | 6 | 8 |",
"| | | | 5 | 7 | 9 |",
"| | | | 6 | 9 | 9 |",
"+----+----+----+----+----+----+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn join_full_multiple_batches() -> Result<()> {
let left_batch_1 = build_table_i32(
("a1", &vec![0, 1, 2]),
("b1", &vec![3, 4, 5]),
("c1", &vec![4, 5, 6]),
);
let left_batch_2 = build_table_i32(
("a1", &vec![3, 4, 5, 6]),
("b1", &vec![6, 6, 7, 9]),
("c1", &vec![7, 8, 9, 9]),
);
let right_batch_1 = build_table_i32(
("a2", &vec![0, 10, 20]),
("b2", &vec![2, 4, 6]),
("c2", &vec![50, 60, 70]),
);
let right_batch_2 = build_table_i32(
("a2", &vec![30, 40]),
("b2", &vec![6, 8]),
("c2", &vec![80, 90]),
);
let left = build_table_from_batches(vec![left_batch_1, left_batch_2]);
let right = build_table_from_batches(vec![right_batch_1, right_batch_2]);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let (_, batches) = join_collect(left, right, on, Full).await?;
let expected = vec![
"+----+----+----+----+----+----+",
"| a1 | b1 | c1 | a2 | b2 | c2 |",
"+----+----+----+----+----+----+",
"| | | | 0 | 2 | 50 |",
"| | | | 40 | 8 | 90 |",
"| 0 | 3 | 4 | | | |",
"| 1 | 4 | 5 | 10 | 4 | 60 |",
"| 2 | 5 | 6 | | | |",
"| 3 | 6 | 7 | 20 | 6 | 70 |",
"| 3 | 6 | 7 | 30 | 6 | 80 |",
"| 4 | 6 | 8 | 20 | 6 | 70 |",
"| 4 | 6 | 8 | 30 | 6 | 80 |",
"| 5 | 7 | 9 | | | |",
"| 6 | 9 | 9 | | | |",
"+----+----+----+----+----+----+",
];
assert_batches_sorted_eq!(expected, &batches);
Ok(())
}
#[tokio::test]
async fn overallocation_single_batch_no_spill() -> Result<()> {
let left = build_table(
("a1", &vec![0, 1, 2, 3, 4, 5]),
("b1", &vec![1, 2, 3, 4, 5, 6]),
("c1", &vec![4, 5, 6, 7, 8, 9]),
);
let right = build_table(
("a2", &vec![0, 10, 20, 30, 40]),
("b2", &vec![1, 3, 4, 6, 8]),
("c2", &vec![50, 60, 70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let sort_options = vec![SortOptions::default(); on.len()];
let join_types = vec![Inner, Left, Right, Full, LeftSemi, LeftAnti, LeftMark];
let runtime = RuntimeEnvBuilder::new()
.with_memory_limit(100, 1.0)
.with_disk_manager(DiskManagerConfig::Disabled)
.build_arc()?;
let session_config = SessionConfig::default().with_batch_size(50);
for join_type in join_types {
let task_ctx = TaskContext::default()
.with_session_config(session_config.clone())
.with_runtime(Arc::clone(&runtime));
let task_ctx = Arc::new(task_ctx);
let join = join_with_options(
Arc::clone(&left),
Arc::clone(&right),
on.clone(),
join_type,
sort_options.clone(),
false,
)?;
let stream = join.execute(0, task_ctx)?;
let err = common::collect(stream).await.unwrap_err();
assert_contains!(err.to_string(), "Failed to allocate additional");
assert_contains!(err.to_string(), "SMJStream[0]");
assert_contains!(err.to_string(), "Disk spilling disabled");
assert!(join.metrics().is_some());
assert_eq!(join.metrics().unwrap().spill_count(), Some(0));
assert_eq!(join.metrics().unwrap().spilled_bytes(), Some(0));
assert_eq!(join.metrics().unwrap().spilled_rows(), Some(0));
}
Ok(())
}
#[tokio::test]
async fn overallocation_multi_batch_no_spill() -> Result<()> {
let left_batch_1 = build_table_i32(
("a1", &vec![0, 1]),
("b1", &vec![1, 1]),
("c1", &vec![4, 5]),
);
let left_batch_2 = build_table_i32(
("a1", &vec![2, 3]),
("b1", &vec![1, 1]),
("c1", &vec![6, 7]),
);
let left_batch_3 = build_table_i32(
("a1", &vec![4, 5]),
("b1", &vec![1, 1]),
("c1", &vec![8, 9]),
);
let right_batch_1 = build_table_i32(
("a2", &vec![0, 10]),
("b2", &vec![1, 1]),
("c2", &vec![50, 60]),
);
let right_batch_2 = build_table_i32(
("a2", &vec![20, 30]),
("b2", &vec![1, 1]),
("c2", &vec![70, 80]),
);
let right_batch_3 =
build_table_i32(("a2", &vec![40]), ("b2", &vec![1]), ("c2", &vec![90]));
let left =
build_table_from_batches(vec![left_batch_1, left_batch_2, left_batch_3]);
let right =
build_table_from_batches(vec![right_batch_1, right_batch_2, right_batch_3]);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let sort_options = vec![SortOptions::default(); on.len()];
let join_types = vec![Inner, Left, Right, Full, LeftSemi, LeftAnti, LeftMark];
let runtime = RuntimeEnvBuilder::new()
.with_memory_limit(100, 1.0)
.with_disk_manager(DiskManagerConfig::Disabled)
.build_arc()?;
let session_config = SessionConfig::default().with_batch_size(50);
for join_type in join_types {
let task_ctx = TaskContext::default()
.with_session_config(session_config.clone())
.with_runtime(Arc::clone(&runtime));
let task_ctx = Arc::new(task_ctx);
let join = join_with_options(
Arc::clone(&left),
Arc::clone(&right),
on.clone(),
join_type,
sort_options.clone(),
false,
)?;
let stream = join.execute(0, task_ctx)?;
let err = common::collect(stream).await.unwrap_err();
assert_contains!(err.to_string(), "Failed to allocate additional");
assert_contains!(err.to_string(), "SMJStream[0]");
assert_contains!(err.to_string(), "Disk spilling disabled");
assert!(join.metrics().is_some());
assert_eq!(join.metrics().unwrap().spill_count(), Some(0));
assert_eq!(join.metrics().unwrap().spilled_bytes(), Some(0));
assert_eq!(join.metrics().unwrap().spilled_rows(), Some(0));
}
Ok(())
}
#[tokio::test]
async fn overallocation_single_batch_spill() -> Result<()> {
let left = build_table(
("a1", &vec![0, 1, 2, 3, 4, 5]),
("b1", &vec![1, 2, 3, 4, 5, 6]),
("c1", &vec![4, 5, 6, 7, 8, 9]),
);
let right = build_table(
("a2", &vec![0, 10, 20, 30, 40]),
("b2", &vec![1, 3, 4, 6, 8]),
("c2", &vec![50, 60, 70, 80, 90]),
);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let sort_options = vec![SortOptions::default(); on.len()];
let join_types = [Inner, Left, Right, Full, LeftSemi, LeftAnti, LeftMark];
let runtime = RuntimeEnvBuilder::new()
.with_memory_limit(100, 1.0)
.with_disk_manager(DiskManagerConfig::NewOs)
.build_arc()?;
for batch_size in [1, 50] {
let session_config = SessionConfig::default().with_batch_size(batch_size);
for join_type in &join_types {
let task_ctx = TaskContext::default()
.with_session_config(session_config.clone())
.with_runtime(Arc::clone(&runtime));
let task_ctx = Arc::new(task_ctx);
let join = join_with_options(
Arc::clone(&left),
Arc::clone(&right),
on.clone(),
*join_type,
sort_options.clone(),
false,
)?;
let stream = join.execute(0, task_ctx)?;
let spilled_join_result = common::collect(stream).await.unwrap();
assert!(join.metrics().is_some());
assert!(join.metrics().unwrap().spill_count().unwrap() > 0);
assert!(join.metrics().unwrap().spilled_bytes().unwrap() > 0);
assert!(join.metrics().unwrap().spilled_rows().unwrap() > 0);
let task_ctx_no_spill =
TaskContext::default().with_session_config(session_config.clone());
let task_ctx_no_spill = Arc::new(task_ctx_no_spill);
let join = join_with_options(
Arc::clone(&left),
Arc::clone(&right),
on.clone(),
*join_type,
sort_options.clone(),
false,
)?;
let stream = join.execute(0, task_ctx_no_spill)?;
let no_spilled_join_result = common::collect(stream).await.unwrap();
assert!(join.metrics().is_some());
assert_eq!(join.metrics().unwrap().spill_count(), Some(0));
assert_eq!(join.metrics().unwrap().spilled_bytes(), Some(0));
assert_eq!(join.metrics().unwrap().spilled_rows(), Some(0));
assert_eq!(spilled_join_result, no_spilled_join_result);
}
}
Ok(())
}
#[tokio::test]
async fn overallocation_multi_batch_spill() -> Result<()> {
let left_batch_1 = build_table_i32(
("a1", &vec![0, 1]),
("b1", &vec![1, 1]),
("c1", &vec![4, 5]),
);
let left_batch_2 = build_table_i32(
("a1", &vec![2, 3]),
("b1", &vec![1, 1]),
("c1", &vec![6, 7]),
);
let left_batch_3 = build_table_i32(
("a1", &vec![4, 5]),
("b1", &vec![1, 1]),
("c1", &vec![8, 9]),
);
let right_batch_1 = build_table_i32(
("a2", &vec![0, 10]),
("b2", &vec![1, 1]),
("c2", &vec![50, 60]),
);
let right_batch_2 = build_table_i32(
("a2", &vec![20, 30]),
("b2", &vec![1, 1]),
("c2", &vec![70, 80]),
);
let right_batch_3 =
build_table_i32(("a2", &vec![40]), ("b2", &vec![1]), ("c2", &vec![90]));
let left =
build_table_from_batches(vec![left_batch_1, left_batch_2, left_batch_3]);
let right =
build_table_from_batches(vec![right_batch_1, right_batch_2, right_batch_3]);
let on = vec![(
Arc::new(Column::new_with_schema("b1", &left.schema())?) as _,
Arc::new(Column::new_with_schema("b2", &right.schema())?) as _,
)];
let sort_options = vec![SortOptions::default(); on.len()];
let join_types = [Inner, Left, Right, Full, LeftSemi, LeftAnti, LeftMark];
let runtime = RuntimeEnvBuilder::new()
.with_memory_limit(500, 1.0)
.with_disk_manager(DiskManagerConfig::NewOs)
.build_arc()?;
for batch_size in [1, 50] {
let session_config = SessionConfig::default().with_batch_size(batch_size);
for join_type in &join_types {
let task_ctx = TaskContext::default()
.with_session_config(session_config.clone())
.with_runtime(Arc::clone(&runtime));
let task_ctx = Arc::new(task_ctx);
let join = join_with_options(
Arc::clone(&left),
Arc::clone(&right),
on.clone(),
*join_type,
sort_options.clone(),
false,
)?;
let stream = join.execute(0, task_ctx)?;
let spilled_join_result = common::collect(stream).await.unwrap();
assert!(join.metrics().is_some());
assert!(join.metrics().unwrap().spill_count().unwrap() > 0);
assert!(join.metrics().unwrap().spilled_bytes().unwrap() > 0);
assert!(join.metrics().unwrap().spilled_rows().unwrap() > 0);
let task_ctx_no_spill =
TaskContext::default().with_session_config(session_config.clone());
let task_ctx_no_spill = Arc::new(task_ctx_no_spill);
let join = join_with_options(
Arc::clone(&left),
Arc::clone(&right),
on.clone(),
*join_type,
sort_options.clone(),
false,
)?;
let stream = join.execute(0, task_ctx_no_spill)?;
let no_spilled_join_result = common::collect(stream).await.unwrap();
assert!(join.metrics().is_some());
assert_eq!(join.metrics().unwrap().spill_count(), Some(0));
assert_eq!(join.metrics().unwrap().spilled_bytes(), Some(0));
assert_eq!(join.metrics().unwrap().spilled_rows(), Some(0));
assert_eq!(spilled_join_result, no_spilled_join_result);
}
}
Ok(())
}
fn build_joined_record_batches() -> Result<JoinedRecordBatches> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Int32, true),
Field::new("x", DataType::Int32, true),
Field::new("y", DataType::Int32, true),
]));
let mut batches = JoinedRecordBatches {
batches: vec![],
filter_mask: BooleanBuilder::new(),
row_indices: UInt64Builder::new(),
batch_ids: vec![],
};
batches.batches.push(RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![1, 1])),
Arc::new(Int32Array::from(vec![10, 10])),
Arc::new(Int32Array::from(vec![1, 1])),
Arc::new(Int32Array::from(vec![11, 9])),
],
)?);
batches.batches.push(RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![1])),
Arc::new(Int32Array::from(vec![11])),
Arc::new(Int32Array::from(vec![1])),
Arc::new(Int32Array::from(vec![12])),
],
)?);
batches.batches.push(RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![1, 1])),
Arc::new(Int32Array::from(vec![12, 12])),
Arc::new(Int32Array::from(vec![1, 1])),
Arc::new(Int32Array::from(vec![11, 13])),
],
)?);
batches.batches.push(RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![1])),
Arc::new(Int32Array::from(vec![13])),
Arc::new(Int32Array::from(vec![1])),
Arc::new(Int32Array::from(vec![12])),
],
)?);
batches.batches.push(RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![1, 1])),
Arc::new(Int32Array::from(vec![14, 14])),
Arc::new(Int32Array::from(vec![1, 1])),
Arc::new(Int32Array::from(vec![12, 11])),
],
)?);
let streamed_indices = vec![0, 0];
batches.batch_ids.extend(vec![0; streamed_indices.len()]);
batches
.row_indices
.extend(&UInt64Array::from(streamed_indices));
let streamed_indices = vec![1];
batches.batch_ids.extend(vec![0; streamed_indices.len()]);
batches
.row_indices
.extend(&UInt64Array::from(streamed_indices));
let streamed_indices = vec![0, 0];
batches.batch_ids.extend(vec![1; streamed_indices.len()]);
batches
.row_indices
.extend(&UInt64Array::from(streamed_indices));
let streamed_indices = vec![0];
batches.batch_ids.extend(vec![2; streamed_indices.len()]);
batches
.row_indices
.extend(&UInt64Array::from(streamed_indices));
let streamed_indices = vec![0, 0];
batches.batch_ids.extend(vec![3; streamed_indices.len()]);
batches
.row_indices
.extend(&UInt64Array::from(streamed_indices));
batches
.filter_mask
.extend(&BooleanArray::from(vec![true, false]));
batches.filter_mask.extend(&BooleanArray::from(vec![true]));
batches
.filter_mask
.extend(&BooleanArray::from(vec![false, true]));
batches.filter_mask.extend(&BooleanArray::from(vec![false]));
batches
.filter_mask
.extend(&BooleanArray::from(vec![false, false]));
Ok(batches)
}
#[tokio::test]
async fn test_left_outer_join_filtered_mask() -> Result<()> {
let mut joined_batches = build_joined_record_batches()?;
let schema = joined_batches.batches.first().unwrap().schema();
let output = concat_batches(&schema, &joined_batches.batches)?;
let out_mask = joined_batches.filter_mask.finish();
let out_indices = joined_batches.row_indices.finish();
assert_eq!(
get_corrected_filter_mask(
Left,
&UInt64Array::from(vec![0]),
&[0usize],
&BooleanArray::from(vec![true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![
true, false, false, false, false, false, false, false
])
);
assert_eq!(
get_corrected_filter_mask(
Left,
&UInt64Array::from(vec![0]),
&[0usize],
&BooleanArray::from(vec![false]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![
false, false, false, false, false, false, false, false
])
);
assert_eq!(
get_corrected_filter_mask(
Left,
&UInt64Array::from(vec![0, 0]),
&[0usize; 2],
&BooleanArray::from(vec![true, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![
true, true, false, false, false, false, false, false
])
);
assert_eq!(
get_corrected_filter_mask(
Left,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![true, true, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![true, true, true, false, false, false, false, false])
);
assert_eq!(
get_corrected_filter_mask(
Left,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![true, false, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![
Some(true),
None,
Some(true),
Some(false),
Some(false),
Some(false),
Some(false),
Some(false)
])
);
assert_eq!(
get_corrected_filter_mask(
Left,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, false, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![
None,
None,
Some(true),
Some(false),
Some(false),
Some(false),
Some(false),
Some(false)
])
);
assert_eq!(
get_corrected_filter_mask(
Left,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, true, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![
None,
Some(true),
Some(true),
Some(false),
Some(false),
Some(false),
Some(false),
Some(false)
])
);
assert_eq!(
get_corrected_filter_mask(
Left,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, false, false]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![
None,
None,
Some(false),
Some(false),
Some(false),
Some(false),
Some(false),
Some(false)
])
);
let corrected_mask = get_corrected_filter_mask(
Left,
&out_indices,
&joined_batches.batch_ids,
&out_mask,
output.num_rows(),
)
.unwrap();
assert_eq!(
corrected_mask,
BooleanArray::from(vec![
Some(true),
None,
Some(true),
None,
Some(true),
Some(false),
None,
Some(false)
])
);
let filtered_rb = filter_record_batch(&output, &corrected_mask)?;
assert_batches_eq!(
&[
"+---+----+---+----+",
"| a | b | x | y |",
"+---+----+---+----+",
"| 1 | 10 | 1 | 11 |",
"| 1 | 11 | 1 | 12 |",
"| 1 | 12 | 1 | 13 |",
"+---+----+---+----+",
],
&[filtered_rb]
);
let null_mask = arrow::compute::not(&corrected_mask)?;
assert_eq!(
null_mask,
BooleanArray::from(vec![
Some(false),
None,
Some(false),
None,
Some(false),
Some(true),
None,
Some(true)
])
);
let null_joined_batch = filter_record_batch(&output, &null_mask)?;
assert_batches_eq!(
&[
"+---+----+---+----+",
"| a | b | x | y |",
"+---+----+---+----+",
"| 1 | 13 | 1 | 12 |",
"| 1 | 14 | 1 | 11 |",
"+---+----+---+----+",
],
&[null_joined_batch]
);
Ok(())
}
#[tokio::test]
async fn test_left_semi_join_filtered_mask() -> Result<()> {
let mut joined_batches = build_joined_record_batches()?;
let schema = joined_batches.batches.first().unwrap().schema();
let output = concat_batches(&schema, &joined_batches.batches)?;
let out_mask = joined_batches.filter_mask.finish();
let out_indices = joined_batches.row_indices.finish();
assert_eq!(
get_corrected_filter_mask(
LeftSemi,
&UInt64Array::from(vec![0]),
&[0usize],
&BooleanArray::from(vec![true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![true])
);
assert_eq!(
get_corrected_filter_mask(
LeftSemi,
&UInt64Array::from(vec![0]),
&[0usize],
&BooleanArray::from(vec![false]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![None])
);
assert_eq!(
get_corrected_filter_mask(
LeftSemi,
&UInt64Array::from(vec![0, 0]),
&[0usize; 2],
&BooleanArray::from(vec![true, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![Some(true), None])
);
assert_eq!(
get_corrected_filter_mask(
LeftSemi,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![true, true, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![Some(true), None, None])
);
assert_eq!(
get_corrected_filter_mask(
LeftSemi,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![true, false, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![Some(true), None, None])
);
assert_eq!(
get_corrected_filter_mask(
LeftSemi,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, false, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![None, None, Some(true),])
);
assert_eq!(
get_corrected_filter_mask(
LeftSemi,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, true, true]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![None, Some(true), None])
);
assert_eq!(
get_corrected_filter_mask(
LeftSemi,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, false, false]),
output.num_rows()
)
.unwrap(),
BooleanArray::from(vec![None, None, None])
);
let corrected_mask = get_corrected_filter_mask(
LeftSemi,
&out_indices,
&joined_batches.batch_ids,
&out_mask,
output.num_rows(),
)
.unwrap();
assert_eq!(
corrected_mask,
BooleanArray::from(vec![
Some(true),
None,
Some(true),
None,
Some(true),
None,
None,
None
])
);
let filtered_rb = filter_record_batch(&output, &corrected_mask)?;
assert_batches_eq!(
&[
"+---+----+---+----+",
"| a | b | x | y |",
"+---+----+---+----+",
"| 1 | 10 | 1 | 11 |",
"| 1 | 11 | 1 | 12 |",
"| 1 | 12 | 1 | 13 |",
"+---+----+---+----+",
],
&[filtered_rb]
);
let null_mask = arrow::compute::not(&corrected_mask)?;
assert_eq!(
null_mask,
BooleanArray::from(vec![
Some(false),
None,
Some(false),
None,
Some(false),
None,
None,
None
])
);
let null_joined_batch = filter_record_batch(&output, &null_mask)?;
assert_batches_eq!(
&[
"+---+---+---+---+",
"| a | b | x | y |",
"+---+---+---+---+",
"+---+---+---+---+",
],
&[null_joined_batch]
);
Ok(())
}
#[tokio::test]
async fn test_left_anti_join_filtered_mask() -> Result<()> {
let mut joined_batches = build_joined_record_batches()?;
let schema = joined_batches.batches.first().unwrap().schema();
let output = concat_batches(&schema, &joined_batches.batches)?;
let out_mask = joined_batches.filter_mask.finish();
let out_indices = joined_batches.row_indices.finish();
assert_eq!(
get_corrected_filter_mask(
LeftAnti,
&UInt64Array::from(vec![0]),
&[0usize],
&BooleanArray::from(vec![true]),
1
)
.unwrap(),
BooleanArray::from(vec![None])
);
assert_eq!(
get_corrected_filter_mask(
LeftAnti,
&UInt64Array::from(vec![0]),
&[0usize],
&BooleanArray::from(vec![false]),
1
)
.unwrap(),
BooleanArray::from(vec![Some(true)])
);
assert_eq!(
get_corrected_filter_mask(
LeftAnti,
&UInt64Array::from(vec![0, 0]),
&[0usize; 2],
&BooleanArray::from(vec![true, true]),
2
)
.unwrap(),
BooleanArray::from(vec![None, None])
);
assert_eq!(
get_corrected_filter_mask(
LeftAnti,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![true, true, true]),
3
)
.unwrap(),
BooleanArray::from(vec![None, None, None])
);
assert_eq!(
get_corrected_filter_mask(
LeftAnti,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![true, false, true]),
3
)
.unwrap(),
BooleanArray::from(vec![None, None, None])
);
assert_eq!(
get_corrected_filter_mask(
LeftAnti,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, false, true]),
3
)
.unwrap(),
BooleanArray::from(vec![None, None, None])
);
assert_eq!(
get_corrected_filter_mask(
LeftAnti,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, true, true]),
3
)
.unwrap(),
BooleanArray::from(vec![None, None, None])
);
assert_eq!(
get_corrected_filter_mask(
LeftAnti,
&UInt64Array::from(vec![0, 0, 0]),
&[0usize; 3],
&BooleanArray::from(vec![false, false, false]),
3
)
.unwrap(),
BooleanArray::from(vec![None, None, Some(true)])
);
let corrected_mask = get_corrected_filter_mask(
LeftAnti,
&out_indices,
&joined_batches.batch_ids,
&out_mask,
output.num_rows(),
)
.unwrap();
assert_eq!(
corrected_mask,
BooleanArray::from(vec![
None,
None,
None,
None,
None,
Some(true),
None,
Some(true)
])
);
let filtered_rb = filter_record_batch(&output, &corrected_mask)?;
assert_batches_eq!(
&[
"+---+----+---+----+",
"| a | b | x | y |",
"+---+----+---+----+",
"| 1 | 13 | 1 | 12 |",
"| 1 | 14 | 1 | 11 |",
"+---+----+---+----+",
],
&[filtered_rb]
);
let null_mask = arrow::compute::not(&corrected_mask)?;
assert_eq!(
null_mask,
BooleanArray::from(vec![
None,
None,
None,
None,
None,
Some(false),
None,
Some(false),
])
);
let null_joined_batch = filter_record_batch(&output, &null_mask)?;
assert_batches_eq!(
&[
"+---+---+---+---+",
"| a | b | x | y |",
"+---+---+---+---+",
"+---+---+---+---+",
],
&[null_joined_batch]
);
Ok(())
}
fn columns(schema: &Schema) -> Vec<String> {
schema.fields().iter().map(|f| f.name().clone()).collect()
}
}