datafusion_physical_plan/topk/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! TopK: Combination of Sort / LIMIT

use arrow::{
    compute::interleave,
    row::{RowConverter, Rows, SortField},
};
use std::mem::size_of;
use std::{cmp::Ordering, collections::BinaryHeap, sync::Arc};

use crate::{stream::RecordBatchStreamAdapter, SendableRecordBatchStream};
use arrow_array::{Array, ArrayRef, RecordBatch};
use arrow_schema::SchemaRef;
use datafusion_common::Result;
use datafusion_execution::{
    memory_pool::{MemoryConsumer, MemoryReservation},
    runtime_env::RuntimeEnv,
};
use datafusion_physical_expr::PhysicalSortExpr;
use datafusion_physical_expr_common::sort_expr::LexOrdering;
use hashbrown::HashMap;

use super::metrics::{BaselineMetrics, Count, ExecutionPlanMetricsSet, MetricBuilder};

/// Global TopK
///
/// # Background
///
/// "Top K" is a common query optimization used for queries such as
/// "find the top 3 customers by revenue". The (simplified) SQL for
/// such a query might be:
///
/// ```sql
/// SELECT customer_id, revenue FROM 'sales.csv' ORDER BY revenue DESC limit 3;
/// ```
///
/// The simple plan would be:
///
/// ```sql
/// > explain SELECT customer_id, revenue FROM sales ORDER BY revenue DESC limit 3;
/// +--------------+----------------------------------------+
/// | plan_type    | plan                                   |
/// +--------------+----------------------------------------+
/// | logical_plan | Limit: 3                               |
/// |              |   Sort: revenue DESC NULLS FIRST       |
/// |              |     Projection: customer_id, revenue   |
/// |              |       TableScan: sales                 |
/// +--------------+----------------------------------------+
/// ```
///
/// While this plan produces the correct answer, it will fully sorts the
/// input before discarding everything other than the top 3 elements.
///
/// The same answer can be produced by simply keeping track of the top
/// K=3 elements, reducing the total amount of required buffer memory.
///
/// # Structure
///
/// This operator tracks the top K items using a `TopKHeap`.
pub struct TopK {
    /// schema of the output (and the input)
    schema: SchemaRef,
    /// Runtime metrics
    metrics: TopKMetrics,
    /// Reservation
    reservation: MemoryReservation,
    /// The target number of rows for output batches
    batch_size: usize,
    /// sort expressions
    expr: Arc<[PhysicalSortExpr]>,
    /// row converter, for sort keys
    row_converter: RowConverter,
    /// scratch space for converting rows
    scratch_rows: Rows,
    /// stores the top k values and their sort key values, in order
    heap: TopKHeap,
}

impl TopK {
    /// Create a new [`TopK`] that stores the top `k` values, as
    /// defined by the sort expressions in `expr`.
    // TODO: make a builder or some other nicer API to avoid the
    // clippy warning
    #[allow(clippy::too_many_arguments)]
    pub fn try_new(
        partition_id: usize,
        schema: SchemaRef,
        expr: LexOrdering,
        k: usize,
        batch_size: usize,
        runtime: Arc<RuntimeEnv>,
        metrics: &ExecutionPlanMetricsSet,
        partition: usize,
    ) -> Result<Self> {
        let reservation = MemoryConsumer::new(format!("TopK[{partition_id}]"))
            .register(&runtime.memory_pool);

        let expr: Arc<[PhysicalSortExpr]> = expr.inner.into();

        let sort_fields: Vec<_> = expr
            .iter()
            .map(|e| {
                Ok(SortField::new_with_options(
                    e.expr.data_type(&schema)?,
                    e.options,
                ))
            })
            .collect::<Result<_>>()?;

        // TODO there is potential to add special cases for single column sort fields
        // to improve performance
        let row_converter = RowConverter::new(sort_fields)?;
        let scratch_rows = row_converter.empty_rows(
            batch_size,
            20 * batch_size, // guestimate 20 bytes per row
        );

        Ok(Self {
            schema: Arc::clone(&schema),
            metrics: TopKMetrics::new(metrics, partition),
            reservation,
            batch_size,
            expr,
            row_converter,
            scratch_rows,
            heap: TopKHeap::new(k, batch_size, schema),
        })
    }

    /// Insert `batch`, remembering if any of its values are among
    /// the top k seen so far.
    pub fn insert_batch(&mut self, batch: RecordBatch) -> Result<()> {
        // Updates on drop
        let _timer = self.metrics.baseline.elapsed_compute().timer();

        let sort_keys: Vec<ArrayRef> = self
            .expr
            .iter()
            .map(|expr| {
                let value = expr.expr.evaluate(&batch)?;
                value.into_array(batch.num_rows())
            })
            .collect::<Result<Vec<_>>>()?;

        // reuse existing `Rows` to avoid reallocations
        let rows = &mut self.scratch_rows;
        rows.clear();
        self.row_converter.append(rows, &sort_keys)?;

        // TODO make this algorithmically better?:
        // Idea: filter out rows >= self.heap.max() early (before passing to `RowConverter`)
        //       this avoids some work and also might be better vectorizable.
        let mut batch_entry = self.heap.register_batch(batch);
        for (index, row) in rows.iter().enumerate() {
            match self.heap.max() {
                // heap has k items, and the new row is greater than the
                // current max in the heap ==> it is not a new topk
                Some(max_row) if row.as_ref() >= max_row.row() => {}
                // don't yet have k items or new item is lower than the currently k low values
                None | Some(_) => {
                    self.heap.add(&mut batch_entry, row, index);
                    self.metrics.row_replacements.add(1);
                }
            }
        }
        self.heap.insert_batch_entry(batch_entry);

        // conserve memory
        self.heap.maybe_compact()?;

        // update memory reservation
        self.reservation.try_resize(self.size())?;
        Ok(())
    }

    /// Returns the top k results broken into `batch_size` [`RecordBatch`]es, consuming the heap
    pub fn emit(self) -> Result<SendableRecordBatchStream> {
        let Self {
            schema,
            metrics,
            reservation: _,
            batch_size,
            expr: _,
            row_converter: _,
            scratch_rows: _,
            mut heap,
        } = self;
        let _timer = metrics.baseline.elapsed_compute().timer(); // time updated on drop

        let mut batch = heap.emit()?;
        metrics.baseline.output_rows().add(batch.num_rows());

        // break into record batches as needed
        let mut batches = vec![];
        loop {
            if batch.num_rows() <= batch_size {
                batches.push(Ok(batch));
                break;
            } else {
                batches.push(Ok(batch.slice(0, batch_size)));
                let remaining_length = batch.num_rows() - batch_size;
                batch = batch.slice(batch_size, remaining_length);
            }
        }
        Ok(Box::pin(RecordBatchStreamAdapter::new(
            schema,
            futures::stream::iter(batches),
        )))
    }

    /// return the size of memory used by this operator, in bytes
    fn size(&self) -> usize {
        size_of::<Self>()
            + self.row_converter.size()
            + self.scratch_rows.size()
            + self.heap.size()
    }
}

struct TopKMetrics {
    /// metrics
    pub baseline: BaselineMetrics,

    /// count of how many rows were replaced in the heap
    pub row_replacements: Count,
}

impl TopKMetrics {
    fn new(metrics: &ExecutionPlanMetricsSet, partition: usize) -> Self {
        Self {
            baseline: BaselineMetrics::new(metrics, partition),
            row_replacements: MetricBuilder::new(metrics)
                .counter("row_replacements", partition),
        }
    }
}

/// This structure keeps at most the *smallest* k items, using the
/// [arrow::row] format for sort keys. While it is called "topK" for
/// values like `1, 2, 3, 4, 5` the "top 3" really means the
/// *smallest* 3 , `1, 2, 3`, not the *largest* 3 `3, 4, 5`.
///
/// Using the `Row` format handles things such as ascending vs
/// descending and nulls first vs nulls last.
struct TopKHeap {
    /// The maximum number of elements to store in this heap.
    k: usize,
    /// The target number of rows for output batches
    batch_size: usize,
    /// Storage for up at most `k` items using a BinaryHeap. Reverserd
    /// so that the smallest k so far is on the top
    inner: BinaryHeap<TopKRow>,
    /// Storage the original row values (TopKRow only has the sort key)
    store: RecordBatchStore,
    /// The size of all owned data held by this heap
    owned_bytes: usize,
}

impl TopKHeap {
    fn new(k: usize, batch_size: usize, schema: SchemaRef) -> Self {
        assert!(k > 0);
        Self {
            k,
            batch_size,
            inner: BinaryHeap::new(),
            store: RecordBatchStore::new(schema),
            owned_bytes: 0,
        }
    }

    /// Register a [`RecordBatch`] with the heap, returning the
    /// appropriate entry
    pub fn register_batch(&mut self, batch: RecordBatch) -> RecordBatchEntry {
        self.store.register(batch)
    }

    /// Insert a [`RecordBatchEntry`] created by a previous call to
    /// [`Self::register_batch`] into storage.
    pub fn insert_batch_entry(&mut self, entry: RecordBatchEntry) {
        self.store.insert(entry)
    }

    /// Returns the largest value stored by the heap if there are k
    /// items, otherwise returns None. Remember this structure is
    /// keeping the "smallest" k values
    fn max(&self) -> Option<&TopKRow> {
        if self.inner.len() < self.k {
            None
        } else {
            self.inner.peek()
        }
    }

    /// Adds `row` to this heap. If inserting this new item would
    /// increase the size past `k`, removes the previously smallest
    /// item.
    fn add(
        &mut self,
        batch_entry: &mut RecordBatchEntry,
        row: impl AsRef<[u8]>,
        index: usize,
    ) {
        let batch_id = batch_entry.id;
        batch_entry.uses += 1;

        assert!(self.inner.len() <= self.k);
        let row = row.as_ref();

        // Reuse storage for evicted item if possible
        let new_top_k = if self.inner.len() == self.k {
            let prev_min = self.inner.pop().unwrap();

            // Update batch use
            if prev_min.batch_id == batch_entry.id {
                batch_entry.uses -= 1;
            } else {
                self.store.unuse(prev_min.batch_id);
            }

            // update memory accounting
            self.owned_bytes -= prev_min.owned_size();
            prev_min.with_new_row(row, batch_id, index)
        } else {
            TopKRow::new(row, batch_id, index)
        };

        self.owned_bytes += new_top_k.owned_size();

        // put the new row into the heap
        self.inner.push(new_top_k)
    }

    /// Returns the values stored in this heap, from values low to
    /// high, as a single [`RecordBatch`], resetting the inner heap
    pub fn emit(&mut self) -> Result<RecordBatch> {
        Ok(self.emit_with_state()?.0)
    }

    /// Returns the values stored in this heap, from values low to
    /// high, as a single [`RecordBatch`], and a sorted vec of the
    /// current heap's contents
    pub fn emit_with_state(&mut self) -> Result<(RecordBatch, Vec<TopKRow>)> {
        let schema = Arc::clone(self.store.schema());

        // generate sorted rows
        let topk_rows = std::mem::take(&mut self.inner).into_sorted_vec();

        if self.store.is_empty() {
            return Ok((RecordBatch::new_empty(schema), topk_rows));
        }

        // Indices for each row within its respective RecordBatch
        let indices: Vec<_> = topk_rows
            .iter()
            .enumerate()
            .map(|(i, k)| (i, k.index))
            .collect();

        let num_columns = schema.fields().len();

        // build the output columns one at time, using the
        // `interleave` kernel to pick rows from different arrays
        let output_columns: Vec<_> = (0..num_columns)
            .map(|col| {
                let input_arrays: Vec<_> = topk_rows
                    .iter()
                    .map(|k| {
                        let entry =
                            self.store.get(k.batch_id).expect("invalid stored batch id");
                        entry.batch.column(col) as &dyn Array
                    })
                    .collect();

                // at this point `indices` contains indexes within the
                // rows and `input_arrays` contains a reference to the
                // relevant Array for that index. `interleave` pulls
                // them together into a single new array
                Ok(interleave(&input_arrays, &indices)?)
            })
            .collect::<Result<_>>()?;

        let new_batch = RecordBatch::try_new(schema, output_columns)?;
        Ok((new_batch, topk_rows))
    }

    /// Compact this heap, rewriting all stored batches into a single
    /// input batch
    pub fn maybe_compact(&mut self) -> Result<()> {
        // we compact if the number of "unused" rows in the store is
        // past some pre-defined threshold. Target holding up to
        // around 20 batches, but handle cases of large k where some
        // batches might be partially full
        let max_unused_rows = (20 * self.batch_size) + self.k;
        let unused_rows = self.store.unused_rows();

        // don't compact if the store has one extra batch or
        // unused rows is under the threshold
        if self.store.len() <= 2 || unused_rows < max_unused_rows {
            return Ok(());
        }
        // at first, compact the entire thing always into a new batch
        // (maybe we can get fancier in the future about ignoring
        // batches that have a high usage ratio already

        // Note: new batch is in the same order as inner
        let num_rows = self.inner.len();
        let (new_batch, mut topk_rows) = self.emit_with_state()?;

        // clear all old entries in store (this invalidates all
        // store_ids in `inner`)
        self.store.clear();

        let mut batch_entry = self.register_batch(new_batch);
        batch_entry.uses = num_rows;

        // rewrite all existing entries to use the new batch, and
        // remove old entries. The sortedness and their relative
        // position do not change
        for (i, topk_row) in topk_rows.iter_mut().enumerate() {
            topk_row.batch_id = batch_entry.id;
            topk_row.index = i;
        }
        self.insert_batch_entry(batch_entry);
        // restore the heap
        self.inner = BinaryHeap::from(topk_rows);

        Ok(())
    }

    /// return the size of memory used by this heap, in bytes
    fn size(&self) -> usize {
        size_of::<Self>()
            + (self.inner.capacity() * size_of::<TopKRow>())
            + self.store.size()
            + self.owned_bytes
    }
}

/// Represents one of the top K rows held in this heap. Orders
/// according to memcmp of row (e.g. the arrow Row format, but could
/// also be primitive values)
///
/// Reuses allocations to minimize runtime overhead of creating new Vecs
#[derive(Debug, PartialEq)]
struct TopKRow {
    /// the value of the sort key for this row. This contains the
    /// bytes that could be stored in `OwnedRow` but uses `Vec<u8>` to
    /// reuse allocations.
    row: Vec<u8>,
    /// the RecordBatch this row came from: an id into a [`RecordBatchStore`]
    batch_id: u32,
    /// the index in this record batch the row came from
    index: usize,
}

impl TopKRow {
    /// Create a new TopKRow with new allocation
    fn new(row: impl AsRef<[u8]>, batch_id: u32, index: usize) -> Self {
        Self {
            row: row.as_ref().to_vec(),
            batch_id,
            index,
        }
    }

    /// Create a new  TopKRow reusing the existing allocation
    fn with_new_row(
        self,
        new_row: impl AsRef<[u8]>,
        batch_id: u32,
        index: usize,
    ) -> Self {
        let Self {
            mut row,
            batch_id: _,
            index: _,
        } = self;
        row.clear();
        row.extend_from_slice(new_row.as_ref());

        Self {
            row,
            batch_id,
            index,
        }
    }

    /// Returns the number of bytes owned by this row in the heap (not
    /// including itself)
    fn owned_size(&self) -> usize {
        self.row.capacity()
    }

    /// Returns a slice to the owned row value
    fn row(&self) -> &[u8] {
        self.row.as_slice()
    }
}

impl Eq for TopKRow {}

impl PartialOrd for TopKRow {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for TopKRow {
    fn cmp(&self, other: &Self) -> Ordering {
        self.row.cmp(&other.row)
    }
}

#[derive(Debug)]
struct RecordBatchEntry {
    id: u32,
    batch: RecordBatch,
    // for this batch, how many times has it been used
    uses: usize,
}

/// This structure tracks [`RecordBatch`] by an id so that:
///
/// 1. The baches can be tracked via an id that can be copied cheaply
/// 2. The total memory held by all batches is tracked
#[derive(Debug)]
struct RecordBatchStore {
    /// id generator
    next_id: u32,
    /// storage
    batches: HashMap<u32, RecordBatchEntry>,
    /// total size of all record batches tracked by this store
    batches_size: usize,
    /// schema of the batches
    schema: SchemaRef,
}

impl RecordBatchStore {
    fn new(schema: SchemaRef) -> Self {
        Self {
            next_id: 0,
            batches: HashMap::new(),
            batches_size: 0,
            schema,
        }
    }

    /// Register this batch with the store and assign an ID. No
    /// attempt is made to compare this batch to other batches
    pub fn register(&mut self, batch: RecordBatch) -> RecordBatchEntry {
        let id = self.next_id;
        self.next_id += 1;
        RecordBatchEntry { id, batch, uses: 0 }
    }

    /// Insert a record batch entry into this store, tracking its
    /// memory use, if it has any uses
    pub fn insert(&mut self, entry: RecordBatchEntry) {
        // uses of 0 means that none of the rows in the batch were stored in the topk
        if entry.uses > 0 {
            self.batches_size += entry.batch.get_array_memory_size();
            self.batches.insert(entry.id, entry);
        }
    }

    /// Clear all values in this store, invalidating all previous batch ids
    fn clear(&mut self) {
        self.batches.clear();
        self.batches_size = 0;
    }

    fn get(&self, id: u32) -> Option<&RecordBatchEntry> {
        self.batches.get(&id)
    }

    /// returns the total number of batches stored in this store
    fn len(&self) -> usize {
        self.batches.len()
    }

    /// Returns the total number of rows in batches minus the number
    /// which are in use
    fn unused_rows(&self) -> usize {
        self.batches
            .values()
            .map(|batch_entry| batch_entry.batch.num_rows() - batch_entry.uses)
            .sum()
    }

    /// returns true if the store has nothing stored
    fn is_empty(&self) -> bool {
        self.batches.is_empty()
    }

    /// return the schema of batches stored
    fn schema(&self) -> &SchemaRef {
        &self.schema
    }

    /// remove a use from the specified batch id. If the use count
    /// reaches zero the batch entry is removed from the store
    ///
    /// panics if there were no remaining uses of id
    pub fn unuse(&mut self, id: u32) {
        let remove = if let Some(batch_entry) = self.batches.get_mut(&id) {
            batch_entry.uses = batch_entry.uses.checked_sub(1).expect("underflow");
            batch_entry.uses == 0
        } else {
            panic!("No entry for id {id}");
        };

        if remove {
            let old_entry = self.batches.remove(&id).unwrap();
            self.batches_size = self
                .batches_size
                .checked_sub(old_entry.batch.get_array_memory_size())
                .unwrap();
        }
    }

    /// returns the size of memory used by this store, including all
    /// referenced `RecordBatch`es, in bytes
    pub fn size(&self) -> usize {
        size_of::<Self>()
            + self.batches.capacity() * (size_of::<u32>() + size_of::<RecordBatchEntry>())
            + self.batches_size
    }
}