datafusion_physical_plan/windows/bounded_window_agg_exec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Stream and channel implementations for window function expressions.
//! The executor given here uses bounded memory (does not maintain all
//! the input data seen so far), which makes it appropriate when processing
//! infinite inputs.
use std::any::Any;
use std::cmp::{min, Ordering};
use std::collections::{HashMap, VecDeque};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use super::utils::create_schema;
use crate::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use crate::windows::{
calc_requirements, get_ordered_partition_by_indices, get_partition_by_sort_exprs,
window_equivalence_properties,
};
use crate::{
ColumnStatistics, DisplayAs, DisplayFormatType, Distribution, ExecutionPlan,
ExecutionPlanProperties, InputOrderMode, PlanProperties, RecordBatchStream,
SendableRecordBatchStream, Statistics, WindowExpr,
};
use ahash::RandomState;
use arrow::compute::take_record_batch;
use arrow::{
array::{Array, ArrayRef, RecordBatchOptions, UInt32Builder},
compute::{concat, concat_batches, sort_to_indices, take_arrays},
datatypes::SchemaRef,
record_batch::RecordBatch,
};
use datafusion_common::hash_utils::create_hashes;
use datafusion_common::stats::Precision;
use datafusion_common::utils::{
evaluate_partition_ranges, get_at_indices, get_row_at_idx,
};
use datafusion_common::{arrow_datafusion_err, exec_err, DataFusionError, Result};
use datafusion_execution::TaskContext;
use datafusion_expr::window_state::{PartitionBatchState, WindowAggState};
use datafusion_expr::ColumnarValue;
use datafusion_physical_expr::window::{
PartitionBatches, PartitionKey, PartitionWindowAggStates, WindowState,
};
use datafusion_physical_expr::PhysicalExpr;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, LexRequirement};
use futures::stream::Stream;
use futures::{ready, StreamExt};
use hashbrown::raw::RawTable;
use indexmap::IndexMap;
use log::debug;
/// Window execution plan
#[derive(Debug, Clone)]
pub struct BoundedWindowAggExec {
/// Input plan
input: Arc<dyn ExecutionPlan>,
/// Window function expression
window_expr: Vec<Arc<dyn WindowExpr>>,
/// Schema after the window is run
schema: SchemaRef,
/// Partition Keys
pub partition_keys: Vec<Arc<dyn PhysicalExpr>>,
/// Execution metrics
metrics: ExecutionPlanMetricsSet,
/// Describes how the input is ordered relative to the partition keys
pub input_order_mode: InputOrderMode,
/// Partition by indices that define ordering
// For example, if input ordering is ORDER BY a, b and window expression
// contains PARTITION BY b, a; `ordered_partition_by_indices` would be 1, 0.
// Similarly, if window expression contains PARTITION BY a, b; then
// `ordered_partition_by_indices` would be 0, 1.
// See `get_ordered_partition_by_indices` for more details.
ordered_partition_by_indices: Vec<usize>,
/// Cache holding plan properties like equivalences, output partitioning etc.
cache: PlanProperties,
}
impl BoundedWindowAggExec {
/// Create a new execution plan for window aggregates
pub fn try_new(
window_expr: Vec<Arc<dyn WindowExpr>>,
input: Arc<dyn ExecutionPlan>,
partition_keys: Vec<Arc<dyn PhysicalExpr>>,
input_order_mode: InputOrderMode,
) -> Result<Self> {
let schema = create_schema(&input.schema(), &window_expr)?;
let schema = Arc::new(schema);
let partition_by_exprs = window_expr[0].partition_by();
let ordered_partition_by_indices = match &input_order_mode {
InputOrderMode::Sorted => {
let indices = get_ordered_partition_by_indices(
window_expr[0].partition_by(),
&input,
);
if indices.len() == partition_by_exprs.len() {
indices
} else {
(0..partition_by_exprs.len()).collect::<Vec<_>>()
}
}
InputOrderMode::PartiallySorted(ordered_indices) => ordered_indices.clone(),
InputOrderMode::Linear => {
vec![]
}
};
let cache = Self::compute_properties(&input, &schema, &window_expr);
Ok(Self {
input,
window_expr,
schema,
partition_keys,
metrics: ExecutionPlanMetricsSet::new(),
input_order_mode,
ordered_partition_by_indices,
cache,
})
}
/// Window expressions
pub fn window_expr(&self) -> &[Arc<dyn WindowExpr>] {
&self.window_expr
}
/// Input plan
pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
&self.input
}
/// Return the output sort order of partition keys: For example
/// OVER(PARTITION BY a, ORDER BY b) -> would give sorting of the column a
// We are sure that partition by columns are always at the beginning of sort_keys
// Hence returned `PhysicalSortExpr` corresponding to `PARTITION BY` columns can be used safely
// to calculate partition separation points
pub fn partition_by_sort_keys(&self) -> Result<LexOrdering> {
let partition_by = self.window_expr()[0].partition_by();
get_partition_by_sort_exprs(
&self.input,
partition_by,
&self.ordered_partition_by_indices,
)
}
/// Initializes the appropriate [`PartitionSearcher`] implementation from
/// the state.
fn get_search_algo(&self) -> Result<Box<dyn PartitionSearcher>> {
let partition_by_sort_keys = self.partition_by_sort_keys()?;
let ordered_partition_by_indices = self.ordered_partition_by_indices.clone();
let input_schema = self.input().schema();
Ok(match &self.input_order_mode {
InputOrderMode::Sorted => {
// In Sorted mode, all partition by columns should be ordered.
if self.window_expr()[0].partition_by().len()
!= ordered_partition_by_indices.len()
{
return exec_err!("All partition by columns should have an ordering in Sorted mode.");
}
Box::new(SortedSearch {
partition_by_sort_keys,
ordered_partition_by_indices,
input_schema,
})
}
InputOrderMode::Linear | InputOrderMode::PartiallySorted(_) => Box::new(
LinearSearch::new(ordered_partition_by_indices, input_schema),
),
})
}
/// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
fn compute_properties(
input: &Arc<dyn ExecutionPlan>,
schema: &SchemaRef,
window_expr: &[Arc<dyn WindowExpr>],
) -> PlanProperties {
// Calculate equivalence properties:
let eq_properties = window_equivalence_properties(schema, input, window_expr);
// As we can have repartitioning using the partition keys, this can
// be either one or more than one, depending on the presence of
// repartitioning.
let output_partitioning = input.output_partitioning().clone();
// Construct properties cache
PlanProperties::new(
eq_properties, // Equivalence Properties
output_partitioning, // Output Partitioning
input.execution_mode(), // Execution Mode
)
}
}
impl DisplayAs for BoundedWindowAggExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "BoundedWindowAggExec: ")?;
let g: Vec<String> = self
.window_expr
.iter()
.map(|e| {
format!(
"{}: {:?}, frame: {:?}",
e.name().to_owned(),
e.field(),
e.get_window_frame()
)
})
.collect();
let mode = &self.input_order_mode;
write!(f, "wdw=[{}], mode=[{:?}]", g.join(", "), mode)?;
}
}
Ok(())
}
}
impl ExecutionPlan for BoundedWindowAggExec {
fn name(&self) -> &'static str {
"BoundedWindowAggExec"
}
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![&self.input]
}
fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
let partition_bys = self.window_expr()[0].partition_by();
let order_keys = self.window_expr()[0].order_by();
let partition_bys = self
.ordered_partition_by_indices
.iter()
.map(|idx| &partition_bys[*idx]);
vec![calc_requirements(partition_bys, order_keys.iter())]
}
fn required_input_distribution(&self) -> Vec<Distribution> {
if self.partition_keys.is_empty() {
debug!("No partition defined for BoundedWindowAggExec!!!");
vec![Distribution::SinglePartition]
} else {
vec![Distribution::HashPartitioned(self.partition_keys.clone())]
}
}
fn maintains_input_order(&self) -> Vec<bool> {
vec![true]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(BoundedWindowAggExec::try_new(
self.window_expr.clone(),
Arc::clone(&children[0]),
self.partition_keys.clone(),
self.input_order_mode.clone(),
)?))
}
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
let input = self.input.execute(partition, context)?;
let search_mode = self.get_search_algo()?;
let stream = Box::pin(BoundedWindowAggStream::new(
Arc::clone(&self.schema),
self.window_expr.clone(),
input,
BaselineMetrics::new(&self.metrics, partition),
search_mode,
)?);
Ok(stream)
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Result<Statistics> {
let input_stat = self.input.statistics()?;
let win_cols = self.window_expr.len();
let input_cols = self.input.schema().fields().len();
// TODO stats: some windowing function will maintain invariants such as min, max...
let mut column_statistics = Vec::with_capacity(win_cols + input_cols);
// copy stats of the input to the beginning of the schema.
column_statistics.extend(input_stat.column_statistics);
for _ in 0..win_cols {
column_statistics.push(ColumnStatistics::new_unknown())
}
Ok(Statistics {
num_rows: input_stat.num_rows,
column_statistics,
total_byte_size: Precision::Absent,
})
}
}
/// Trait that specifies how we search for (or calculate) partitions. It has two
/// implementations: [`SortedSearch`] and [`LinearSearch`].
trait PartitionSearcher: Send {
/// This method constructs output columns using the result of each window expression
/// (each entry in the output vector comes from a window expression).
/// Executor when producing output concatenates `input_buffer` (corresponding section), and
/// result of this function to generate output `RecordBatch`. `input_buffer` is used to determine
/// which sections of the window expression results should be used to generate output.
/// `partition_buffers` contains corresponding section of the `RecordBatch` for each partition.
/// `window_agg_states` stores per partition state for each window expression.
/// None case means that no result is generated
/// `Some(Vec<ArrayRef>)` is the result of each window expression.
fn calculate_out_columns(
&mut self,
input_buffer: &RecordBatch,
window_agg_states: &[PartitionWindowAggStates],
partition_buffers: &mut PartitionBatches,
window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Option<Vec<ArrayRef>>>;
/// Determine whether `[InputOrderMode]` is `[InputOrderMode::Linear]` or not.
fn is_mode_linear(&self) -> bool {
false
}
// Constructs corresponding batches for each partition for the record_batch.
fn evaluate_partition_batches(
&mut self,
record_batch: &RecordBatch,
window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Vec<(PartitionKey, RecordBatch)>>;
/// Prunes the state.
fn prune(&mut self, _n_out: usize) {}
/// Marks the partition as done if we are sure that corresponding partition
/// cannot receive any more values.
fn mark_partition_end(&self, partition_buffers: &mut PartitionBatches);
/// Updates `input_buffer` and `partition_buffers` with the new `record_batch`.
fn update_partition_batch(
&mut self,
input_buffer: &mut RecordBatch,
record_batch: RecordBatch,
window_expr: &[Arc<dyn WindowExpr>],
partition_buffers: &mut PartitionBatches,
) -> Result<()> {
if record_batch.num_rows() == 0 {
return Ok(());
}
let partition_batches =
self.evaluate_partition_batches(&record_batch, window_expr)?;
for (partition_row, partition_batch) in partition_batches {
let partition_batch_state = partition_buffers
.entry(partition_row)
// Use input_schema for the buffer schema, not `record_batch.schema()`
// as it may not have the "correct" schema in terms of output
// nullability constraints. For details, see the following issue:
// https://github.com/apache/datafusion/issues/9320
.or_insert_with(|| {
PartitionBatchState::new(Arc::clone(self.input_schema()))
});
partition_batch_state.extend(&partition_batch)?;
}
if self.is_mode_linear() {
// In `Linear` mode, it is guaranteed that the first ORDER BY column
// is sorted across partitions. Note that only the first ORDER BY
// column is guaranteed to be ordered. As a counter example, consider
// the case, `PARTITION BY b, ORDER BY a, c` when the input is sorted
// by `[a, b, c]`. In this case, `BoundedWindowAggExec` mode will be
// `Linear`. However, we cannot guarantee that the last row of the
// input data will be the "last" data in terms of the ordering requirement
// `[a, c]` -- it will be the "last" data in terms of `[a, b, c]`.
// Hence, only column `a` should be used as a guarantee of the "last"
// data across partitions. For other modes (`Sorted`, `PartiallySorted`),
// we do not need to keep track of the most recent row guarantee across
// partitions. Since leading ordering separates partitions, guaranteed
// by the most recent row, already prune the previous partitions completely.
let last_row = get_last_row_batch(&record_batch)?;
for (_, partition_batch) in partition_buffers.iter_mut() {
partition_batch.set_most_recent_row(last_row.clone());
}
}
self.mark_partition_end(partition_buffers);
*input_buffer = if input_buffer.num_rows() == 0 {
record_batch
} else {
concat_batches(self.input_schema(), [input_buffer, &record_batch])?
};
Ok(())
}
fn input_schema(&self) -> &SchemaRef;
}
/// This object encapsulates the algorithm state for a simple linear scan
/// algorithm for computing partitions.
pub struct LinearSearch {
/// Keeps the hash of input buffer calculated from PARTITION BY columns.
/// Its length is equal to the `input_buffer` length.
input_buffer_hashes: VecDeque<u64>,
/// Used during hash value calculation.
random_state: RandomState,
/// Input ordering and partition by key ordering need not be the same, so
/// this vector stores the mapping between them. For instance, if the input
/// is ordered by a, b and the window expression contains a PARTITION BY b, a
/// clause, this attribute stores [1, 0].
ordered_partition_by_indices: Vec<usize>,
/// We use this [`RawTable`] to calculate unique partitions for each new
/// RecordBatch. First entry in the tuple is the hash value, the second
/// entry is the unique ID for each partition (increments from 0 to n).
row_map_batch: RawTable<(u64, usize)>,
/// We use this [`RawTable`] to calculate the output columns that we can
/// produce at each cycle. First entry in the tuple is the hash value, the
/// second entry is the unique ID for each partition (increments from 0 to n).
/// The third entry stores how many new outputs are calculated for the
/// corresponding partition.
row_map_out: RawTable<(u64, usize, usize)>,
input_schema: SchemaRef,
}
impl PartitionSearcher for LinearSearch {
/// This method constructs output columns using the result of each window expression.
// Assume input buffer is | Partition Buffers would be (Where each partition and its data is seperated)
// a, 2 | a, 2
// b, 2 | a, 2
// a, 2 | a, 2
// b, 2 |
// a, 2 | b, 2
// b, 2 | b, 2
// b, 2 | b, 2
// | b, 2
// Also assume we happen to calculate 2 new values for a, and 3 for b (To be calculate missing values we may need to consider future values).
// Partition buffers effectively will be
// a, 2, 1
// a, 2, 2
// a, 2, (missing)
//
// b, 2, 1
// b, 2, 2
// b, 2, 3
// b, 2, (missing)
// When partition buffers are mapped back to the original record batch. Result becomes
// a, 2, 1
// b, 2, 1
// a, 2, 2
// b, 2, 2
// a, 2, (missing)
// b, 2, 3
// b, 2, (missing)
// This function calculates the column result of window expression(s) (First 4 entry of 3rd column in the above section.)
// 1
// 1
// 2
// 2
// Above section corresponds to calculated result which can be emitted without breaking input buffer ordering.
fn calculate_out_columns(
&mut self,
input_buffer: &RecordBatch,
window_agg_states: &[PartitionWindowAggStates],
partition_buffers: &mut PartitionBatches,
window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Option<Vec<ArrayRef>>> {
let partition_output_indices = self.calc_partition_output_indices(
input_buffer,
window_agg_states,
window_expr,
)?;
let n_window_col = window_agg_states.len();
let mut new_columns = vec![vec![]; n_window_col];
// Size of all_indices can be at most input_buffer.num_rows():
let mut all_indices = UInt32Builder::with_capacity(input_buffer.num_rows());
for (row, indices) in partition_output_indices {
let length = indices.len();
for (idx, window_agg_state) in window_agg_states.iter().enumerate() {
let partition = &window_agg_state[&row];
let values = Arc::clone(&partition.state.out_col.slice(0, length));
new_columns[idx].push(values);
}
let partition_batch_state = &mut partition_buffers[&row];
// Store how many rows are generated for each partition
partition_batch_state.n_out_row = length;
// For each row keep corresponding index in the input record batch
all_indices.append_slice(&indices);
}
let all_indices = all_indices.finish();
if all_indices.is_empty() {
// We couldn't generate any new value, return early:
return Ok(None);
}
// Concatenate results for each column by converting `Vec<Vec<ArrayRef>>`
// to Vec<ArrayRef> where inner `Vec<ArrayRef>`s are converted to `ArrayRef`s.
let new_columns = new_columns
.iter()
.map(|items| {
concat(&items.iter().map(|e| e.as_ref()).collect::<Vec<_>>())
.map_err(|e| arrow_datafusion_err!(e))
})
.collect::<Result<Vec<_>>>()?;
// We should emit columns according to row index ordering.
let sorted_indices = sort_to_indices(&all_indices, None, None)?;
// Construct new column according to row ordering. This fixes ordering
take_arrays(&new_columns, &sorted_indices, None)
.map(Some)
.map_err(|e| arrow_datafusion_err!(e))
}
fn evaluate_partition_batches(
&mut self,
record_batch: &RecordBatch,
window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Vec<(PartitionKey, RecordBatch)>> {
let partition_bys =
evaluate_partition_by_column_values(record_batch, window_expr)?;
// NOTE: In Linear or PartiallySorted modes, we are sure that
// `partition_bys` are not empty.
// Calculate indices for each partition and construct a new record
// batch from the rows at these indices for each partition:
self.get_per_partition_indices(&partition_bys, record_batch)?
.into_iter()
.map(|(row, indices)| {
let mut new_indices = UInt32Builder::with_capacity(indices.len());
new_indices.append_slice(&indices);
let indices = new_indices.finish();
Ok((row, take_record_batch(record_batch, &indices)?))
})
.collect()
}
fn prune(&mut self, n_out: usize) {
// Delete hashes for the rows that are outputted.
self.input_buffer_hashes.drain(0..n_out);
}
fn mark_partition_end(&self, partition_buffers: &mut PartitionBatches) {
// We should be in the `PartiallySorted` case, otherwise we can not
// tell when we are at the end of a given partition.
if !self.ordered_partition_by_indices.is_empty() {
if let Some((last_row, _)) = partition_buffers.last() {
let last_sorted_cols = self
.ordered_partition_by_indices
.iter()
.map(|idx| last_row[*idx].clone())
.collect::<Vec<_>>();
for (row, partition_batch_state) in partition_buffers.iter_mut() {
let sorted_cols = self
.ordered_partition_by_indices
.iter()
.map(|idx| &row[*idx]);
// All the partitions other than `last_sorted_cols` are done.
// We are sure that we will no longer receive values for these
// partitions (arrival of a new value would violate ordering).
partition_batch_state.is_end = !sorted_cols.eq(&last_sorted_cols);
}
}
}
}
fn is_mode_linear(&self) -> bool {
self.ordered_partition_by_indices.is_empty()
}
fn input_schema(&self) -> &SchemaRef {
&self.input_schema
}
}
impl LinearSearch {
/// Initialize a new [`LinearSearch`] partition searcher.
fn new(ordered_partition_by_indices: Vec<usize>, input_schema: SchemaRef) -> Self {
LinearSearch {
input_buffer_hashes: VecDeque::new(),
random_state: Default::default(),
ordered_partition_by_indices,
row_map_batch: RawTable::with_capacity(256),
row_map_out: RawTable::with_capacity(256),
input_schema,
}
}
/// Calculate indices of each partition (according to PARTITION BY expression)
/// `columns` contain partition by expression results.
fn get_per_partition_indices(
&mut self,
columns: &[ArrayRef],
batch: &RecordBatch,
) -> Result<Vec<(PartitionKey, Vec<u32>)>> {
let mut batch_hashes = vec![0; batch.num_rows()];
create_hashes(columns, &self.random_state, &mut batch_hashes)?;
self.input_buffer_hashes.extend(&batch_hashes);
// reset row_map for new calculation
self.row_map_batch.clear();
// res stores PartitionKey and row indices (indices where these partition occurs in the `batch`) for each partition.
let mut result: Vec<(PartitionKey, Vec<u32>)> = vec![];
for (hash, row_idx) in batch_hashes.into_iter().zip(0u32..) {
let entry = self.row_map_batch.get_mut(hash, |(_, group_idx)| {
// We can safely get the first index of the partition indices
// since partition indices has one element during initialization.
let row = get_row_at_idx(columns, row_idx as usize).unwrap();
// Handle hash collusions with an equality check:
row.eq(&result[*group_idx].0)
});
if let Some((_, group_idx)) = entry {
result[*group_idx].1.push(row_idx)
} else {
self.row_map_batch
.insert(hash, (hash, result.len()), |(hash, _)| *hash);
let row = get_row_at_idx(columns, row_idx as usize)?;
// This is a new partition its only index is row_idx for now.
result.push((row, vec![row_idx]));
}
}
Ok(result)
}
/// Calculates partition keys and result indices for each partition.
/// The return value is a vector of tuples where the first entry stores
/// the partition key (unique for each partition) and the second entry
/// stores indices of the rows for which the partition is constructed.
fn calc_partition_output_indices(
&mut self,
input_buffer: &RecordBatch,
window_agg_states: &[PartitionWindowAggStates],
window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Vec<(PartitionKey, Vec<u32>)>> {
let partition_by_columns =
evaluate_partition_by_column_values(input_buffer, window_expr)?;
// Reset the row_map state:
self.row_map_out.clear();
let mut partition_indices: Vec<(PartitionKey, Vec<u32>)> = vec![];
for (hash, row_idx) in self.input_buffer_hashes.iter().zip(0u32..) {
let entry = self.row_map_out.get_mut(*hash, |(_, group_idx, _)| {
let row =
get_row_at_idx(&partition_by_columns, row_idx as usize).unwrap();
row == partition_indices[*group_idx].0
});
if let Some((_, group_idx, n_out)) = entry {
let (_, indices) = &mut partition_indices[*group_idx];
if indices.len() >= *n_out {
break;
}
indices.push(row_idx);
} else {
let row = get_row_at_idx(&partition_by_columns, row_idx as usize)?;
let min_out = window_agg_states
.iter()
.map(|window_agg_state| {
window_agg_state
.get(&row)
.map(|partition| partition.state.out_col.len())
.unwrap_or(0)
})
.min()
.unwrap_or(0);
if min_out == 0 {
break;
}
self.row_map_out.insert(
*hash,
(*hash, partition_indices.len(), min_out),
|(hash, _, _)| *hash,
);
partition_indices.push((row, vec![row_idx]));
}
}
Ok(partition_indices)
}
}
/// This object encapsulates the algorithm state for sorted searching
/// when computing partitions.
pub struct SortedSearch {
/// Stores partition by columns and their ordering information
partition_by_sort_keys: LexOrdering,
/// Input ordering and partition by key ordering need not be the same, so
/// this vector stores the mapping between them. For instance, if the input
/// is ordered by a, b and the window expression contains a PARTITION BY b, a
/// clause, this attribute stores [1, 0].
ordered_partition_by_indices: Vec<usize>,
input_schema: SchemaRef,
}
impl PartitionSearcher for SortedSearch {
/// This method constructs new output columns using the result of each window expression.
fn calculate_out_columns(
&mut self,
_input_buffer: &RecordBatch,
window_agg_states: &[PartitionWindowAggStates],
partition_buffers: &mut PartitionBatches,
_window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Option<Vec<ArrayRef>>> {
let n_out = self.calculate_n_out_row(window_agg_states, partition_buffers);
if n_out == 0 {
Ok(None)
} else {
window_agg_states
.iter()
.map(|map| get_aggregate_result_out_column(map, n_out).map(Some))
.collect()
}
}
fn evaluate_partition_batches(
&mut self,
record_batch: &RecordBatch,
_window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Vec<(PartitionKey, RecordBatch)>> {
let num_rows = record_batch.num_rows();
// Calculate result of partition by column expressions
let partition_columns = self
.partition_by_sort_keys
.iter()
.map(|elem| elem.evaluate_to_sort_column(record_batch))
.collect::<Result<Vec<_>>>()?;
// Reorder `partition_columns` such that its ordering matches input ordering.
let partition_columns_ordered =
get_at_indices(&partition_columns, &self.ordered_partition_by_indices)?;
let partition_points =
evaluate_partition_ranges(num_rows, &partition_columns_ordered)?;
let partition_bys = partition_columns
.into_iter()
.map(|arr| arr.values)
.collect::<Vec<ArrayRef>>();
partition_points
.iter()
.map(|range| {
let row = get_row_at_idx(&partition_bys, range.start)?;
let len = range.end - range.start;
let slice = record_batch.slice(range.start, len);
Ok((row, slice))
})
.collect::<Result<Vec<_>>>()
}
fn mark_partition_end(&self, partition_buffers: &mut PartitionBatches) {
// In Sorted case. We can mark all partitions besides last partition as ended.
// We are sure that those partitions will never receive any values.
// (Otherwise ordering invariant is violated.)
let n_partitions = partition_buffers.len();
for (idx, (_, partition_batch_state)) in partition_buffers.iter_mut().enumerate()
{
partition_batch_state.is_end |= idx < n_partitions - 1;
}
}
fn input_schema(&self) -> &SchemaRef {
&self.input_schema
}
}
impl SortedSearch {
/// Calculates how many rows we can output.
fn calculate_n_out_row(
&mut self,
window_agg_states: &[PartitionWindowAggStates],
partition_buffers: &mut PartitionBatches,
) -> usize {
// Different window aggregators may produce results at different rates.
// We produce the overall batch result only as fast as the slowest one.
let mut counts = vec![];
let out_col_counts = window_agg_states.iter().map(|window_agg_state| {
// Store how many elements are generated for the current
// window expression:
let mut cur_window_expr_out_result_len = 0;
// We iterate over `window_agg_state`, which is an IndexMap.
// Iterations follow the insertion order, hence we preserve
// sorting when partition columns are sorted.
let mut per_partition_out_results = HashMap::new();
for (row, WindowState { state, .. }) in window_agg_state.iter() {
cur_window_expr_out_result_len += state.out_col.len();
let count = per_partition_out_results.entry(row).or_insert(0);
if *count < state.out_col.len() {
*count = state.out_col.len();
}
// If we do not generate all results for the current
// partition, we do not generate results for next
// partition -- otherwise we will lose input ordering.
if state.n_row_result_missing > 0 {
break;
}
}
counts.push(per_partition_out_results);
cur_window_expr_out_result_len
});
argmin(out_col_counts).map_or(0, |(min_idx, minima)| {
for (row, count) in counts.swap_remove(min_idx).into_iter() {
let partition_batch = &mut partition_buffers[row];
partition_batch.n_out_row = count;
}
minima
})
}
}
/// Calculates partition by expression results for each window expression
/// on `record_batch`.
fn evaluate_partition_by_column_values(
record_batch: &RecordBatch,
window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Vec<ArrayRef>> {
window_expr[0]
.partition_by()
.iter()
.map(|item| match item.evaluate(record_batch)? {
ColumnarValue::Array(array) => Ok(array),
ColumnarValue::Scalar(scalar) => {
scalar.to_array_of_size(record_batch.num_rows())
}
})
.collect()
}
/// Stream for the bounded window aggregation plan.
pub struct BoundedWindowAggStream {
schema: SchemaRef,
input: SendableRecordBatchStream,
/// The record batch executor receives as input (i.e. the columns needed
/// while calculating aggregation results).
input_buffer: RecordBatch,
/// We separate `input_buffer` based on partitions (as
/// determined by PARTITION BY columns) and store them per partition
/// in `partition_batches`. We use this variable when calculating results
/// for each window expression. This enables us to use the same batch for
/// different window expressions without copying.
// Note that we could keep record batches for each window expression in
// `PartitionWindowAggStates`. However, this would use more memory (as
// many times as the number of window expressions).
partition_buffers: PartitionBatches,
/// An executor can run multiple window expressions if the PARTITION BY
/// and ORDER BY sections are same. We keep state of the each window
/// expression inside `window_agg_states`.
window_agg_states: Vec<PartitionWindowAggStates>,
finished: bool,
window_expr: Vec<Arc<dyn WindowExpr>>,
baseline_metrics: BaselineMetrics,
/// Search mode for partition columns. This determines the algorithm with
/// which we group each partition.
search_mode: Box<dyn PartitionSearcher>,
}
impl BoundedWindowAggStream {
/// Prunes sections of the state that are no longer needed when calculating
/// results (as determined by window frame boundaries and number of results generated).
// For instance, if first `n` (not necessarily same with `n_out`) elements are no longer needed to
// calculate window expression result (outside the window frame boundary) we retract first `n` elements
// from `self.partition_batches` in corresponding partition.
// For instance, if `n_out` number of rows are calculated, we can remove
// first `n_out` rows from `self.input_buffer`.
fn prune_state(&mut self, n_out: usize) -> Result<()> {
// Prune `self.window_agg_states`:
self.prune_out_columns();
// Prune `self.partition_batches`:
self.prune_partition_batches();
// Prune `self.input_buffer`:
self.prune_input_batch(n_out)?;
// Prune internal state of search algorithm.
self.search_mode.prune(n_out);
Ok(())
}
}
impl Stream for BoundedWindowAggStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
let poll = self.poll_next_inner(cx);
self.baseline_metrics.record_poll(poll)
}
}
impl BoundedWindowAggStream {
/// Create a new BoundedWindowAggStream
fn new(
schema: SchemaRef,
window_expr: Vec<Arc<dyn WindowExpr>>,
input: SendableRecordBatchStream,
baseline_metrics: BaselineMetrics,
search_mode: Box<dyn PartitionSearcher>,
) -> Result<Self> {
let state = window_expr.iter().map(|_| IndexMap::new()).collect();
let empty_batch = RecordBatch::new_empty(Arc::clone(&schema));
Ok(Self {
schema,
input,
input_buffer: empty_batch,
partition_buffers: IndexMap::new(),
window_agg_states: state,
finished: false,
window_expr,
baseline_metrics,
search_mode,
})
}
fn compute_aggregates(&mut self) -> Result<RecordBatch> {
// calculate window cols
for (cur_window_expr, state) in
self.window_expr.iter().zip(&mut self.window_agg_states)
{
cur_window_expr.evaluate_stateful(&self.partition_buffers, state)?;
}
let schema = Arc::clone(&self.schema);
let window_expr_out = self.search_mode.calculate_out_columns(
&self.input_buffer,
&self.window_agg_states,
&mut self.partition_buffers,
&self.window_expr,
)?;
if let Some(window_expr_out) = window_expr_out {
let n_out = window_expr_out[0].len();
// right append new columns to corresponding section in the original input buffer.
let columns_to_show = self
.input_buffer
.columns()
.iter()
.map(|elem| elem.slice(0, n_out))
.chain(window_expr_out)
.collect::<Vec<_>>();
let n_generated = columns_to_show[0].len();
self.prune_state(n_generated)?;
Ok(RecordBatch::try_new(schema, columns_to_show)?)
} else {
Ok(RecordBatch::new_empty(schema))
}
}
#[inline]
fn poll_next_inner(
&mut self,
cx: &mut Context<'_>,
) -> Poll<Option<Result<RecordBatch>>> {
if self.finished {
return Poll::Ready(None);
}
let result = match ready!(self.input.poll_next_unpin(cx)) {
Some(Ok(batch)) => {
self.search_mode.update_partition_batch(
&mut self.input_buffer,
batch,
&self.window_expr,
&mut self.partition_buffers,
)?;
self.compute_aggregates()
}
Some(Err(e)) => Err(e),
None => {
self.finished = true;
for (_, partition_batch_state) in self.partition_buffers.iter_mut() {
partition_batch_state.is_end = true;
}
self.compute_aggregates()
}
};
Poll::Ready(Some(result))
}
/// Prunes the sections of the record batch (for each partition)
/// that we no longer need to calculate the window function result.
fn prune_partition_batches(&mut self) {
// Remove partitions which we know already ended (is_end flag is true).
// Since the retain method preserves insertion order, we still have
// ordering in between partitions after removal.
self.partition_buffers
.retain(|_, partition_batch_state| !partition_batch_state.is_end);
// The data in `self.partition_batches` is used by all window expressions.
// Therefore, when removing from `self.partition_batches`, we need to remove
// from the earliest range boundary among all window expressions. Variable
// `n_prune_each_partition` fill the earliest range boundary information for
// each partition. This way, we can delete the no-longer-needed sections from
// `self.partition_batches`.
// For instance, if window frame one uses [10, 20] and window frame two uses
// [5, 15]; we only prune the first 5 elements from the corresponding record
// batch in `self.partition_batches`.
// Calculate how many elements to prune for each partition batch
let mut n_prune_each_partition = HashMap::new();
for window_agg_state in self.window_agg_states.iter_mut() {
window_agg_state.retain(|_, WindowState { state, .. }| !state.is_end);
for (partition_row, WindowState { state: value, .. }) in window_agg_state {
let n_prune =
min(value.window_frame_range.start, value.last_calculated_index);
if let Some(current) = n_prune_each_partition.get_mut(partition_row) {
if n_prune < *current {
*current = n_prune;
}
} else {
n_prune_each_partition.insert(partition_row.clone(), n_prune);
}
}
}
// Retract no longer needed parts during window calculations from partition batch:
for (partition_row, n_prune) in n_prune_each_partition.iter() {
let pb_state = &mut self.partition_buffers[partition_row];
let batch = &pb_state.record_batch;
pb_state.record_batch = batch.slice(*n_prune, batch.num_rows() - n_prune);
pb_state.n_out_row = 0;
// Update state indices since we have pruned some rows from the beginning:
for window_agg_state in self.window_agg_states.iter_mut() {
window_agg_state[partition_row].state.prune_state(*n_prune);
}
}
}
/// Prunes the section of the input batch whose aggregate results
/// are calculated and emitted.
fn prune_input_batch(&mut self, n_out: usize) -> Result<()> {
// Prune first n_out rows from the input_buffer
let n_to_keep = self.input_buffer.num_rows() - n_out;
let batch_to_keep = self
.input_buffer
.columns()
.iter()
.map(|elem| elem.slice(n_out, n_to_keep))
.collect::<Vec<_>>();
self.input_buffer = RecordBatch::try_new_with_options(
self.input_buffer.schema(),
batch_to_keep,
&RecordBatchOptions::new().with_row_count(Some(n_to_keep)),
)?;
Ok(())
}
/// Prunes emitted parts from WindowAggState `out_col` field.
fn prune_out_columns(&mut self) {
// We store generated columns for each window expression in the `out_col`
// field of `WindowAggState`. Given how many rows are emitted, we remove
// these sections from state.
for partition_window_agg_states in self.window_agg_states.iter_mut() {
// Remove `n_out` entries from the `out_col` field of `WindowAggState`.
// `n_out` is stored in `self.partition_buffers` for each partition.
// If `is_end` is set, directly remove them; this shrinks the hash map.
partition_window_agg_states
.retain(|_, partition_batch_state| !partition_batch_state.state.is_end);
for (
partition_key,
WindowState {
state: WindowAggState { out_col, .. },
..
},
) in partition_window_agg_states
{
let partition_batch = &mut self.partition_buffers[partition_key];
let n_to_del = partition_batch.n_out_row;
let n_to_keep = out_col.len() - n_to_del;
*out_col = out_col.slice(n_to_del, n_to_keep);
}
}
}
}
impl RecordBatchStream for BoundedWindowAggStream {
/// Get the schema
fn schema(&self) -> SchemaRef {
Arc::clone(&self.schema)
}
}
// Gets the index of minimum entry, returns None if empty.
fn argmin<T: PartialOrd>(data: impl Iterator<Item = T>) -> Option<(usize, T)> {
data.enumerate()
.min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Equal))
}
/// Calculates the section we can show results for expression
fn get_aggregate_result_out_column(
partition_window_agg_states: &PartitionWindowAggStates,
len_to_show: usize,
) -> Result<ArrayRef> {
let mut result = None;
let mut running_length = 0;
// We assume that iteration order is according to insertion order
for (
_,
WindowState {
state: WindowAggState { out_col, .. },
..
},
) in partition_window_agg_states
{
if running_length < len_to_show {
let n_to_use = min(len_to_show - running_length, out_col.len());
let slice_to_use = out_col.slice(0, n_to_use);
result = Some(match result {
Some(arr) => concat(&[&arr, &slice_to_use])?,
None => slice_to_use,
});
running_length += n_to_use;
} else {
break;
}
}
if running_length != len_to_show {
return exec_err!(
"Generated row number should be {len_to_show}, it is {running_length}"
);
}
result
.ok_or_else(|| DataFusionError::Execution("Should contain something".to_string()))
}
/// Constructs a batch from the last row of batch in the argument.
pub(crate) fn get_last_row_batch(batch: &RecordBatch) -> Result<RecordBatch> {
if batch.num_rows() == 0 {
return exec_err!("Latest batch should have at least 1 row");
}
Ok(batch.slice(batch.num_rows() - 1, 1))
}
#[cfg(test)]
mod tests {
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use std::time::Duration;
use crate::common::collect;
use crate::expressions::PhysicalSortExpr;
use crate::memory::MemoryExec;
use crate::projection::ProjectionExec;
use crate::streaming::{PartitionStream, StreamingTableExec};
use crate::windows::{create_window_expr, BoundedWindowAggExec, InputOrderMode};
use crate::{execute_stream, get_plan_string, ExecutionPlan};
use arrow_array::builder::{Int64Builder, UInt64Builder};
use arrow_array::RecordBatch;
use arrow_schema::{DataType, Field, Schema, SchemaRef, SortOptions};
use datafusion_common::{
assert_batches_eq, exec_datafusion_err, Result, ScalarValue,
};
use datafusion_execution::config::SessionConfig;
use datafusion_execution::{
RecordBatchStream, SendableRecordBatchStream, TaskContext,
};
use datafusion_expr::{
WindowFrame, WindowFrameBound, WindowFrameUnits, WindowFunctionDefinition,
};
use datafusion_functions_aggregate::count::count_udaf;
use datafusion_physical_expr::expressions::{col, Column, NthValue};
use datafusion_physical_expr::window::{
BuiltInWindowExpr, BuiltInWindowFunctionExpr,
};
use datafusion_physical_expr::{LexOrdering, PhysicalExpr};
use datafusion_physical_expr_common::sort_expr::LexOrderingRef;
use futures::future::Shared;
use futures::{pin_mut, ready, FutureExt, Stream, StreamExt};
use itertools::Itertools;
use tokio::time::timeout;
#[derive(Debug, Clone)]
struct TestStreamPartition {
schema: SchemaRef,
batches: Vec<RecordBatch>,
idx: usize,
state: PolingState,
sleep_duration: Duration,
send_exit: bool,
}
impl PartitionStream for TestStreamPartition {
fn schema(&self) -> &SchemaRef {
&self.schema
}
fn execute(&self, _ctx: Arc<TaskContext>) -> SendableRecordBatchStream {
// We create an iterator from the record batches and map them into Ok values,
// converting the iterator into a futures::stream::Stream
Box::pin(self.clone())
}
}
impl Stream for TestStreamPartition {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
self.poll_next_inner(cx)
}
}
#[derive(Debug, Clone)]
enum PolingState {
Sleep(Shared<futures::future::BoxFuture<'static, ()>>),
BatchReturn,
}
impl TestStreamPartition {
fn poll_next_inner(
self: &mut Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Result<RecordBatch>>> {
loop {
match &mut self.state {
PolingState::BatchReturn => {
// Wait for self.sleep_duration before sending any new data
let f = tokio::time::sleep(self.sleep_duration).boxed().shared();
self.state = PolingState::Sleep(f);
let input_batch = if let Some(batch) =
self.batches.clone().get(self.idx)
{
batch.clone()
} else if self.send_exit {
// Send None to signal end of data
return Poll::Ready(None);
} else {
// Go to sleep mode
let f =
tokio::time::sleep(self.sleep_duration).boxed().shared();
self.state = PolingState::Sleep(f);
continue;
};
self.idx += 1;
return Poll::Ready(Some(Ok(input_batch)));
}
PolingState::Sleep(future) => {
pin_mut!(future);
ready!(future.poll_unpin(cx));
self.state = PolingState::BatchReturn;
}
}
}
}
}
impl RecordBatchStream for TestStreamPartition {
fn schema(&self) -> SchemaRef {
Arc::clone(&self.schema)
}
}
fn bounded_window_exec_pb_latent_range(
input: Arc<dyn ExecutionPlan>,
n_future_range: usize,
hash: &str,
order_by: &str,
) -> Result<Arc<dyn ExecutionPlan>> {
let schema = input.schema();
let window_fn = WindowFunctionDefinition::AggregateUDF(count_udaf());
let col_expr =
Arc::new(Column::new(schema.fields[0].name(), 0)) as Arc<dyn PhysicalExpr>;
let args = vec![col_expr];
let partitionby_exprs = vec![col(hash, &schema)?];
let orderby_exprs = LexOrdering::new(vec![PhysicalSortExpr {
expr: col(order_by, &schema)?,
options: SortOptions::default(),
}]);
let window_frame = WindowFrame::new_bounds(
WindowFrameUnits::Range,
WindowFrameBound::CurrentRow,
WindowFrameBound::Following(ScalarValue::UInt64(Some(n_future_range as u64))),
);
let fn_name = format!(
"{}({:?}) PARTITION BY: [{:?}], ORDER BY: [{:?}]",
window_fn, args, partitionby_exprs, orderby_exprs
);
let input_order_mode = InputOrderMode::Linear;
Ok(Arc::new(BoundedWindowAggExec::try_new(
vec![create_window_expr(
&window_fn,
fn_name,
&args,
&partitionby_exprs,
orderby_exprs.as_ref(),
Arc::new(window_frame),
&input.schema(),
false,
)?],
input,
partitionby_exprs,
input_order_mode,
)?))
}
fn projection_exec(input: Arc<dyn ExecutionPlan>) -> Result<Arc<dyn ExecutionPlan>> {
let schema = input.schema();
let exprs = input
.schema()
.fields
.iter()
.enumerate()
.map(|(idx, field)| {
let name = if field.name().len() > 20 {
format!("col_{idx}")
} else {
field.name().clone()
};
let expr = col(field.name(), &schema).unwrap();
(expr, name)
})
.collect::<Vec<_>>();
Ok(Arc::new(ProjectionExec::try_new(exprs, input)?))
}
fn task_context_helper() -> TaskContext {
let task_ctx = TaskContext::default();
// Create session context with config
let session_config = SessionConfig::new()
.with_batch_size(1)
.with_target_partitions(2)
.with_round_robin_repartition(false);
task_ctx.with_session_config(session_config)
}
fn task_context() -> Arc<TaskContext> {
Arc::new(task_context_helper())
}
pub async fn collect_stream(
mut stream: SendableRecordBatchStream,
results: &mut Vec<RecordBatch>,
) -> Result<()> {
while let Some(item) = stream.next().await {
results.push(item?);
}
Ok(())
}
/// Execute the [ExecutionPlan] and collect the results in memory
pub async fn collect_with_timeout(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
timeout_duration: Duration,
) -> Result<Vec<RecordBatch>> {
let stream = execute_stream(plan, context)?;
let mut results = vec![];
// Execute the asynchronous operation with a timeout
if timeout(timeout_duration, collect_stream(stream, &mut results))
.await
.is_ok()
{
return Err(exec_datafusion_err!("shouldn't have completed"));
};
Ok(results)
}
/// Execute the [ExecutionPlan] and collect the results in memory
#[allow(dead_code)]
pub async fn collect_bonafide(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<Vec<RecordBatch>> {
let stream = execute_stream(plan, context)?;
let mut results = vec![];
collect_stream(stream, &mut results).await?;
Ok(results)
}
fn test_schema() -> SchemaRef {
Arc::new(Schema::new(vec![
Field::new("sn", DataType::UInt64, true),
Field::new("hash", DataType::Int64, true),
]))
}
fn schema_orders(schema: &SchemaRef) -> Result<Vec<LexOrdering>> {
let orderings = vec![LexOrdering::new(vec![PhysicalSortExpr {
expr: col("sn", schema)?,
options: SortOptions {
descending: false,
nulls_first: false,
},
}])];
Ok(orderings)
}
fn is_integer_division_safe(lhs: usize, rhs: usize) -> bool {
let res = lhs / rhs;
res * rhs == lhs
}
fn generate_batches(
schema: &SchemaRef,
n_row: usize,
n_chunk: usize,
) -> Result<Vec<RecordBatch>> {
let mut batches = vec![];
assert!(n_row > 0);
assert!(n_chunk > 0);
assert!(is_integer_division_safe(n_row, n_chunk));
let hash_replicate = 4;
let chunks = (0..n_row)
.chunks(n_chunk)
.into_iter()
.map(|elem| elem.into_iter().collect::<Vec<_>>())
.collect::<Vec<_>>();
// Send 2 RecordBatches at the source
for sn_values in chunks {
let mut sn1_array = UInt64Builder::with_capacity(sn_values.len());
let mut hash_array = Int64Builder::with_capacity(sn_values.len());
for sn in sn_values {
sn1_array.append_value(sn as u64);
let hash_value = (2 - (sn / hash_replicate)) as i64;
hash_array.append_value(hash_value);
}
let batch = RecordBatch::try_new(
Arc::clone(schema),
vec![Arc::new(sn1_array.finish()), Arc::new(hash_array.finish())],
)?;
batches.push(batch);
}
Ok(batches)
}
fn generate_never_ending_source(
n_rows: usize,
chunk_length: usize,
n_partition: usize,
is_infinite: bool,
send_exit: bool,
per_batch_wait_duration_in_millis: u64,
) -> Result<Arc<dyn ExecutionPlan>> {
assert!(n_partition > 0);
// We use same hash value in the table. This makes sure that
// After hashing computation will continue in only in one of the output partitions
// In this case, data flow should still continue
let schema = test_schema();
let orderings = schema_orders(&schema)?;
// Source waits per_batch_wait_duration_in_millis ms before sending other batch
let per_batch_wait_duration =
Duration::from_millis(per_batch_wait_duration_in_millis);
let batches = generate_batches(&schema, n_rows, chunk_length)?;
// Source has 2 partitions
let partitions = vec![
Arc::new(TestStreamPartition {
schema: Arc::clone(&schema),
batches,
idx: 0,
state: PolingState::BatchReturn,
sleep_duration: per_batch_wait_duration,
send_exit,
}) as _;
n_partition
];
let source = Arc::new(StreamingTableExec::try_new(
Arc::clone(&schema),
partitions,
None,
orderings,
is_infinite,
None,
)?) as _;
Ok(source)
}
// Tests NTH_VALUE(negative index) with memoize feature.
// To be able to trigger memoize feature for NTH_VALUE we need to
// - feed BoundedWindowAggExec with batch stream data.
// - Window frame should contain UNBOUNDED PRECEDING.
// It hard to ensure these conditions are met, from the sql query.
#[tokio::test]
async fn test_window_nth_value_bounded_memoize() -> Result<()> {
let config = SessionConfig::new().with_target_partitions(1);
let task_ctx = Arc::new(TaskContext::default().with_session_config(config));
let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)]));
// Create a new batch of data to insert into the table
let batch = RecordBatch::try_new(
Arc::clone(&schema),
vec![Arc::new(arrow_array::Int32Array::from(vec![1, 2, 3]))],
)?;
let memory_exec = MemoryExec::try_new(
&[vec![batch.clone(), batch.clone(), batch.clone()]],
Arc::clone(&schema),
None,
)
.map(|e| Arc::new(e) as Arc<dyn ExecutionPlan>)?;
let col_a = col("a", &schema)?;
let nth_value_func1 = NthValue::nth(
"nth_value(-1)",
Arc::clone(&col_a),
DataType::Int32,
1,
false,
)?
.reverse_expr()
.unwrap();
let nth_value_func2 = NthValue::nth(
"nth_value(-2)",
Arc::clone(&col_a),
DataType::Int32,
2,
false,
)?
.reverse_expr()
.unwrap();
let last_value_func = Arc::new(NthValue::last(
"last",
Arc::clone(&col_a),
DataType::Int32,
false,
)) as _;
let window_exprs = vec![
// LAST_VALUE(a)
Arc::new(BuiltInWindowExpr::new(
last_value_func,
&[],
LexOrderingRef::default(),
Arc::new(WindowFrame::new_bounds(
WindowFrameUnits::Rows,
WindowFrameBound::Preceding(ScalarValue::UInt64(None)),
WindowFrameBound::CurrentRow,
)),
)) as _,
// NTH_VALUE(a, -1)
Arc::new(BuiltInWindowExpr::new(
nth_value_func1,
&[],
LexOrderingRef::default(),
Arc::new(WindowFrame::new_bounds(
WindowFrameUnits::Rows,
WindowFrameBound::Preceding(ScalarValue::UInt64(None)),
WindowFrameBound::CurrentRow,
)),
)) as _,
// NTH_VALUE(a, -2)
Arc::new(BuiltInWindowExpr::new(
nth_value_func2,
&[],
LexOrderingRef::default(),
Arc::new(WindowFrame::new_bounds(
WindowFrameUnits::Rows,
WindowFrameBound::Preceding(ScalarValue::UInt64(None)),
WindowFrameBound::CurrentRow,
)),
)) as _,
];
let physical_plan = BoundedWindowAggExec::try_new(
window_exprs,
memory_exec,
vec![],
InputOrderMode::Sorted,
)
.map(|e| Arc::new(e) as Arc<dyn ExecutionPlan>)?;
let batches = collect(physical_plan.execute(0, task_ctx)?).await?;
let expected = vec![
"BoundedWindowAggExec: wdw=[last: Ok(Field { name: \"last\", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: CurrentRow, is_causal: true }, nth_value(-1): Ok(Field { name: \"nth_value(-1)\", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: CurrentRow, is_causal: true }, nth_value(-2): Ok(Field { name: \"nth_value(-2)\", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: CurrentRow, is_causal: true }], mode=[Sorted]",
" MemoryExec: partitions=1, partition_sizes=[3]",
];
// Get string representation of the plan
let actual = get_plan_string(&physical_plan);
assert_eq!(
expected, actual,
"\n**Optimized Plan Mismatch\n\nexpected:\n\n{expected:#?}\nactual:\n\n{actual:#?}\n\n"
);
let expected = [
"+---+------+---------------+---------------+",
"| a | last | nth_value(-1) | nth_value(-2) |",
"+---+------+---------------+---------------+",
"| 1 | 1 | 1 | |",
"| 2 | 2 | 2 | 1 |",
"| 3 | 3 | 3 | 2 |",
"| 1 | 1 | 1 | 3 |",
"| 2 | 2 | 2 | 1 |",
"| 3 | 3 | 3 | 2 |",
"| 1 | 1 | 1 | 3 |",
"| 2 | 2 | 2 | 1 |",
"| 3 | 3 | 3 | 2 |",
"+---+------+---------------+---------------+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
// This test, tests whether most recent row guarantee by the input batch of the `BoundedWindowAggExec`
// helps `BoundedWindowAggExec` to generate low latency result in the `Linear` mode.
// Input data generated at the source is
// "+----+------+",
// "| sn | hash |",
// "+----+------+",
// "| 0 | 2 |",
// "| 1 | 2 |",
// "| 2 | 2 |",
// "| 3 | 2 |",
// "| 4 | 1 |",
// "| 5 | 1 |",
// "| 6 | 1 |",
// "| 7 | 1 |",
// "| 8 | 0 |",
// "| 9 | 0 |",
// "+----+------+",
//
// Effectively following query is run on this data
//
// SELECT *, count(*) OVER(PARTITION BY duplicated_hash ORDER BY sn RANGE BETWEEN CURRENT ROW AND 1 FOLLOWING)
// FROM test;
//
// partition `duplicated_hash=2` receives following data from the input
//
// "+----+------+",
// "| sn | hash |",
// "+----+------+",
// "| 0 | 2 |",
// "| 1 | 2 |",
// "| 2 | 2 |",
// "| 3 | 2 |",
// "+----+------+",
// normally `BoundedWindowExec` can only generate following result from the input above
//
// "+----+------+---------+",
// "| sn | hash | count |",
// "+----+------+---------+",
// "| 0 | 2 | 2 |",
// "| 1 | 2 | 2 |",
// "| 2 | 2 |<not yet>|",
// "| 3 | 2 |<not yet>|",
// "+----+------+---------+",
// where result of last 2 row is missing. Since window frame end is not may change with future data
// since window frame end is determined by 1 following (To generate result for row=3[where sn=2] we
// need to received sn=4 to make sure window frame end bound won't change with future data).
//
// With the ability of different partitions to use global ordering at the input (where most up-to date
// row is
// "| 9 | 0 |",
// )
//
// `BoundedWindowExec` should be able to generate following result in the test
//
// "+----+------+-------+",
// "| sn | hash | col_2 |",
// "+----+------+-------+",
// "| 0 | 2 | 2 |",
// "| 1 | 2 | 2 |",
// "| 2 | 2 | 2 |",
// "| 3 | 2 | 1 |",
// "| 4 | 1 | 2 |",
// "| 5 | 1 | 2 |",
// "| 6 | 1 | 2 |",
// "| 7 | 1 | 1 |",
// "+----+------+-------+",
//
// where result for all rows except last 2 is calculated (To calculate result for row 9 where sn=8
// we need to receive sn=10 value to calculate it result.).
// In this test, out aim is to test for which portion of the input data `BoundedWindowExec` can generate
// a result. To test this behaviour, we generated the data at the source infinitely (no `None` signal
// is sent to output from source). After, row:
//
// "| 9 | 0 |",
//
// is sent. Source stops sending data to output. We collect, result emitted by the `BoundedWindowExec` at the
// end of the pipeline with a timeout (Since no `None` is sent from source. Collection never ends otherwise).
#[tokio::test]
async fn bounded_window_exec_linear_mode_range_information() -> Result<()> {
let n_rows = 10;
let chunk_length = 2;
let n_future_range = 1;
let timeout_duration = Duration::from_millis(2000);
let source =
generate_never_ending_source(n_rows, chunk_length, 1, true, false, 5)?;
let window =
bounded_window_exec_pb_latent_range(source, n_future_range, "hash", "sn")?;
let plan = projection_exec(window)?;
let expected_plan = vec![
"ProjectionExec: expr=[sn@0 as sn, hash@1 as hash, count([Column { name: \"sn\", index: 0 }]) PARTITION BY: [[Column { name: \"hash\", index: 1 }]], ORDER BY: [LexOrdering { inner: [PhysicalSortExpr { expr: Column { name: \"sn\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }] }]@2 as col_2]",
" BoundedWindowAggExec: wdw=[count([Column { name: \"sn\", index: 0 }]) PARTITION BY: [[Column { name: \"hash\", index: 1 }]], ORDER BY: [LexOrdering { inner: [PhysicalSortExpr { expr: Column { name: \"sn\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }] }]: Ok(Field { name: \"count([Column { name: \\\"sn\\\", index: 0 }]) PARTITION BY: [[Column { name: \\\"hash\\\", index: 1 }]], ORDER BY: [LexOrdering { inner: [PhysicalSortExpr { expr: Column { name: \\\"sn\\\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }] }]\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(UInt64(1)), is_causal: false }], mode=[Linear]",
" StreamingTableExec: partition_sizes=1, projection=[sn, hash], infinite_source=true, output_ordering=[sn@0 ASC NULLS LAST]",
];
// Get string representation of the plan
let actual = get_plan_string(&plan);
assert_eq!(
expected_plan, actual,
"\n**Optimized Plan Mismatch\n\nexpected:\n\n{expected_plan:#?}\nactual:\n\n{actual:#?}\n\n"
);
let task_ctx = task_context();
let batches = collect_with_timeout(plan, task_ctx, timeout_duration).await?;
let expected = [
"+----+------+-------+",
"| sn | hash | col_2 |",
"+----+------+-------+",
"| 0 | 2 | 2 |",
"| 1 | 2 | 2 |",
"| 2 | 2 | 2 |",
"| 3 | 2 | 1 |",
"| 4 | 1 | 2 |",
"| 5 | 1 | 2 |",
"| 6 | 1 | 2 |",
"| 7 | 1 | 1 |",
"+----+------+-------+",
];
assert_batches_eq!(expected, &batches);
Ok(())
}
}