datafusion_physical_plan/work_table.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines the work table query plan
use std::any::Any;
use std::sync::{Arc, Mutex};
use super::{
metrics::{ExecutionPlanMetricsSet, MetricsSet},
SendableRecordBatchStream, Statistics,
};
use crate::memory::MemoryStream;
use crate::{DisplayAs, DisplayFormatType, ExecutionMode, ExecutionPlan, PlanProperties};
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::{internal_datafusion_err, internal_err, Result};
use datafusion_execution::memory_pool::MemoryReservation;
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{EquivalenceProperties, Partitioning};
/// A vector of record batches with a memory reservation.
#[derive(Debug)]
pub(super) struct ReservedBatches {
batches: Vec<RecordBatch>,
#[allow(dead_code)]
reservation: MemoryReservation,
}
impl ReservedBatches {
pub(super) fn new(batches: Vec<RecordBatch>, reservation: MemoryReservation) -> Self {
ReservedBatches {
batches,
reservation,
}
}
}
/// The name is from PostgreSQL's terminology.
/// See <https://wiki.postgresql.org/wiki/CTEReadme#How_Recursion_Works>
/// This table serves as a mirror or buffer between each iteration of a recursive query.
#[derive(Debug)]
pub(super) struct WorkTable {
batches: Mutex<Option<ReservedBatches>>,
}
impl WorkTable {
/// Create a new work table.
pub(super) fn new() -> Self {
Self {
batches: Mutex::new(None),
}
}
/// Take the previously written batches from the work table.
/// This will be called by the [`WorkTableExec`] when it is executed.
fn take(&self) -> Result<ReservedBatches> {
self.batches
.lock()
.unwrap()
.take()
.ok_or_else(|| internal_datafusion_err!("Unexpected empty work table"))
}
/// Update the results of a recursive query iteration to the work table.
pub(super) fn update(&self, batches: ReservedBatches) {
self.batches.lock().unwrap().replace(batches);
}
}
/// A temporary "working table" operation where the input data will be
/// taken from the named handle during the execution and will be re-published
/// as is (kind of like a mirror).
///
/// Most notably used in the implementation of recursive queries where the
/// underlying relation does not exist yet but the data will come as the previous
/// term is evaluated. This table will be used such that the recursive plan
/// will register a receiver in the task context and this plan will use that
/// receiver to get the data and stream it back up so that the batches are available
/// in the next iteration.
#[derive(Clone, Debug)]
pub struct WorkTableExec {
/// Name of the relation handler
name: String,
/// The schema of the stream
schema: SchemaRef,
/// The work table
work_table: Arc<WorkTable>,
/// Execution metrics
metrics: ExecutionPlanMetricsSet,
/// Cache holding plan properties like equivalences, output partitioning etc.
cache: PlanProperties,
}
impl WorkTableExec {
/// Create a new execution plan for a worktable exec.
pub fn new(name: String, schema: SchemaRef) -> Self {
let cache = Self::compute_properties(Arc::clone(&schema));
Self {
name,
schema,
metrics: ExecutionPlanMetricsSet::new(),
work_table: Arc::new(WorkTable::new()),
cache,
}
}
pub(super) fn with_work_table(&self, work_table: Arc<WorkTable>) -> Self {
Self {
name: self.name.clone(),
schema: Arc::clone(&self.schema),
metrics: ExecutionPlanMetricsSet::new(),
work_table,
cache: self.cache.clone(),
}
}
/// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
fn compute_properties(schema: SchemaRef) -> PlanProperties {
let eq_properties = EquivalenceProperties::new(schema);
PlanProperties::new(
eq_properties,
Partitioning::UnknownPartitioning(1),
ExecutionMode::Bounded,
)
}
}
impl DisplayAs for WorkTableExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "WorkTableExec: name={}", self.name)
}
}
}
}
impl ExecutionPlan for WorkTableExec {
fn name(&self) -> &'static str {
"WorkTableExec"
}
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![]
}
fn maintains_input_order(&self) -> Vec<bool> {
vec![false]
}
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
vec![false]
}
fn with_new_children(
self: Arc<Self>,
_: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::clone(&self) as Arc<dyn ExecutionPlan>)
}
/// Stream the batches that were written to the work table.
fn execute(
&self,
partition: usize,
_context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
// WorkTable streams must be the plan base.
if partition != 0 {
return internal_err!(
"WorkTableExec got an invalid partition {partition} (expected 0)"
);
}
let batch = self.work_table.take()?;
Ok(Box::pin(
MemoryStream::try_new(batch.batches, Arc::clone(&self.schema), None)?
.with_reservation(batch.reservation),
))
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Result<Statistics> {
Ok(Statistics::new_unknown(&self.schema()))
}
}
#[cfg(test)]
mod tests {
use super::*;
use arrow_array::{ArrayRef, Int32Array};
use datafusion_execution::memory_pool::{MemoryConsumer, UnboundedMemoryPool};
#[test]
fn test_work_table() {
let work_table = WorkTable::new();
// Can't take from empty work_table
assert!(work_table.take().is_err());
let pool = Arc::new(UnboundedMemoryPool::default()) as _;
let mut reservation = MemoryConsumer::new("test_work_table").register(&pool);
// Update batch to work_table
let array: ArrayRef = Arc::new((0..5).collect::<Int32Array>());
let batch = RecordBatch::try_from_iter(vec![("col", array)]).unwrap();
reservation.try_grow(100).unwrap();
work_table.update(ReservedBatches::new(vec![batch.clone()], reservation));
// Take from work_table
let reserved_batches = work_table.take().unwrap();
assert_eq!(reserved_batches.batches, vec![batch.clone()]);
// Consume the batch by the MemoryStream
let memory_stream =
MemoryStream::try_new(reserved_batches.batches, batch.schema(), None)
.unwrap()
.with_reservation(reserved_batches.reservation);
// Should still be reserved
assert_eq!(pool.reserved(), 100);
// The reservation should be freed after drop the memory_stream
drop(memory_stream);
assert_eq!(pool.reserved(), 0);
}
}