datafusion_physical_plan/
placeholder_row.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! EmptyRelation produce_one_row=true execution plan

use std::any::Any;
use std::sync::Arc;

use super::{
    common, DisplayAs, ExecutionMode, PlanProperties, SendableRecordBatchStream,
    Statistics,
};
use crate::{memory::MemoryStream, DisplayFormatType, ExecutionPlan, Partitioning};

use arrow::array::{ArrayRef, NullArray};
use arrow::datatypes::{DataType, Field, Fields, Schema, SchemaRef};
use arrow::record_batch::RecordBatch;
use arrow_array::RecordBatchOptions;
use datafusion_common::{internal_err, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::EquivalenceProperties;

use log::trace;

/// Execution plan for empty relation with produce_one_row=true
#[derive(Debug, Clone)]
pub struct PlaceholderRowExec {
    /// The schema for the produced row
    schema: SchemaRef,
    /// Number of partitions
    partitions: usize,
    cache: PlanProperties,
}

impl PlaceholderRowExec {
    /// Create a new PlaceholderRowExec
    pub fn new(schema: SchemaRef) -> Self {
        let partitions = 1;
        let cache = Self::compute_properties(Arc::clone(&schema), partitions);
        PlaceholderRowExec {
            schema,
            partitions,
            cache,
        }
    }

    /// Create a new PlaceholderRowExecPlaceholderRowExec with specified partition number
    pub fn with_partitions(mut self, partitions: usize) -> Self {
        self.partitions = partitions;
        // Update output partitioning when updating partitions:
        let output_partitioning = Self::output_partitioning_helper(self.partitions);
        self.cache = self.cache.with_partitioning(output_partitioning);
        self
    }

    fn data(&self) -> Result<Vec<RecordBatch>> {
        Ok({
            let n_field = self.schema.fields.len();
            vec![RecordBatch::try_new_with_options(
                Arc::new(Schema::new(
                    (0..n_field)
                        .map(|i| {
                            Field::new(format!("placeholder_{i}"), DataType::Null, true)
                        })
                        .collect::<Fields>(),
                )),
                (0..n_field)
                    .map(|_i| {
                        let ret: ArrayRef = Arc::new(NullArray::new(1));
                        ret
                    })
                    .collect(),
                // Even if column number is empty we can generate single row.
                &RecordBatchOptions::new().with_row_count(Some(1)),
            )?]
        })
    }

    fn output_partitioning_helper(n_partitions: usize) -> Partitioning {
        Partitioning::UnknownPartitioning(n_partitions)
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(schema: SchemaRef, n_partitions: usize) -> PlanProperties {
        let eq_properties = EquivalenceProperties::new(schema);
        // Get output partitioning:
        let output_partitioning = Self::output_partitioning_helper(n_partitions);

        PlanProperties::new(eq_properties, output_partitioning, ExecutionMode::Bounded)
    }
}

impl DisplayAs for PlaceholderRowExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(f, "PlaceholderRowExec")
            }
        }
    }
}

impl ExecutionPlan for PlaceholderRowExec {
    fn name(&self) -> &'static str {
        "PlaceholderRowExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![]
    }

    fn with_new_children(
        self: Arc<Self>,
        _: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(self)
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        trace!("Start PlaceholderRowExec::execute for partition {} of context session_id {} and task_id {:?}", partition, context.session_id(), context.task_id());

        if partition >= self.partitions {
            return internal_err!(
                "PlaceholderRowExec invalid partition {} (expected less than {})",
                partition,
                self.partitions
            );
        }

        Ok(Box::pin(MemoryStream::try_new(
            self.data()?,
            Arc::clone(&self.schema),
            None,
        )?))
    }

    fn statistics(&self) -> Result<Statistics> {
        let batch = self
            .data()
            .expect("Create single row placeholder RecordBatch should not fail");
        Ok(common::compute_record_batch_statistics(
            &[batch],
            &self.schema,
            None,
        ))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{test, with_new_children_if_necessary};

    #[test]
    fn with_new_children() -> Result<()> {
        let schema = test::aggr_test_schema();

        let placeholder = Arc::new(PlaceholderRowExec::new(schema));

        let placeholder_2 = with_new_children_if_necessary(
            Arc::clone(&placeholder) as Arc<dyn ExecutionPlan>,
            vec![],
        )?;
        assert_eq!(placeholder.schema(), placeholder_2.schema());

        let too_many_kids = vec![placeholder_2];
        assert!(
            with_new_children_if_necessary(placeholder, too_many_kids).is_err(),
            "expected error when providing list of kids"
        );
        Ok(())
    }

    #[tokio::test]
    async fn invalid_execute() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let schema = test::aggr_test_schema();
        let placeholder = PlaceholderRowExec::new(schema);

        // Ask for the wrong partition
        assert!(placeholder.execute(1, Arc::clone(&task_ctx)).is_err());
        assert!(placeholder.execute(20, task_ctx).is_err());
        Ok(())
    }

    #[tokio::test]
    async fn produce_one_row() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let schema = test::aggr_test_schema();
        let placeholder = PlaceholderRowExec::new(schema);

        let iter = placeholder.execute(0, task_ctx)?;
        let batches = common::collect(iter).await?;

        // Should have one item
        assert_eq!(batches.len(), 1);

        Ok(())
    }

    #[tokio::test]
    async fn produce_one_row_multiple_partition() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let schema = test::aggr_test_schema();
        let partitions = 3;
        let placeholder = PlaceholderRowExec::new(schema).with_partitions(partitions);

        for n in 0..partitions {
            let iter = placeholder.execute(n, Arc::clone(&task_ctx))?;
            let batches = common::collect(iter).await?;

            // Should have one item
            assert_eq!(batches.len(), 1);
        }

        Ok(())
    }
}