datafusion_physical_plan/repartition/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! This file implements the [`RepartitionExec`] operator, which maps N input
//! partitions to M output partitions based on a partitioning scheme, optionally
//! maintaining the order of the input rows in the output.
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use std::{any::Any, vec};
use super::common::SharedMemoryReservation;
use super::metrics::{self, ExecutionPlanMetricsSet, MetricBuilder, MetricsSet};
use super::{
DisplayAs, ExecutionPlanProperties, RecordBatchStream, SendableRecordBatchStream,
};
use crate::hash_utils::create_hashes;
use crate::metrics::BaselineMetrics;
use crate::repartition::distributor_channels::{
channels, partition_aware_channels, DistributionReceiver, DistributionSender,
};
use crate::sorts::streaming_merge::StreamingMergeBuilder;
use crate::stream::RecordBatchStreamAdapter;
use crate::{DisplayFormatType, ExecutionPlan, Partitioning, PlanProperties, Statistics};
use arrow::compute::take_arrays;
use arrow::datatypes::{SchemaRef, UInt32Type};
use arrow::record_batch::RecordBatch;
use arrow_array::{PrimitiveArray, RecordBatchOptions};
use datafusion_common::utils::transpose;
use datafusion_common::{not_impl_err, DataFusionError, Result};
use datafusion_common_runtime::SpawnedTask;
use datafusion_execution::memory_pool::MemoryConsumer;
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{EquivalenceProperties, PhysicalExpr};
use crate::execution_plan::CardinalityEffect;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, PhysicalSortExpr};
use futures::stream::Stream;
use futures::{FutureExt, StreamExt, TryStreamExt};
use hashbrown::HashMap;
use log::trace;
use parking_lot::Mutex;
mod distributor_channels;
type MaybeBatch = Option<Result<RecordBatch>>;
type InputPartitionsToCurrentPartitionSender = Vec<DistributionSender<MaybeBatch>>;
type InputPartitionsToCurrentPartitionReceiver = Vec<DistributionReceiver<MaybeBatch>>;
/// Inner state of [`RepartitionExec`].
#[derive(Debug)]
struct RepartitionExecState {
/// Channels for sending batches from input partitions to output partitions.
/// Key is the partition number.
channels: HashMap<
usize,
(
InputPartitionsToCurrentPartitionSender,
InputPartitionsToCurrentPartitionReceiver,
SharedMemoryReservation,
),
>,
/// Helper that ensures that that background job is killed once it is no longer needed.
abort_helper: Arc<Vec<SpawnedTask<()>>>,
}
impl RepartitionExecState {
fn new(
input: Arc<dyn ExecutionPlan>,
partitioning: Partitioning,
metrics: ExecutionPlanMetricsSet,
preserve_order: bool,
name: String,
context: Arc<TaskContext>,
) -> Self {
let num_input_partitions = input.output_partitioning().partition_count();
let num_output_partitions = partitioning.partition_count();
let (txs, rxs) = if preserve_order {
let (txs, rxs) =
partition_aware_channels(num_input_partitions, num_output_partitions);
// Take transpose of senders and receivers. `state.channels` keeps track of entries per output partition
let txs = transpose(txs);
let rxs = transpose(rxs);
(txs, rxs)
} else {
// create one channel per *output* partition
// note we use a custom channel that ensures there is always data for each receiver
// but limits the amount of buffering if required.
let (txs, rxs) = channels(num_output_partitions);
// Clone sender for each input partitions
let txs = txs
.into_iter()
.map(|item| vec![item; num_input_partitions])
.collect::<Vec<_>>();
let rxs = rxs.into_iter().map(|item| vec![item]).collect::<Vec<_>>();
(txs, rxs)
};
let mut channels = HashMap::with_capacity(txs.len());
for (partition, (tx, rx)) in txs.into_iter().zip(rxs).enumerate() {
let reservation = Arc::new(Mutex::new(
MemoryConsumer::new(format!("{}[{partition}]", name))
.register(context.memory_pool()),
));
channels.insert(partition, (tx, rx, reservation));
}
// launch one async task per *input* partition
let mut spawned_tasks = Vec::with_capacity(num_input_partitions);
for i in 0..num_input_partitions {
let txs: HashMap<_, _> = channels
.iter()
.map(|(partition, (tx, _rx, reservation))| {
(*partition, (tx[i].clone(), Arc::clone(reservation)))
})
.collect();
let r_metrics = RepartitionMetrics::new(i, num_output_partitions, &metrics);
let input_task = SpawnedTask::spawn(RepartitionExec::pull_from_input(
Arc::clone(&input),
i,
txs.clone(),
partitioning.clone(),
r_metrics,
Arc::clone(&context),
));
// In a separate task, wait for each input to be done
// (and pass along any errors, including panic!s)
let wait_for_task = SpawnedTask::spawn(RepartitionExec::wait_for_task(
input_task,
txs.into_iter()
.map(|(partition, (tx, _reservation))| (partition, tx))
.collect(),
));
spawned_tasks.push(wait_for_task);
}
Self {
channels,
abort_helper: Arc::new(spawned_tasks),
}
}
}
/// Lazily initialized state
///
/// Note that the state is initialized ONCE for all partitions by a single task(thread).
/// This may take a short while. It is also like that multiple threads
/// call execute at the same time, because we have just started "target partitions" tasks
/// which is commonly set to the number of CPU cores and all call execute at the same time.
///
/// Thus, use a **tokio** `OnceCell` for this initialization so as not to waste CPU cycles
/// in a futex lock but instead allow other threads to do something useful.
///
/// Uses a parking_lot `Mutex` to control other accesses as they are very short duration
/// (e.g. removing channels on completion) where the overhead of `await` is not warranted.
type LazyState = Arc<tokio::sync::OnceCell<Mutex<RepartitionExecState>>>;
/// A utility that can be used to partition batches based on [`Partitioning`]
pub struct BatchPartitioner {
state: BatchPartitionerState,
timer: metrics::Time,
}
enum BatchPartitionerState {
Hash {
random_state: ahash::RandomState,
exprs: Vec<Arc<dyn PhysicalExpr>>,
num_partitions: usize,
hash_buffer: Vec<u64>,
},
RoundRobin {
num_partitions: usize,
next_idx: usize,
},
}
impl BatchPartitioner {
/// Create a new [`BatchPartitioner`] with the provided [`Partitioning`]
///
/// The time spent repartitioning will be recorded to `timer`
pub fn try_new(partitioning: Partitioning, timer: metrics::Time) -> Result<Self> {
let state = match partitioning {
Partitioning::RoundRobinBatch(num_partitions) => {
BatchPartitionerState::RoundRobin {
num_partitions,
next_idx: 0,
}
}
Partitioning::Hash(exprs, num_partitions) => BatchPartitionerState::Hash {
exprs,
num_partitions,
// Use fixed random hash
random_state: ahash::RandomState::with_seeds(0, 0, 0, 0),
hash_buffer: vec![],
},
other => return not_impl_err!("Unsupported repartitioning scheme {other:?}"),
};
Ok(Self { state, timer })
}
/// Partition the provided [`RecordBatch`] into one or more partitioned [`RecordBatch`]
/// based on the [`Partitioning`] specified on construction
///
/// `f` will be called for each partitioned [`RecordBatch`] with the corresponding
/// partition index. Any error returned by `f` will be immediately returned by this
/// function without attempting to publish further [`RecordBatch`]
///
/// The time spent repartitioning, not including time spent in `f` will be recorded
/// to the [`metrics::Time`] provided on construction
pub fn partition<F>(&mut self, batch: RecordBatch, mut f: F) -> Result<()>
where
F: FnMut(usize, RecordBatch) -> Result<()>,
{
self.partition_iter(batch)?.try_for_each(|res| match res {
Ok((partition, batch)) => f(partition, batch),
Err(e) => Err(e),
})
}
/// Actual implementation of [`partition`](Self::partition).
///
/// The reason this was pulled out is that we need to have a variant of `partition` that works w/ sync functions,
/// and one that works w/ async. Using an iterator as an intermediate representation was the best way to achieve
/// this (so we don't need to clone the entire implementation).
fn partition_iter(
&mut self,
batch: RecordBatch,
) -> Result<impl Iterator<Item = Result<(usize, RecordBatch)>> + Send + '_> {
let it: Box<dyn Iterator<Item = Result<(usize, RecordBatch)>> + Send> =
match &mut self.state {
BatchPartitionerState::RoundRobin {
num_partitions,
next_idx,
} => {
let idx = *next_idx;
*next_idx = (*next_idx + 1) % *num_partitions;
Box::new(std::iter::once(Ok((idx, batch))))
}
BatchPartitionerState::Hash {
random_state,
exprs,
num_partitions: partitions,
hash_buffer,
} => {
// Tracking time required for distributing indexes across output partitions
let timer = self.timer.timer();
let arrays = exprs
.iter()
.map(|expr| expr.evaluate(&batch)?.into_array(batch.num_rows()))
.collect::<Result<Vec<_>>>()?;
hash_buffer.clear();
hash_buffer.resize(batch.num_rows(), 0);
create_hashes(&arrays, random_state, hash_buffer)?;
let mut indices: Vec<_> = (0..*partitions)
.map(|_| Vec::with_capacity(batch.num_rows()))
.collect();
for (index, hash) in hash_buffer.iter().enumerate() {
indices[(*hash % *partitions as u64) as usize].push(index as u32);
}
// Finished building index-arrays for output partitions
timer.done();
// Borrowing partitioner timer to prevent moving `self` to closure
let partitioner_timer = &self.timer;
let it = indices
.into_iter()
.enumerate()
.filter_map(|(partition, indices)| {
let indices: PrimitiveArray<UInt32Type> = indices.into();
(!indices.is_empty()).then_some((partition, indices))
})
.map(move |(partition, indices)| {
// Tracking time required for repartitioned batches construction
let _timer = partitioner_timer.timer();
// Produce batches based on indices
let columns = take_arrays(batch.columns(), &indices, None)?;
let mut options = RecordBatchOptions::new();
options = options.with_row_count(Some(indices.len()));
let batch = RecordBatch::try_new_with_options(
batch.schema(),
columns,
&options,
)
.unwrap();
Ok((partition, batch))
});
Box::new(it)
}
};
Ok(it)
}
// return the number of output partitions
fn num_partitions(&self) -> usize {
match self.state {
BatchPartitionerState::RoundRobin { num_partitions, .. } => num_partitions,
BatchPartitionerState::Hash { num_partitions, .. } => num_partitions,
}
}
}
/// Maps `N` input partitions to `M` output partitions based on a
/// [`Partitioning`] scheme.
///
/// # Background
///
/// DataFusion, like most other commercial systems, with the
/// notable exception of DuckDB, uses the "Exchange Operator" based
/// approach to parallelism which works well in practice given
/// sufficient care in implementation.
///
/// DataFusion's planner picks the target number of partitions and
/// then `RepartionExec` redistributes [`RecordBatch`]es to that number
/// of output partitions.
///
/// For example, given `target_partitions=3` (trying to use 3 cores)
/// but scanning an input with 2 partitions, `RepartitionExec` can be
/// used to get 3 even streams of `RecordBatch`es
///
///
///```text
/// ▲ ▲ ▲
/// │ │ │
/// │ │ │
/// │ │ │
///┌───────────────┐ ┌───────────────┐ ┌───────────────┐
///│ GroupBy │ │ GroupBy │ │ GroupBy │
///│ (Partial) │ │ (Partial) │ │ (Partial) │
///└───────────────┘ └───────────────┘ └───────────────┘
/// ▲ ▲ ▲
/// └──────────────────┼──────────────────┘
/// │
/// ┌─────────────────────────┐
/// │ RepartitionExec │
/// │ (hash/round robin) │
/// └─────────────────────────┘
/// ▲ ▲
/// ┌───────────┘ └───────────┐
/// │ │
/// │ │
/// .─────────. .─────────.
/// ,─' '─. ,─' '─.
/// ; Input : ; Input :
/// : Partition 0 ; : Partition 1 ;
/// ╲ ╱ ╲ ╱
/// '─. ,─' '─. ,─'
/// `───────' `───────'
///```
///
/// # Error Handling
///
/// If any of the input partitions return an error, the error is propagated to
/// all output partitions and inputs are not polled again.
///
/// # Output Ordering
///
/// If more than one stream is being repartitioned, the output will be some
/// arbitrary interleaving (and thus unordered) unless
/// [`Self::with_preserve_order`] specifies otherwise.
///
/// # Footnote
///
/// The "Exchange Operator" was first described in the 1989 paper
/// [Encapsulation of parallelism in the Volcano query processing
/// system
/// Paper](https://w6113.github.io/files/papers/volcanoparallelism-89.pdf)
/// which uses the term "Exchange" for the concept of repartitioning
/// data across threads.
#[derive(Debug, Clone)]
pub struct RepartitionExec {
/// Input execution plan
input: Arc<dyn ExecutionPlan>,
/// Inner state that is initialized when the first output stream is created.
state: LazyState,
/// Execution metrics
metrics: ExecutionPlanMetricsSet,
/// Boolean flag to decide whether to preserve ordering. If true means
/// `SortPreservingRepartitionExec`, false means `RepartitionExec`.
preserve_order: bool,
/// Cache holding plan properties like equivalences, output partitioning etc.
cache: PlanProperties,
}
#[derive(Debug, Clone)]
struct RepartitionMetrics {
/// Time in nanos to execute child operator and fetch batches
fetch_time: metrics::Time,
/// Repartitioning elapsed time in nanos
repartition_time: metrics::Time,
/// Time in nanos for sending resulting batches to channels.
///
/// One metric per output partition.
send_time: Vec<metrics::Time>,
}
impl RepartitionMetrics {
pub fn new(
input_partition: usize,
num_output_partitions: usize,
metrics: &ExecutionPlanMetricsSet,
) -> Self {
// Time in nanos to execute child operator and fetch batches
let fetch_time =
MetricBuilder::new(metrics).subset_time("fetch_time", input_partition);
// Time in nanos to perform repartitioning
let repartition_time =
MetricBuilder::new(metrics).subset_time("repartition_time", input_partition);
// Time in nanos for sending resulting batches to channels
let send_time = (0..num_output_partitions)
.map(|output_partition| {
let label =
metrics::Label::new("outputPartition", output_partition.to_string());
MetricBuilder::new(metrics)
.with_label(label)
.subset_time("send_time", input_partition)
})
.collect();
Self {
fetch_time,
repartition_time,
send_time,
}
}
}
impl RepartitionExec {
/// Input execution plan
pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
&self.input
}
/// Partitioning scheme to use
pub fn partitioning(&self) -> &Partitioning {
&self.cache.partitioning
}
/// Get preserve_order flag of the RepartitionExecutor
/// `true` means `SortPreservingRepartitionExec`, `false` means `RepartitionExec`
pub fn preserve_order(&self) -> bool {
self.preserve_order
}
/// Get name used to display this Exec
pub fn name(&self) -> &str {
"RepartitionExec"
}
}
impl DisplayAs for RepartitionExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(
f,
"{}: partitioning={}, input_partitions={}",
self.name(),
self.partitioning(),
self.input.output_partitioning().partition_count()
)?;
if self.preserve_order {
write!(f, ", preserve_order=true")?;
}
if let Some(sort_exprs) = self.sort_exprs() {
write!(f, ", sort_exprs={}", LexOrdering::from_ref(sort_exprs))?;
}
Ok(())
}
}
}
}
impl ExecutionPlan for RepartitionExec {
fn name(&self) -> &'static str {
"RepartitionExec"
}
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![&self.input]
}
fn with_new_children(
self: Arc<Self>,
mut children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
let mut repartition = RepartitionExec::try_new(
children.swap_remove(0),
self.partitioning().clone(),
)?;
if self.preserve_order {
repartition = repartition.with_preserve_order();
}
Ok(Arc::new(repartition))
}
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
vec![matches!(self.partitioning(), Partitioning::Hash(_, _))]
}
fn maintains_input_order(&self) -> Vec<bool> {
Self::maintains_input_order_helper(self.input(), self.preserve_order)
}
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
trace!(
"Start {}::execute for partition: {}",
self.name(),
partition
);
let lazy_state = Arc::clone(&self.state);
let input = Arc::clone(&self.input);
let partitioning = self.partitioning().clone();
let metrics = self.metrics.clone();
let preserve_order = self.preserve_order;
let name = self.name().to_owned();
let schema = self.schema();
let schema_captured = Arc::clone(&schema);
// Get existing ordering to use for merging
let sort_exprs = self.sort_exprs().unwrap_or(&[]).to_owned();
let stream = futures::stream::once(async move {
let num_input_partitions = input.output_partitioning().partition_count();
let input_captured = Arc::clone(&input);
let metrics_captured = metrics.clone();
let name_captured = name.clone();
let context_captured = Arc::clone(&context);
let state = lazy_state
.get_or_init(|| async move {
Mutex::new(RepartitionExecState::new(
input_captured,
partitioning,
metrics_captured,
preserve_order,
name_captured,
context_captured,
))
})
.await;
// lock scope
let (mut rx, reservation, abort_helper) = {
// lock mutexes
let mut state = state.lock();
// now return stream for the specified *output* partition which will
// read from the channel
let (_tx, rx, reservation) = state
.channels
.remove(&partition)
.expect("partition not used yet");
(rx, reservation, Arc::clone(&state.abort_helper))
};
trace!(
"Before returning stream in {}::execute for partition: {}",
name,
partition
);
if preserve_order {
// Store streams from all the input partitions:
let input_streams = rx
.into_iter()
.map(|receiver| {
Box::pin(PerPartitionStream {
schema: Arc::clone(&schema_captured),
receiver,
drop_helper: Arc::clone(&abort_helper),
reservation: Arc::clone(&reservation),
}) as SendableRecordBatchStream
})
.collect::<Vec<_>>();
// Note that receiver size (`rx.len()`) and `num_input_partitions` are same.
// Merge streams (while preserving ordering) coming from
// input partitions to this partition:
let fetch = None;
let merge_reservation =
MemoryConsumer::new(format!("{}[Merge {partition}]", name))
.register(context.memory_pool());
StreamingMergeBuilder::new()
.with_streams(input_streams)
.with_schema(schema_captured)
.with_expressions(&sort_exprs)
.with_metrics(BaselineMetrics::new(&metrics, partition))
.with_batch_size(context.session_config().batch_size())
.with_fetch(fetch)
.with_reservation(merge_reservation)
.build()
} else {
Ok(Box::pin(RepartitionStream {
num_input_partitions,
num_input_partitions_processed: 0,
schema: input.schema(),
input: rx.swap_remove(0),
drop_helper: abort_helper,
reservation,
}) as SendableRecordBatchStream)
}
})
.try_flatten();
let stream = RecordBatchStreamAdapter::new(schema, stream);
Ok(Box::pin(stream))
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Result<Statistics> {
self.input.statistics()
}
fn cardinality_effect(&self) -> CardinalityEffect {
CardinalityEffect::Equal
}
}
impl RepartitionExec {
/// Create a new RepartitionExec, that produces output `partitioning`, and
/// does not preserve the order of the input (see [`Self::with_preserve_order`]
/// for more details)
pub fn try_new(
input: Arc<dyn ExecutionPlan>,
partitioning: Partitioning,
) -> Result<Self> {
let preserve_order = false;
let cache =
Self::compute_properties(&input, partitioning.clone(), preserve_order);
Ok(RepartitionExec {
input,
state: Default::default(),
metrics: ExecutionPlanMetricsSet::new(),
preserve_order,
cache,
})
}
fn maintains_input_order_helper(
input: &Arc<dyn ExecutionPlan>,
preserve_order: bool,
) -> Vec<bool> {
// We preserve ordering when repartition is order preserving variant or input partitioning is 1
vec![preserve_order || input.output_partitioning().partition_count() <= 1]
}
fn eq_properties_helper(
input: &Arc<dyn ExecutionPlan>,
preserve_order: bool,
) -> EquivalenceProperties {
// Equivalence Properties
let mut eq_properties = input.equivalence_properties().clone();
// If the ordering is lost, reset the ordering equivalence class:
if !Self::maintains_input_order_helper(input, preserve_order)[0] {
eq_properties.clear_orderings();
}
// When there are more than one input partitions, they will be fused at the output.
// Therefore, remove per partition constants.
if input.output_partitioning().partition_count() > 1 {
eq_properties.clear_per_partition_constants();
}
eq_properties
}
/// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
fn compute_properties(
input: &Arc<dyn ExecutionPlan>,
partitioning: Partitioning,
preserve_order: bool,
) -> PlanProperties {
// Equivalence Properties
let eq_properties = Self::eq_properties_helper(input, preserve_order);
PlanProperties::new(
eq_properties, // Equivalence Properties
partitioning, // Output Partitioning
input.execution_mode(), // Execution Mode
)
}
/// Specify if this reparititoning operation should preserve the order of
/// rows from its input when producing output. Preserving order is more
/// expensive at runtime, so should only be set if the output of this
/// operator can take advantage of it.
///
/// If the input is not ordered, or has only one partition, this is a no op,
/// and the node remains a `RepartitionExec`.
pub fn with_preserve_order(mut self) -> Self {
self.preserve_order =
// If the input isn't ordered, there is no ordering to preserve
self.input.output_ordering().is_some() &&
// if there is only one input partition, merging is not required
// to maintain order
self.input.output_partitioning().partition_count() > 1;
let eq_properties = Self::eq_properties_helper(&self.input, self.preserve_order);
self.cache = self.cache.with_eq_properties(eq_properties);
self
}
/// Return the sort expressions that are used to merge
fn sort_exprs(&self) -> Option<&[PhysicalSortExpr]> {
if self.preserve_order {
self.input.output_ordering()
} else {
None
}
}
/// Pulls data from the specified input plan, feeding it to the
/// output partitions based on the desired partitioning
///
/// txs hold the output sending channels for each output partition
async fn pull_from_input(
input: Arc<dyn ExecutionPlan>,
partition: usize,
mut output_channels: HashMap<
usize,
(DistributionSender<MaybeBatch>, SharedMemoryReservation),
>,
partitioning: Partitioning,
metrics: RepartitionMetrics,
context: Arc<TaskContext>,
) -> Result<()> {
let mut partitioner =
BatchPartitioner::try_new(partitioning, metrics.repartition_time.clone())?;
// execute the child operator
let timer = metrics.fetch_time.timer();
let mut stream = input.execute(partition, context)?;
timer.done();
// While there are still outputs to send to, keep pulling inputs
let mut batches_until_yield = partitioner.num_partitions();
while !output_channels.is_empty() {
// fetch the next batch
let timer = metrics.fetch_time.timer();
let result = stream.next().await;
timer.done();
// Input is done
let batch = match result {
Some(result) => result?,
None => break,
};
for res in partitioner.partition_iter(batch)? {
let (partition, batch) = res?;
let size = batch.get_array_memory_size();
let timer = metrics.send_time[partition].timer();
// if there is still a receiver, send to it
if let Some((tx, reservation)) = output_channels.get_mut(&partition) {
reservation.lock().try_grow(size)?;
if tx.send(Some(Ok(batch))).await.is_err() {
// If the other end has hung up, it was an early shutdown (e.g. LIMIT)
reservation.lock().shrink(size);
output_channels.remove(&partition);
}
}
timer.done();
}
// If the input stream is endless, we may spin forever and
// never yield back to tokio. See
// https://github.com/apache/datafusion/issues/5278.
//
// However, yielding on every batch causes a bottleneck
// when running with multiple cores. See
// https://github.com/apache/datafusion/issues/6290
//
// Thus, heuristically yield after producing num_partition
// batches
//
// In round robin this is ideal as each input will get a
// new batch. In hash partitioning it may yield too often
// on uneven distributions even if some partition can not
// make progress, but parallelism is going to be limited
// in that case anyways
if batches_until_yield == 0 {
tokio::task::yield_now().await;
batches_until_yield = partitioner.num_partitions();
} else {
batches_until_yield -= 1;
}
}
Ok(())
}
/// Waits for `input_task` which is consuming one of the inputs to
/// complete. Upon each successful completion, sends a `None` to
/// each of the output tx channels to signal one of the inputs is
/// complete. Upon error, propagates the errors to all output tx
/// channels.
async fn wait_for_task(
input_task: SpawnedTask<Result<()>>,
txs: HashMap<usize, DistributionSender<MaybeBatch>>,
) {
// wait for completion, and propagate error
// note we ignore errors on send (.ok) as that means the receiver has already shutdown.
match input_task.join().await {
// Error in joining task
Err(e) => {
let e = Arc::new(e);
for (_, tx) in txs {
let err = Err(DataFusionError::Context(
"Join Error".to_string(),
Box::new(DataFusionError::External(Box::new(Arc::clone(&e)))),
));
tx.send(Some(err)).await.ok();
}
}
// Error from running input task
Ok(Err(e)) => {
let e = Arc::new(e);
for (_, tx) in txs {
// wrap it because need to send error to all output partitions
let err = Err(DataFusionError::External(Box::new(Arc::clone(&e))));
tx.send(Some(err)).await.ok();
}
}
// Input task completed successfully
Ok(Ok(())) => {
// notify each output partition that this input partition has no more data
for (_, tx) in txs {
tx.send(None).await.ok();
}
}
}
}
}
struct RepartitionStream {
/// Number of input partitions that will be sending batches to this output channel
num_input_partitions: usize,
/// Number of input partitions that have finished sending batches to this output channel
num_input_partitions_processed: usize,
/// Schema wrapped by Arc
schema: SchemaRef,
/// channel containing the repartitioned batches
input: DistributionReceiver<MaybeBatch>,
/// Handle to ensure background tasks are killed when no longer needed.
#[allow(dead_code)]
drop_helper: Arc<Vec<SpawnedTask<()>>>,
/// Memory reservation.
reservation: SharedMemoryReservation,
}
impl Stream for RepartitionStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
loop {
match self.input.recv().poll_unpin(cx) {
Poll::Ready(Some(Some(v))) => {
if let Ok(batch) = &v {
self.reservation
.lock()
.shrink(batch.get_array_memory_size());
}
return Poll::Ready(Some(v));
}
Poll::Ready(Some(None)) => {
self.num_input_partitions_processed += 1;
if self.num_input_partitions == self.num_input_partitions_processed {
// all input partitions have finished sending batches
return Poll::Ready(None);
} else {
// other partitions still have data to send
continue;
}
}
Poll::Ready(None) => {
return Poll::Ready(None);
}
Poll::Pending => {
return Poll::Pending;
}
}
}
}
}
impl RecordBatchStream for RepartitionStream {
/// Get the schema
fn schema(&self) -> SchemaRef {
Arc::clone(&self.schema)
}
}
/// This struct converts a receiver to a stream.
/// Receiver receives data on an SPSC channel.
struct PerPartitionStream {
/// Schema wrapped by Arc
schema: SchemaRef,
/// channel containing the repartitioned batches
receiver: DistributionReceiver<MaybeBatch>,
/// Handle to ensure background tasks are killed when no longer needed.
#[allow(dead_code)]
drop_helper: Arc<Vec<SpawnedTask<()>>>,
/// Memory reservation.
reservation: SharedMemoryReservation,
}
impl Stream for PerPartitionStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
match self.receiver.recv().poll_unpin(cx) {
Poll::Ready(Some(Some(v))) => {
if let Ok(batch) = &v {
self.reservation
.lock()
.shrink(batch.get_array_memory_size());
}
Poll::Ready(Some(v))
}
Poll::Ready(Some(None)) => {
// Input partition has finished sending batches
Poll::Ready(None)
}
Poll::Ready(None) => Poll::Ready(None),
Poll::Pending => Poll::Pending,
}
}
}
impl RecordBatchStream for PerPartitionStream {
/// Get the schema
fn schema(&self) -> SchemaRef {
Arc::clone(&self.schema)
}
}
#[cfg(test)]
mod tests {
use std::collections::HashSet;
use super::*;
use crate::{
test::{
assert_is_pending,
exec::{
assert_strong_count_converges_to_zero, BarrierExec, BlockingExec,
ErrorExec, MockExec,
},
},
{collect, expressions::col, memory::MemoryExec},
};
use arrow::array::{ArrayRef, StringArray, UInt32Array};
use arrow::datatypes::{DataType, Field, Schema};
use datafusion_common::cast::as_string_array;
use datafusion_common::{arrow_datafusion_err, assert_batches_sorted_eq, exec_err};
use datafusion_execution::runtime_env::RuntimeEnvBuilder;
use tokio::task::JoinSet;
#[tokio::test]
async fn one_to_many_round_robin() -> Result<()> {
// define input partitions
let schema = test_schema();
let partition = create_vec_batches(50);
let partitions = vec![partition];
// repartition from 1 input to 4 output
let output_partitions =
repartition(&schema, partitions, Partitioning::RoundRobinBatch(4)).await?;
assert_eq!(4, output_partitions.len());
assert_eq!(13, output_partitions[0].len());
assert_eq!(13, output_partitions[1].len());
assert_eq!(12, output_partitions[2].len());
assert_eq!(12, output_partitions[3].len());
Ok(())
}
#[tokio::test]
async fn many_to_one_round_robin() -> Result<()> {
// define input partitions
let schema = test_schema();
let partition = create_vec_batches(50);
let partitions = vec![partition.clone(), partition.clone(), partition.clone()];
// repartition from 3 input to 1 output
let output_partitions =
repartition(&schema, partitions, Partitioning::RoundRobinBatch(1)).await?;
assert_eq!(1, output_partitions.len());
assert_eq!(150, output_partitions[0].len());
Ok(())
}
#[tokio::test]
async fn many_to_many_round_robin() -> Result<()> {
// define input partitions
let schema = test_schema();
let partition = create_vec_batches(50);
let partitions = vec![partition.clone(), partition.clone(), partition.clone()];
// repartition from 3 input to 5 output
let output_partitions =
repartition(&schema, partitions, Partitioning::RoundRobinBatch(5)).await?;
assert_eq!(5, output_partitions.len());
assert_eq!(30, output_partitions[0].len());
assert_eq!(30, output_partitions[1].len());
assert_eq!(30, output_partitions[2].len());
assert_eq!(30, output_partitions[3].len());
assert_eq!(30, output_partitions[4].len());
Ok(())
}
#[tokio::test]
async fn many_to_many_hash_partition() -> Result<()> {
// define input partitions
let schema = test_schema();
let partition = create_vec_batches(50);
let partitions = vec![partition.clone(), partition.clone(), partition.clone()];
let output_partitions = repartition(
&schema,
partitions,
Partitioning::Hash(vec![col("c0", &schema)?], 8),
)
.await?;
let total_rows: usize = output_partitions
.iter()
.map(|x| x.iter().map(|x| x.num_rows()).sum::<usize>())
.sum();
assert_eq!(8, output_partitions.len());
assert_eq!(total_rows, 8 * 50 * 3);
Ok(())
}
fn test_schema() -> Arc<Schema> {
Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt32, false)]))
}
async fn repartition(
schema: &SchemaRef,
input_partitions: Vec<Vec<RecordBatch>>,
partitioning: Partitioning,
) -> Result<Vec<Vec<RecordBatch>>> {
let task_ctx = Arc::new(TaskContext::default());
// create physical plan
let exec = MemoryExec::try_new(&input_partitions, Arc::clone(schema), None)?;
let exec = RepartitionExec::try_new(Arc::new(exec), partitioning)?;
// execute and collect results
let mut output_partitions = vec![];
for i in 0..exec.partitioning().partition_count() {
// execute this *output* partition and collect all batches
let mut stream = exec.execute(i, Arc::clone(&task_ctx))?;
let mut batches = vec![];
while let Some(result) = stream.next().await {
batches.push(result?);
}
output_partitions.push(batches);
}
Ok(output_partitions)
}
#[tokio::test]
async fn many_to_many_round_robin_within_tokio_task() -> Result<()> {
let handle: SpawnedTask<Result<Vec<Vec<RecordBatch>>>> =
SpawnedTask::spawn(async move {
// define input partitions
let schema = test_schema();
let partition = create_vec_batches(50);
let partitions =
vec![partition.clone(), partition.clone(), partition.clone()];
// repartition from 3 input to 5 output
repartition(&schema, partitions, Partitioning::RoundRobinBatch(5)).await
});
let output_partitions = handle.join().await.unwrap().unwrap();
assert_eq!(5, output_partitions.len());
assert_eq!(30, output_partitions[0].len());
assert_eq!(30, output_partitions[1].len());
assert_eq!(30, output_partitions[2].len());
assert_eq!(30, output_partitions[3].len());
assert_eq!(30, output_partitions[4].len());
Ok(())
}
#[tokio::test]
async fn unsupported_partitioning() {
let task_ctx = Arc::new(TaskContext::default());
// have to send at least one batch through to provoke error
let batch = RecordBatch::try_from_iter(vec![(
"my_awesome_field",
Arc::new(StringArray::from(vec!["foo", "bar"])) as ArrayRef,
)])
.unwrap();
let schema = batch.schema();
let input = MockExec::new(vec![Ok(batch)], schema);
// This generates an error (partitioning type not supported)
// but only after the plan is executed. The error should be
// returned and no results produced
let partitioning = Partitioning::UnknownPartitioning(1);
let exec = RepartitionExec::try_new(Arc::new(input), partitioning).unwrap();
let output_stream = exec.execute(0, task_ctx).unwrap();
// Expect that an error is returned
let result_string = crate::common::collect(output_stream)
.await
.unwrap_err()
.to_string();
assert!(
result_string
.contains("Unsupported repartitioning scheme UnknownPartitioning(1)"),
"actual: {result_string}"
);
}
#[tokio::test]
async fn error_for_input_exec() {
// This generates an error on a call to execute. The error
// should be returned and no results produced.
let task_ctx = Arc::new(TaskContext::default());
let input = ErrorExec::new();
let partitioning = Partitioning::RoundRobinBatch(1);
let exec = RepartitionExec::try_new(Arc::new(input), partitioning).unwrap();
// Note: this should pass (the stream can be created) but the
// error when the input is executed should get passed back
let output_stream = exec.execute(0, task_ctx).unwrap();
// Expect that an error is returned
let result_string = crate::common::collect(output_stream)
.await
.unwrap_err()
.to_string();
assert!(
result_string.contains("ErrorExec, unsurprisingly, errored in partition 0"),
"actual: {result_string}"
);
}
#[tokio::test]
async fn repartition_with_error_in_stream() {
let task_ctx = Arc::new(TaskContext::default());
let batch = RecordBatch::try_from_iter(vec![(
"my_awesome_field",
Arc::new(StringArray::from(vec!["foo", "bar"])) as ArrayRef,
)])
.unwrap();
// input stream returns one good batch and then one error. The
// error should be returned.
let err = exec_err!("bad data error");
let schema = batch.schema();
let input = MockExec::new(vec![Ok(batch), err], schema);
let partitioning = Partitioning::RoundRobinBatch(1);
let exec = RepartitionExec::try_new(Arc::new(input), partitioning).unwrap();
// Note: this should pass (the stream can be created) but the
// error when the input is executed should get passed back
let output_stream = exec.execute(0, task_ctx).unwrap();
// Expect that an error is returned
let result_string = crate::common::collect(output_stream)
.await
.unwrap_err()
.to_string();
assert!(
result_string.contains("bad data error"),
"actual: {result_string}"
);
}
#[tokio::test]
async fn repartition_with_delayed_stream() {
let task_ctx = Arc::new(TaskContext::default());
let batch1 = RecordBatch::try_from_iter(vec![(
"my_awesome_field",
Arc::new(StringArray::from(vec!["foo", "bar"])) as ArrayRef,
)])
.unwrap();
let batch2 = RecordBatch::try_from_iter(vec![(
"my_awesome_field",
Arc::new(StringArray::from(vec!["frob", "baz"])) as ArrayRef,
)])
.unwrap();
// The mock exec doesn't return immediately (instead it
// requires the input to wait at least once)
let schema = batch1.schema();
let expected_batches = vec![batch1.clone(), batch2.clone()];
let input = MockExec::new(vec![Ok(batch1), Ok(batch2)], schema);
let partitioning = Partitioning::RoundRobinBatch(1);
let exec = RepartitionExec::try_new(Arc::new(input), partitioning).unwrap();
let expected = vec![
"+------------------+",
"| my_awesome_field |",
"+------------------+",
"| foo |",
"| bar |",
"| frob |",
"| baz |",
"+------------------+",
];
assert_batches_sorted_eq!(&expected, &expected_batches);
let output_stream = exec.execute(0, task_ctx).unwrap();
let batches = crate::common::collect(output_stream).await.unwrap();
assert_batches_sorted_eq!(&expected, &batches);
}
#[tokio::test]
async fn robin_repartition_with_dropping_output_stream() {
let task_ctx = Arc::new(TaskContext::default());
let partitioning = Partitioning::RoundRobinBatch(2);
// The barrier exec waits to be pinged
// requires the input to wait at least once)
let input = Arc::new(make_barrier_exec());
// partition into two output streams
let exec = RepartitionExec::try_new(
Arc::clone(&input) as Arc<dyn ExecutionPlan>,
partitioning,
)
.unwrap();
let output_stream0 = exec.execute(0, Arc::clone(&task_ctx)).unwrap();
let output_stream1 = exec.execute(1, Arc::clone(&task_ctx)).unwrap();
// now, purposely drop output stream 0
// *before* any outputs are produced
drop(output_stream0);
// Now, start sending input
let mut background_task = JoinSet::new();
background_task.spawn(async move {
input.wait().await;
});
// output stream 1 should *not* error and have one of the input batches
let batches = crate::common::collect(output_stream1).await.unwrap();
let expected = vec![
"+------------------+",
"| my_awesome_field |",
"+------------------+",
"| baz |",
"| frob |",
"| gaz |",
"| grob |",
"+------------------+",
];
assert_batches_sorted_eq!(&expected, &batches);
}
#[tokio::test]
// As the hash results might be different on different platforms or
// with different compilers, we will compare the same execution with
// and without dropping the output stream.
async fn hash_repartition_with_dropping_output_stream() {
let task_ctx = Arc::new(TaskContext::default());
let partitioning = Partitioning::Hash(
vec![Arc::new(crate::expressions::Column::new(
"my_awesome_field",
0,
))],
2,
);
// We first collect the results without dropping the output stream.
let input = Arc::new(make_barrier_exec());
let exec = RepartitionExec::try_new(
Arc::clone(&input) as Arc<dyn ExecutionPlan>,
partitioning.clone(),
)
.unwrap();
let output_stream1 = exec.execute(1, Arc::clone(&task_ctx)).unwrap();
let mut background_task = JoinSet::new();
background_task.spawn(async move {
input.wait().await;
});
let batches_without_drop = crate::common::collect(output_stream1).await.unwrap();
// run some checks on the result
let items_vec = str_batches_to_vec(&batches_without_drop);
let items_set: HashSet<&str> = items_vec.iter().copied().collect();
assert_eq!(items_vec.len(), items_set.len());
let source_str_set: HashSet<&str> =
["foo", "bar", "frob", "baz", "goo", "gar", "grob", "gaz"]
.iter()
.copied()
.collect();
assert_eq!(items_set.difference(&source_str_set).count(), 0);
// Now do the same but dropping the stream before waiting for the barrier
let input = Arc::new(make_barrier_exec());
let exec = RepartitionExec::try_new(
Arc::clone(&input) as Arc<dyn ExecutionPlan>,
partitioning,
)
.unwrap();
let output_stream0 = exec.execute(0, Arc::clone(&task_ctx)).unwrap();
let output_stream1 = exec.execute(1, Arc::clone(&task_ctx)).unwrap();
// now, purposely drop output stream 0
// *before* any outputs are produced
drop(output_stream0);
let mut background_task = JoinSet::new();
background_task.spawn(async move {
input.wait().await;
});
let batches_with_drop = crate::common::collect(output_stream1).await.unwrap();
assert_eq!(batches_without_drop, batches_with_drop);
}
fn str_batches_to_vec(batches: &[RecordBatch]) -> Vec<&str> {
batches
.iter()
.flat_map(|batch| {
assert_eq!(batch.columns().len(), 1);
let string_array = as_string_array(batch.column(0))
.expect("Unexpected type for repartitoned batch");
string_array
.iter()
.map(|v| v.expect("Unexpected null"))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>()
}
/// Create a BarrierExec that returns two partitions of two batches each
fn make_barrier_exec() -> BarrierExec {
let batch1 = RecordBatch::try_from_iter(vec![(
"my_awesome_field",
Arc::new(StringArray::from(vec!["foo", "bar"])) as ArrayRef,
)])
.unwrap();
let batch2 = RecordBatch::try_from_iter(vec![(
"my_awesome_field",
Arc::new(StringArray::from(vec!["frob", "baz"])) as ArrayRef,
)])
.unwrap();
let batch3 = RecordBatch::try_from_iter(vec![(
"my_awesome_field",
Arc::new(StringArray::from(vec!["goo", "gar"])) as ArrayRef,
)])
.unwrap();
let batch4 = RecordBatch::try_from_iter(vec![(
"my_awesome_field",
Arc::new(StringArray::from(vec!["grob", "gaz"])) as ArrayRef,
)])
.unwrap();
// The barrier exec waits to be pinged
// requires the input to wait at least once)
let schema = batch1.schema();
BarrierExec::new(vec![vec![batch1, batch2], vec![batch3, batch4]], schema)
}
#[tokio::test]
async fn test_drop_cancel() -> Result<()> {
let task_ctx = Arc::new(TaskContext::default());
let schema =
Arc::new(Schema::new(vec![Field::new("a", DataType::Float32, true)]));
let blocking_exec = Arc::new(BlockingExec::new(Arc::clone(&schema), 2));
let refs = blocking_exec.refs();
let repartition_exec = Arc::new(RepartitionExec::try_new(
blocking_exec,
Partitioning::UnknownPartitioning(1),
)?);
let fut = collect(repartition_exec, task_ctx);
let mut fut = fut.boxed();
assert_is_pending(&mut fut);
drop(fut);
assert_strong_count_converges_to_zero(refs).await;
Ok(())
}
#[tokio::test]
async fn hash_repartition_avoid_empty_batch() -> Result<()> {
let task_ctx = Arc::new(TaskContext::default());
let batch = RecordBatch::try_from_iter(vec![(
"a",
Arc::new(StringArray::from(vec!["foo"])) as ArrayRef,
)])
.unwrap();
let partitioning = Partitioning::Hash(
vec![Arc::new(crate::expressions::Column::new("a", 0))],
2,
);
let schema = batch.schema();
let input = MockExec::new(vec![Ok(batch)], schema);
let exec = RepartitionExec::try_new(Arc::new(input), partitioning).unwrap();
let output_stream0 = exec.execute(0, Arc::clone(&task_ctx)).unwrap();
let batch0 = crate::common::collect(output_stream0).await.unwrap();
let output_stream1 = exec.execute(1, Arc::clone(&task_ctx)).unwrap();
let batch1 = crate::common::collect(output_stream1).await.unwrap();
assert!(batch0.is_empty() || batch1.is_empty());
Ok(())
}
#[tokio::test]
async fn oom() -> Result<()> {
// define input partitions
let schema = test_schema();
let partition = create_vec_batches(50);
let input_partitions = vec![partition];
let partitioning = Partitioning::RoundRobinBatch(4);
// setup up context
let runtime = RuntimeEnvBuilder::default()
.with_memory_limit(1, 1.0)
.build_arc()?;
let task_ctx = TaskContext::default().with_runtime(runtime);
let task_ctx = Arc::new(task_ctx);
// create physical plan
let exec = MemoryExec::try_new(&input_partitions, Arc::clone(&schema), None)?;
let exec = RepartitionExec::try_new(Arc::new(exec), partitioning)?;
// pull partitions
for i in 0..exec.partitioning().partition_count() {
let mut stream = exec.execute(i, Arc::clone(&task_ctx))?;
let err =
arrow_datafusion_err!(stream.next().await.unwrap().unwrap_err().into());
let err = err.find_root();
assert!(
matches!(err, DataFusionError::ResourcesExhausted(_)),
"Wrong error type: {err}",
);
}
Ok(())
}
/// Create vector batches
fn create_vec_batches(n: usize) -> Vec<RecordBatch> {
let batch = create_batch();
(0..n).map(|_| batch.clone()).collect()
}
/// Create batch
fn create_batch() -> RecordBatch {
let schema = test_schema();
RecordBatch::try_new(
schema,
vec![Arc::new(UInt32Array::from(vec![1, 2, 3, 4, 5, 6, 7, 8]))],
)
.unwrap()
}
}
#[cfg(test)]
mod test {
use arrow_schema::{DataType, Field, Schema, SortOptions};
use crate::memory::MemoryExec;
use crate::union::UnionExec;
use datafusion_physical_expr::expressions::col;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, PhysicalSortExpr};
use super::*;
/// Asserts that the plan is as expected
///
/// `$EXPECTED_PLAN_LINES`: input plan
/// `$PLAN`: the plan to optimized
///
macro_rules! assert_plan {
($EXPECTED_PLAN_LINES: expr, $PLAN: expr) => {
let physical_plan = $PLAN;
let formatted = crate::displayable(&physical_plan).indent(true).to_string();
let actual: Vec<&str> = formatted.trim().lines().collect();
let expected_plan_lines: Vec<&str> = $EXPECTED_PLAN_LINES
.iter().map(|s| *s).collect();
assert_eq!(
expected_plan_lines, actual,
"\n**Original Plan Mismatch\n\nexpected:\n\n{expected_plan_lines:#?}\nactual:\n\n{actual:#?}\n\n"
);
};
}
#[tokio::test]
async fn test_preserve_order() -> Result<()> {
let schema = test_schema();
let sort_exprs = sort_exprs(&schema);
let source1 = sorted_memory_exec(&schema, sort_exprs.clone());
let source2 = sorted_memory_exec(&schema, sort_exprs);
// output has multiple partitions, and is sorted
let union = UnionExec::new(vec![source1, source2]);
let exec =
RepartitionExec::try_new(Arc::new(union), Partitioning::RoundRobinBatch(10))
.unwrap()
.with_preserve_order();
// Repartition should preserve order
let expected_plan = [
"RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=2, preserve_order=true, sort_exprs=c0@0 ASC",
" UnionExec",
" MemoryExec: partitions=1, partition_sizes=[0], output_ordering=c0@0 ASC",
" MemoryExec: partitions=1, partition_sizes=[0], output_ordering=c0@0 ASC",
];
assert_plan!(expected_plan, exec);
Ok(())
}
#[tokio::test]
async fn test_preserve_order_one_partition() -> Result<()> {
let schema = test_schema();
let sort_exprs = sort_exprs(&schema);
let source = sorted_memory_exec(&schema, sort_exprs);
// output is sorted, but has only a single partition, so no need to sort
let exec = RepartitionExec::try_new(source, Partitioning::RoundRobinBatch(10))
.unwrap()
.with_preserve_order();
// Repartition should not preserve order
let expected_plan = [
"RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1",
" MemoryExec: partitions=1, partition_sizes=[0], output_ordering=c0@0 ASC",
];
assert_plan!(expected_plan, exec);
Ok(())
}
#[tokio::test]
async fn test_preserve_order_input_not_sorted() -> Result<()> {
let schema = test_schema();
let source1 = memory_exec(&schema);
let source2 = memory_exec(&schema);
// output has multiple partitions, but is not sorted
let union = UnionExec::new(vec![source1, source2]);
let exec =
RepartitionExec::try_new(Arc::new(union), Partitioning::RoundRobinBatch(10))
.unwrap()
.with_preserve_order();
// Repartition should not preserve order, as there is no order to preserve
let expected_plan = [
"RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=2",
" UnionExec",
" MemoryExec: partitions=1, partition_sizes=[0]",
" MemoryExec: partitions=1, partition_sizes=[0]",
];
assert_plan!(expected_plan, exec);
Ok(())
}
fn test_schema() -> Arc<Schema> {
Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt32, false)]))
}
fn sort_exprs(schema: &Schema) -> LexOrdering {
let options = SortOptions::default();
LexOrdering::new(vec![PhysicalSortExpr {
expr: col("c0", schema).unwrap(),
options,
}])
}
fn memory_exec(schema: &SchemaRef) -> Arc<dyn ExecutionPlan> {
Arc::new(MemoryExec::try_new(&[vec![]], Arc::clone(schema), None).unwrap())
}
fn sorted_memory_exec(
schema: &SchemaRef,
sort_exprs: LexOrdering,
) -> Arc<dyn ExecutionPlan> {
Arc::new(
MemoryExec::try_new(&[vec![]], Arc::clone(schema), None)
.unwrap()
.try_with_sort_information(vec![sort_exprs])
.unwrap(),
)
}
}