datafusion_physical_plan/
coalesce_partitions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines the merge plan for executing partitions in parallel and then merging the results
//! into a single partition

use std::any::Any;
use std::sync::Arc;

use super::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use super::stream::{ObservedStream, RecordBatchReceiverStream};
use super::{
    DisplayAs, ExecutionPlanProperties, PlanProperties, SendableRecordBatchStream,
    Statistics,
};

use crate::{DisplayFormatType, ExecutionPlan, Partitioning};

use crate::execution_plan::CardinalityEffect;
use datafusion_common::{internal_err, Result};
use datafusion_execution::TaskContext;

/// Merge execution plan executes partitions in parallel and combines them into a single
/// partition. No guarantees are made about the order of the resulting partition.
#[derive(Debug, Clone)]
pub struct CoalescePartitionsExec {
    /// Input execution plan
    input: Arc<dyn ExecutionPlan>,
    /// Execution metrics
    metrics: ExecutionPlanMetricsSet,
    cache: PlanProperties,
}

impl CoalescePartitionsExec {
    /// Create a new CoalescePartitionsExec
    pub fn new(input: Arc<dyn ExecutionPlan>) -> Self {
        let cache = Self::compute_properties(&input);
        CoalescePartitionsExec {
            input,
            metrics: ExecutionPlanMetricsSet::new(),
            cache,
        }
    }

    /// Input execution plan
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(input: &Arc<dyn ExecutionPlan>) -> PlanProperties {
        // Coalescing partitions loses existing orderings:
        let mut eq_properties = input.equivalence_properties().clone();
        eq_properties.clear_orderings();
        eq_properties.clear_per_partition_constants();
        PlanProperties::new(
            eq_properties,                        // Equivalence Properties
            Partitioning::UnknownPartitioning(1), // Output Partitioning
            input.execution_mode(),               // Execution Mode
        )
    }
}

impl DisplayAs for CoalescePartitionsExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(f, "CoalescePartitionsExec")
            }
        }
    }
}

impl ExecutionPlan for CoalescePartitionsExec {
    fn name(&self) -> &'static str {
        "CoalescePartitionsExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
        vec![false]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(CoalescePartitionsExec::new(Arc::clone(
            &children[0],
        ))))
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        // CoalescePartitionsExec produces a single partition
        if 0 != partition {
            return internal_err!("CoalescePartitionsExec invalid partition {partition}");
        }

        let input_partitions = self.input.output_partitioning().partition_count();
        match input_partitions {
            0 => internal_err!(
                "CoalescePartitionsExec requires at least one input partition"
            ),
            1 => {
                // bypass any threading / metrics if there is a single partition
                self.input.execute(0, context)
            }
            _ => {
                let baseline_metrics = BaselineMetrics::new(&self.metrics, partition);
                // record the (very) minimal work done so that
                // elapsed_compute is not reported as 0
                let elapsed_compute = baseline_metrics.elapsed_compute().clone();
                let _timer = elapsed_compute.timer();

                // use a stream that allows each sender to put in at
                // least one result in an attempt to maximize
                // parallelism.
                let mut builder =
                    RecordBatchReceiverStream::builder(self.schema(), input_partitions);

                // spawn independent tasks whose resulting streams (of batches)
                // are sent to the channel for consumption.
                for part_i in 0..input_partitions {
                    builder.run_input(
                        Arc::clone(&self.input),
                        part_i,
                        Arc::clone(&context),
                    );
                }

                let stream = builder.build();
                Ok(Box::pin(ObservedStream::new(stream, baseline_metrics)))
            }
        }
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn statistics(&self) -> Result<Statistics> {
        self.input.statistics()
    }

    fn supports_limit_pushdown(&self) -> bool {
        true
    }

    fn cardinality_effect(&self) -> CardinalityEffect {
        CardinalityEffect::Equal
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test::exec::{
        assert_strong_count_converges_to_zero, BlockingExec, PanicExec,
    };
    use crate::test::{self, assert_is_pending};
    use crate::{collect, common};

    use arrow::datatypes::{DataType, Field, Schema};

    use futures::FutureExt;

    #[tokio::test]
    async fn merge() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());

        let num_partitions = 4;
        let csv = test::scan_partitioned(num_partitions);

        // input should have 4 partitions
        assert_eq!(csv.output_partitioning().partition_count(), num_partitions);

        let merge = CoalescePartitionsExec::new(csv);

        // output of CoalescePartitionsExec should have a single partition
        assert_eq!(
            merge.properties().output_partitioning().partition_count(),
            1
        );

        // the result should contain 4 batches (one per input partition)
        let iter = merge.execute(0, task_ctx)?;
        let batches = common::collect(iter).await?;
        assert_eq!(batches.len(), num_partitions);

        // there should be a total of 400 rows (100 per each partition)
        let row_count: usize = batches.iter().map(|batch| batch.num_rows()).sum();
        assert_eq!(row_count, 400);

        Ok(())
    }

    #[tokio::test]
    async fn test_drop_cancel() -> Result<()> {
        let task_ctx = Arc::new(TaskContext::default());
        let schema =
            Arc::new(Schema::new(vec![Field::new("a", DataType::Float32, true)]));

        let blocking_exec = Arc::new(BlockingExec::new(Arc::clone(&schema), 2));
        let refs = blocking_exec.refs();
        let coalesce_partitions_exec =
            Arc::new(CoalescePartitionsExec::new(blocking_exec));

        let fut = collect(coalesce_partitions_exec, task_ctx);
        let mut fut = fut.boxed();

        assert_is_pending(&mut fut);
        drop(fut);
        assert_strong_count_converges_to_zero(refs).await;

        Ok(())
    }

    #[tokio::test]
    #[should_panic(expected = "PanickingStream did panic")]
    async fn test_panic() {
        let task_ctx = Arc::new(TaskContext::default());
        let schema =
            Arc::new(Schema::new(vec![Field::new("a", DataType::Float32, true)]));

        let panicking_exec = Arc::new(PanicExec::new(Arc::clone(&schema), 2));
        let coalesce_partitions_exec =
            Arc::new(CoalescePartitionsExec::new(panicking_exec));

        collect(coalesce_partitions_exec, task_ctx).await.unwrap();
    }
}