datafusion_physical_plan/
common.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines common code used in execution plans

use std::fs;
use std::fs::{metadata, File};
use std::path::{Path, PathBuf};
use std::sync::Arc;

use super::SendableRecordBatchStream;
use crate::stream::RecordBatchReceiverStream;
use crate::{ColumnStatistics, Statistics};

use arrow::datatypes::Schema;
use arrow::ipc::writer::{FileWriter, IpcWriteOptions};
use arrow::record_batch::RecordBatch;
use arrow_array::Array;
use datafusion_common::stats::Precision;
use datafusion_common::{plan_err, DataFusionError, Result};
use datafusion_execution::memory_pool::MemoryReservation;

use futures::{StreamExt, TryStreamExt};
use parking_lot::Mutex;

/// [`MemoryReservation`] used across query execution streams
pub(crate) type SharedMemoryReservation = Arc<Mutex<MemoryReservation>>;

/// Create a vector of record batches from a stream
pub async fn collect(stream: SendableRecordBatchStream) -> Result<Vec<RecordBatch>> {
    stream.try_collect::<Vec<_>>().await
}

/// Recursively builds a list of files in a directory with a given extension
pub fn build_checked_file_list(dir: &str, ext: &str) -> Result<Vec<String>> {
    let mut filenames: Vec<String> = Vec::new();
    build_file_list_recurse(dir, &mut filenames, ext)?;
    if filenames.is_empty() {
        return plan_err!("No files found at {dir} with file extension {ext}");
    }
    Ok(filenames)
}

/// Recursively builds a list of files in a directory with a given extension
pub fn build_file_list(dir: &str, ext: &str) -> Result<Vec<String>> {
    let mut filenames: Vec<String> = Vec::new();
    build_file_list_recurse(dir, &mut filenames, ext)?;
    Ok(filenames)
}

/// Recursively build a list of files in a directory with a given extension with an accumulator list
fn build_file_list_recurse(
    dir: &str,
    filenames: &mut Vec<String>,
    ext: &str,
) -> Result<()> {
    let metadata = metadata(dir)?;
    if metadata.is_file() {
        if dir.ends_with(ext) {
            filenames.push(dir.to_string());
        }
    } else {
        for entry in fs::read_dir(dir)? {
            let entry = entry?;
            let path = entry.path();
            if let Some(path_name) = path.to_str() {
                if path.is_dir() {
                    build_file_list_recurse(path_name, filenames, ext)?;
                } else if path_name.ends_with(ext) {
                    filenames.push(path_name.to_string());
                }
            } else {
                return plan_err!("Invalid path");
            }
        }
    }
    Ok(())
}

/// If running in a tokio context spawns the execution of `stream` to a separate task
/// allowing it to execute in parallel with an intermediate buffer of size `buffer`
pub(crate) fn spawn_buffered(
    mut input: SendableRecordBatchStream,
    buffer: usize,
) -> SendableRecordBatchStream {
    // Use tokio only if running from a multi-thread tokio context
    match tokio::runtime::Handle::try_current() {
        Ok(handle)
            if handle.runtime_flavor() == tokio::runtime::RuntimeFlavor::MultiThread =>
        {
            let mut builder = RecordBatchReceiverStream::builder(input.schema(), buffer);

            let sender = builder.tx();

            builder.spawn(async move {
                while let Some(item) = input.next().await {
                    if sender.send(item).await.is_err() {
                        // Receiver dropped when query is shutdown early (e.g., limit) or error,
                        // no need to return propagate the send error.
                        return Ok(());
                    }
                }

                Ok(())
            });

            builder.build()
        }
        _ => input,
    }
}

/// Computes the statistics for an in-memory RecordBatch
///
/// Only computes statistics that are in arrows metadata (num rows, byte size and nulls)
/// and does not apply any kernel on the actual data.
pub fn compute_record_batch_statistics(
    batches: &[Vec<RecordBatch>],
    schema: &Schema,
    projection: Option<Vec<usize>>,
) -> Statistics {
    let nb_rows = batches.iter().flatten().map(RecordBatch::num_rows).sum();

    let projection = match projection {
        Some(p) => p,
        None => (0..schema.fields().len()).collect(),
    };

    let total_byte_size = batches
        .iter()
        .flatten()
        .map(|b| {
            projection
                .iter()
                .map(|index| b.column(*index).get_array_memory_size())
                .sum::<usize>()
        })
        .sum();

    let mut null_counts = vec![0; projection.len()];

    for partition in batches.iter() {
        for batch in partition {
            for (stat_index, col_index) in projection.iter().enumerate() {
                null_counts[stat_index] += batch
                    .column(*col_index)
                    .logical_nulls()
                    .map(|nulls| nulls.null_count())
                    .unwrap_or_default();
            }
        }
    }
    let column_statistics = null_counts
        .into_iter()
        .map(|null_count| {
            let mut s = ColumnStatistics::new_unknown();
            s.null_count = Precision::Exact(null_count);
            s
        })
        .collect();

    Statistics {
        num_rows: Precision::Exact(nb_rows),
        total_byte_size: Precision::Exact(total_byte_size),
        column_statistics,
    }
}

/// Write in Arrow IPC format.
pub struct IPCWriter {
    /// Path
    pub path: PathBuf,
    /// Inner writer
    pub writer: FileWriter<File>,
    /// Batches written
    pub num_batches: usize,
    /// Rows written
    pub num_rows: usize,
    /// Bytes written
    pub num_bytes: usize,
}

impl IPCWriter {
    /// Create new writer
    pub fn new(path: &Path, schema: &Schema) -> Result<Self> {
        let file = File::create(path).map_err(|e| {
            DataFusionError::Execution(format!(
                "Failed to create partition file at {path:?}: {e:?}"
            ))
        })?;
        Ok(Self {
            num_batches: 0,
            num_rows: 0,
            num_bytes: 0,
            path: path.into(),
            writer: FileWriter::try_new(file, schema)?,
        })
    }

    /// Create new writer with IPC write options
    pub fn new_with_options(
        path: &Path,
        schema: &Schema,
        write_options: IpcWriteOptions,
    ) -> Result<Self> {
        let file = File::create(path).map_err(|e| {
            DataFusionError::Execution(format!(
                "Failed to create partition file at {path:?}: {e:?}"
            ))
        })?;
        Ok(Self {
            num_batches: 0,
            num_rows: 0,
            num_bytes: 0,
            path: path.into(),
            writer: FileWriter::try_new_with_options(file, schema, write_options)?,
        })
    }
    /// Write one single batch
    pub fn write(&mut self, batch: &RecordBatch) -> Result<()> {
        self.writer.write(batch)?;
        self.num_batches += 1;
        self.num_rows += batch.num_rows();
        let num_bytes: usize = batch.get_array_memory_size();
        self.num_bytes += num_bytes;
        Ok(())
    }

    /// Finish the writer
    pub fn finish(&mut self) -> Result<()> {
        self.writer.finish().map_err(Into::into)
    }

    /// Path write to
    pub fn path(&self) -> &Path {
        &self.path
    }
}

/// Checks if the given projection is valid for the given schema.
pub fn can_project(
    schema: &arrow_schema::SchemaRef,
    projection: Option<&Vec<usize>>,
) -> Result<()> {
    match projection {
        Some(columns) => {
            if columns
                .iter()
                .max()
                .map_or(false, |&i| i >= schema.fields().len())
            {
                Err(arrow_schema::ArrowError::SchemaError(format!(
                    "project index {} out of bounds, max field {}",
                    columns.iter().max().unwrap(),
                    schema.fields().len()
                ))
                .into())
            } else {
                Ok(())
            }
        }
        None => Ok(()),
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use arrow::{
        array::{Float32Array, Float64Array, UInt64Array},
        datatypes::{DataType, Field},
    };

    #[test]
    fn test_compute_record_batch_statistics_empty() -> Result<()> {
        let schema = Arc::new(Schema::new(vec![
            Field::new("f32", DataType::Float32, false),
            Field::new("f64", DataType::Float64, false),
        ]));
        let stats = compute_record_batch_statistics(&[], &schema, Some(vec![0, 1]));

        assert_eq!(stats.num_rows, Precision::Exact(0));
        assert_eq!(stats.total_byte_size, Precision::Exact(0));
        Ok(())
    }

    #[test]
    fn test_compute_record_batch_statistics() -> Result<()> {
        let schema = Arc::new(Schema::new(vec![
            Field::new("f32", DataType::Float32, false),
            Field::new("f64", DataType::Float64, false),
            Field::new("u64", DataType::UInt64, false),
        ]));
        let batch = RecordBatch::try_new(
            Arc::clone(&schema),
            vec![
                Arc::new(Float32Array::from(vec![1., 2., 3.])),
                Arc::new(Float64Array::from(vec![9., 8., 7.])),
                Arc::new(UInt64Array::from(vec![4, 5, 6])),
            ],
        )?;

        // Just select f32,f64
        let select_projection = Some(vec![0, 1]);
        let byte_size = batch
            .project(&select_projection.clone().unwrap())
            .unwrap()
            .get_array_memory_size();

        let actual =
            compute_record_batch_statistics(&[vec![batch]], &schema, select_projection);

        let expected = Statistics {
            num_rows: Precision::Exact(3),
            total_byte_size: Precision::Exact(byte_size),
            column_statistics: vec![
                ColumnStatistics {
                    distinct_count: Precision::Absent,
                    max_value: Precision::Absent,
                    min_value: Precision::Absent,
                    null_count: Precision::Exact(0),
                },
                ColumnStatistics {
                    distinct_count: Precision::Absent,
                    max_value: Precision::Absent,
                    min_value: Precision::Absent,
                    null_count: Precision::Exact(0),
                },
            ],
        };

        assert_eq!(actual, expected);
        Ok(())
    }

    #[test]
    fn test_compute_record_batch_statistics_null() -> Result<()> {
        let schema =
            Arc::new(Schema::new(vec![Field::new("u64", DataType::UInt64, true)]));
        let batch1 = RecordBatch::try_new(
            Arc::clone(&schema),
            vec![Arc::new(UInt64Array::from(vec![Some(1), None, None]))],
        )?;
        let batch2 = RecordBatch::try_new(
            Arc::clone(&schema),
            vec![Arc::new(UInt64Array::from(vec![Some(1), Some(2), None]))],
        )?;
        let byte_size = batch1.get_array_memory_size() + batch2.get_array_memory_size();
        let actual =
            compute_record_batch_statistics(&[vec![batch1], vec![batch2]], &schema, None);

        let expected = Statistics {
            num_rows: Precision::Exact(6),
            total_byte_size: Precision::Exact(byte_size),
            column_statistics: vec![ColumnStatistics {
                distinct_count: Precision::Absent,
                max_value: Precision::Absent,
                min_value: Precision::Absent,
                null_count: Precision::Exact(3),
            }],
        };

        assert_eq!(actual, expected);
        Ok(())
    }
}