datafusion_physical_plan/
execution_plan.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;

use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use arrow_array::Array;
use futures::stream::{StreamExt, TryStreamExt};
use tokio::task::JoinSet;

use datafusion_common::config::ConfigOptions;
pub use datafusion_common::hash_utils;
pub use datafusion_common::utils::project_schema;
use datafusion_common::{exec_err, Result};
pub use datafusion_common::{internal_err, ColumnStatistics, Statistics};
use datafusion_execution::TaskContext;
pub use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream};
pub use datafusion_expr::{Accumulator, ColumnarValue};
pub use datafusion_physical_expr::window::WindowExpr;
pub use datafusion_physical_expr::{
    expressions, udf, Distribution, Partitioning, PhysicalExpr,
};
use datafusion_physical_expr::{EquivalenceProperties, LexOrdering};
use datafusion_physical_expr_common::sort_expr::{LexOrderingRef, LexRequirement};

use crate::coalesce_partitions::CoalescePartitionsExec;
use crate::display::DisplayableExecutionPlan;
pub use crate::display::{DefaultDisplay, DisplayAs, DisplayFormatType, VerboseDisplay};
pub use crate::metrics::Metric;
use crate::metrics::MetricsSet;
pub use crate::ordering::InputOrderMode;
use crate::repartition::RepartitionExec;
use crate::sorts::sort_preserving_merge::SortPreservingMergeExec;
pub use crate::stream::EmptyRecordBatchStream;
use crate::stream::RecordBatchStreamAdapter;

/// Represent nodes in the DataFusion Physical Plan.
///
/// Calling [`execute`] produces an `async` [`SendableRecordBatchStream`] of
/// [`RecordBatch`] that incrementally computes a partition of the
/// `ExecutionPlan`'s output from its input. See [`Partitioning`] for more
/// details on partitioning.
///
/// Methods such as [`Self::schema`] and [`Self::properties`] communicate
/// properties of the output to the DataFusion optimizer, and methods such as
/// [`required_input_distribution`] and [`required_input_ordering`] express
/// requirements of the `ExecutionPlan` from its input.
///
/// [`ExecutionPlan`] can be displayed in a simplified form using the
/// return value from [`displayable`] in addition to the (normally
/// quite verbose) `Debug` output.
///
/// [`execute`]: ExecutionPlan::execute
/// [`required_input_distribution`]: ExecutionPlan::required_input_distribution
/// [`required_input_ordering`]: ExecutionPlan::required_input_ordering
pub trait ExecutionPlan: Debug + DisplayAs + Send + Sync {
    /// Short name for the ExecutionPlan, such as 'ParquetExec'.
    ///
    /// Implementation note: this method can just proxy to
    /// [`static_name`](ExecutionPlan::static_name) if no special action is
    /// needed. It doesn't provide a default implementation like that because
    /// this method doesn't require the `Sized` constrain to allow a wilder
    /// range of use cases.
    fn name(&self) -> &str;

    /// Short name for the ExecutionPlan, such as 'ParquetExec'.
    /// Like [`name`](ExecutionPlan::name) but can be called without an instance.
    fn static_name() -> &'static str
    where
        Self: Sized,
    {
        let full_name = std::any::type_name::<Self>();
        let maybe_start_idx = full_name.rfind(':');
        match maybe_start_idx {
            Some(start_idx) => &full_name[start_idx + 1..],
            None => "UNKNOWN",
        }
    }

    /// Returns the execution plan as [`Any`] so that it can be
    /// downcast to a specific implementation.
    fn as_any(&self) -> &dyn Any;

    /// Get the schema for this execution plan
    fn schema(&self) -> SchemaRef {
        Arc::clone(self.properties().schema())
    }

    /// Return properties of the output of the `ExecutionPlan`, such as output
    /// ordering(s), partitioning information etc.
    ///
    /// This information is available via methods on [`ExecutionPlanProperties`]
    /// trait, which is implemented for all `ExecutionPlan`s.
    fn properties(&self) -> &PlanProperties;

    /// Specifies the data distribution requirements for all the
    /// children for this `ExecutionPlan`, By default it's [[Distribution::UnspecifiedDistribution]] for each child,
    fn required_input_distribution(&self) -> Vec<Distribution> {
        vec![Distribution::UnspecifiedDistribution; self.children().len()]
    }

    /// Specifies the ordering required for all of the children of this
    /// `ExecutionPlan`.
    ///
    /// For each child, it's the local ordering requirement within
    /// each partition rather than the global ordering
    ///
    /// NOTE that checking `!is_empty()` does **not** check for a
    /// required input ordering. Instead, the correct check is that at
    /// least one entry must be `Some`
    fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
        vec![None; self.children().len()]
    }

    /// Returns `false` if this `ExecutionPlan`'s implementation may reorder
    /// rows within or between partitions.
    ///
    /// For example, Projection, Filter, and Limit maintain the order
    /// of inputs -- they may transform values (Projection) or not
    /// produce the same number of rows that went in (Filter and
    /// Limit), but the rows that are produced go in the same way.
    ///
    /// DataFusion uses this metadata to apply certain optimizations
    /// such as automatically repartitioning correctly.
    ///
    /// The default implementation returns `false`
    ///
    /// WARNING: if you override this default, you *MUST* ensure that
    /// the `ExecutionPlan`'s maintains the ordering invariant or else
    /// DataFusion may produce incorrect results.
    fn maintains_input_order(&self) -> Vec<bool> {
        vec![false; self.children().len()]
    }

    /// Specifies whether the `ExecutionPlan` benefits from increased
    /// parallelization at its input for each child.
    ///
    /// If returns `true`, the `ExecutionPlan` would benefit from partitioning
    /// its corresponding child (and thus from more parallelism). For
    /// `ExecutionPlan` that do very little work the overhead of extra
    /// parallelism may outweigh any benefits
    ///
    /// The default implementation returns `true` unless this `ExecutionPlan`
    /// has signalled it requires a single child input partition.
    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
        // By default try to maximize parallelism with more CPUs if
        // possible
        self.required_input_distribution()
            .into_iter()
            .map(|dist| !matches!(dist, Distribution::SinglePartition))
            .collect()
    }

    /// Get a list of children `ExecutionPlan`s that act as inputs to this plan.
    /// The returned list will be empty for leaf nodes such as scans, will contain
    /// a single value for unary nodes, or two values for binary nodes (such as
    /// joins).
    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>>;

    /// Returns a new `ExecutionPlan` where all existing children were replaced
    /// by the `children`, in order
    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>>;

    /// If supported, attempt to increase the partitioning of this `ExecutionPlan` to
    /// produce `target_partitions` partitions.
    ///
    /// If the `ExecutionPlan` does not support changing its partitioning,
    /// returns `Ok(None)` (the default).
    ///
    /// It is the `ExecutionPlan` can increase its partitioning, but not to the
    /// `target_partitions`, it may return an ExecutionPlan with fewer
    /// partitions. This might happen, for example, if each new partition would
    /// be too small to be efficiently processed individually.
    ///
    /// The DataFusion optimizer attempts to use as many threads as possible by
    /// repartitioning its inputs to match the target number of threads
    /// available (`target_partitions`). Some data sources, such as the built in
    /// CSV and Parquet readers, implement this method as they are able to read
    /// from their input files in parallel, regardless of how the source data is
    /// split amongst files.
    fn repartitioned(
        &self,
        _target_partitions: usize,
        _config: &ConfigOptions,
    ) -> Result<Option<Arc<dyn ExecutionPlan>>> {
        Ok(None)
    }

    /// Begin execution of `partition`, returning a [`Stream`] of
    /// [`RecordBatch`]es.
    ///
    /// # Notes
    ///
    /// The `execute` method itself is not `async` but it returns an `async`
    /// [`futures::stream::Stream`]. This `Stream` should incrementally compute
    /// the output, `RecordBatch` by `RecordBatch` (in a streaming fashion).
    /// Most `ExecutionPlan`s should not do any work before the first
    /// `RecordBatch` is requested from the stream.
    ///
    /// [`RecordBatchStreamAdapter`] can be used to convert an `async`
    /// [`Stream`] into a [`SendableRecordBatchStream`].
    ///
    /// Using `async` `Streams` allows for network I/O during execution and
    /// takes advantage of Rust's built in support for `async` continuations and
    /// crate ecosystem.
    ///
    /// [`Stream`]: futures::stream::Stream
    /// [`StreamExt`]: futures::stream::StreamExt
    /// [`TryStreamExt`]: futures::stream::TryStreamExt
    /// [`RecordBatchStreamAdapter`]: crate::stream::RecordBatchStreamAdapter
    ///
    /// # Error handling
    ///
    /// Any error that occurs during execution is sent as an `Err` in the output
    /// stream.
    ///
    /// `ExecutionPlan` implementations in DataFusion cancel additional work
    /// immediately once an error occurs. The rationale is that if the overall
    /// query will return an error,  any additional work such as continued
    /// polling of inputs will be wasted as it will be thrown away.
    ///
    /// # Cancellation / Aborting Execution
    ///
    /// The [`Stream`] that is returned must ensure that any allocated resources
    /// are freed when the stream itself is dropped. This is particularly
    /// important for [`spawn`]ed tasks or threads. Unless care is taken to
    /// "abort" such tasks, they may continue to consume resources even after
    /// the plan is dropped, generating intermediate results that are never
    /// used.
    /// Thus, [`spawn`] is disallowed, and instead use [`SpawnedTask`].
    ///
    /// For more details see [`SpawnedTask`], [`JoinSet`] and [`RecordBatchReceiverStreamBuilder`]
    /// for structures to help ensure all background tasks are cancelled.
    ///
    /// [`spawn`]: tokio::task::spawn
    /// [`JoinSet`]: tokio::task::JoinSet
    /// [`SpawnedTask`]: datafusion_common_runtime::SpawnedTask
    /// [`RecordBatchReceiverStreamBuilder`]: crate::stream::RecordBatchReceiverStreamBuilder
    ///
    /// # Implementation Examples
    ///
    /// While `async` `Stream`s have a non trivial learning curve, the
    /// [`futures`] crate provides [`StreamExt`] and [`TryStreamExt`]
    /// which help simplify many common operations.
    ///
    /// Here are some common patterns:
    ///
    /// ## Return Precomputed `RecordBatch`
    ///
    /// We can return a precomputed `RecordBatch` as a `Stream`:
    ///
    /// ```
    /// # use std::sync::Arc;
    /// # use arrow_array::RecordBatch;
    /// # use arrow_schema::SchemaRef;
    /// # use datafusion_common::Result;
    /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
    /// # use datafusion_physical_plan::memory::MemoryStream;
    /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
    /// struct MyPlan {
    ///     batch: RecordBatch,
    /// }
    ///
    /// impl MyPlan {
    ///     fn execute(
    ///         &self,
    ///         partition: usize,
    ///         context: Arc<TaskContext>
    ///     ) -> Result<SendableRecordBatchStream> {
    ///         // use functions from futures crate convert the batch into a stream
    ///         let fut = futures::future::ready(Ok(self.batch.clone()));
    ///         let stream = futures::stream::once(fut);
    ///         Ok(Box::pin(RecordBatchStreamAdapter::new(self.batch.schema(), stream)))
    ///     }
    /// }
    /// ```
    ///
    /// ## Lazily (async) Compute `RecordBatch`
    ///
    /// We can also lazily compute a `RecordBatch` when the returned `Stream` is polled
    ///
    /// ```
    /// # use std::sync::Arc;
    /// # use arrow_array::RecordBatch;
    /// # use arrow_schema::SchemaRef;
    /// # use datafusion_common::Result;
    /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
    /// # use datafusion_physical_plan::memory::MemoryStream;
    /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
    /// struct MyPlan {
    ///     schema: SchemaRef,
    /// }
    ///
    /// /// Returns a single batch when the returned stream is polled
    /// async fn get_batch() -> Result<RecordBatch> {
    ///     todo!()
    /// }
    ///
    /// impl MyPlan {
    ///     fn execute(
    ///         &self,
    ///         partition: usize,
    ///         context: Arc<TaskContext>
    ///     ) -> Result<SendableRecordBatchStream> {
    ///         let fut = get_batch();
    ///         let stream = futures::stream::once(fut);
    ///         Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream)))
    ///     }
    /// }
    /// ```
    ///
    /// ## Lazily (async) create a Stream
    ///
    /// If you need to create the return `Stream` using an `async` function,
    /// you can do so by flattening the result:
    ///
    /// ```
    /// # use std::sync::Arc;
    /// # use arrow_array::RecordBatch;
    /// # use arrow_schema::SchemaRef;
    /// # use futures::TryStreamExt;
    /// # use datafusion_common::Result;
    /// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
    /// # use datafusion_physical_plan::memory::MemoryStream;
    /// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
    /// struct MyPlan {
    ///     schema: SchemaRef,
    /// }
    ///
    /// /// async function that returns a stream
    /// async fn get_batch_stream() -> Result<SendableRecordBatchStream> {
    ///     todo!()
    /// }
    ///
    /// impl MyPlan {
    ///     fn execute(
    ///         &self,
    ///         partition: usize,
    ///         context: Arc<TaskContext>
    ///     ) -> Result<SendableRecordBatchStream> {
    ///         // A future that yields a stream
    ///         let fut = get_batch_stream();
    ///         // Use TryStreamExt::try_flatten to flatten the stream of streams
    ///         let stream = futures::stream::once(fut).try_flatten();
    ///         Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream)))
    ///     }
    /// }
    /// ```
    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream>;

    /// Return a snapshot of the set of [`Metric`]s for this
    /// [`ExecutionPlan`]. If no `Metric`s are available, return None.
    ///
    /// While the values of the metrics in the returned
    /// [`MetricsSet`]s may change as execution progresses, the
    /// specific metrics will not.
    ///
    /// Once `self.execute()` has returned (technically the future is
    /// resolved) for all available partitions, the set of metrics
    /// should be complete. If this function is called prior to
    /// `execute()` new metrics may appear in subsequent calls.
    fn metrics(&self) -> Option<MetricsSet> {
        None
    }

    /// Returns statistics for this `ExecutionPlan` node. If statistics are not
    /// available, should return [`Statistics::new_unknown`] (the default), not
    /// an error.
    ///
    /// For TableScan executors, which supports filter pushdown, special attention
    /// needs to be paid to whether the stats returned by this method are exact or not
    fn statistics(&self) -> Result<Statistics> {
        Ok(Statistics::new_unknown(&self.schema()))
    }

    /// Returns `true` if a limit can be safely pushed down through this
    /// `ExecutionPlan` node.
    ///
    /// If this method returns `true`, and the query plan contains a limit at
    /// the output of this node, DataFusion will push the limit to the input
    /// of this node.
    fn supports_limit_pushdown(&self) -> bool {
        false
    }

    /// Returns a fetching variant of this `ExecutionPlan` node, if it supports
    /// fetch limits. Returns `None` otherwise.
    fn with_fetch(&self, _limit: Option<usize>) -> Option<Arc<dyn ExecutionPlan>> {
        None
    }

    /// Gets the fetch count for the operator, `None` means there is no fetch.
    fn fetch(&self) -> Option<usize> {
        None
    }

    /// Gets the effect on cardinality, if known
    fn cardinality_effect(&self) -> CardinalityEffect {
        CardinalityEffect::Unknown
    }
}

/// Extension trait provides an easy API to fetch various properties of
/// [`ExecutionPlan`] objects based on [`ExecutionPlan::properties`].
pub trait ExecutionPlanProperties {
    /// Specifies how the output of this `ExecutionPlan` is split into
    /// partitions.
    fn output_partitioning(&self) -> &Partitioning;

    /// Specifies whether this plan generates an infinite stream of records.
    /// If the plan does not support pipelining, but its input(s) are
    /// infinite, returns [`ExecutionMode::PipelineBreaking`] to indicate this.
    fn execution_mode(&self) -> ExecutionMode;

    /// If the output of this `ExecutionPlan` within each partition is sorted,
    /// returns `Some(keys)` describing the ordering. A `None` return value
    /// indicates no assumptions should be made on the output ordering.
    ///
    /// For example, `SortExec` (obviously) produces sorted output as does
    /// `SortPreservingMergeStream`. Less obviously, `Projection` produces sorted
    /// output if its input is sorted as it does not reorder the input rows.
    fn output_ordering(&self) -> Option<LexOrderingRef>;

    /// Get the [`EquivalenceProperties`] within the plan.
    ///
    /// Equivalence properties tell DataFusion what columns are known to be
    /// equal, during various optimization passes. By default, this returns "no
    /// known equivalences" which is always correct, but may cause DataFusion to
    /// unnecessarily resort data.
    ///
    /// If this ExecutionPlan makes no changes to the schema of the rows flowing
    /// through it or how columns within each row relate to each other, it
    /// should return the equivalence properties of its input. For
    /// example, since `FilterExec` may remove rows from its input, but does not
    /// otherwise modify them, it preserves its input equivalence properties.
    /// However, since `ProjectionExec` may calculate derived expressions, it
    /// needs special handling.
    ///
    /// See also [`ExecutionPlan::maintains_input_order`] and [`Self::output_ordering`]
    /// for related concepts.
    fn equivalence_properties(&self) -> &EquivalenceProperties;
}

impl ExecutionPlanProperties for Arc<dyn ExecutionPlan> {
    fn output_partitioning(&self) -> &Partitioning {
        self.properties().output_partitioning()
    }

    fn execution_mode(&self) -> ExecutionMode {
        self.properties().execution_mode()
    }

    fn output_ordering(&self) -> Option<LexOrderingRef> {
        self.properties().output_ordering()
    }

    fn equivalence_properties(&self) -> &EquivalenceProperties {
        self.properties().equivalence_properties()
    }
}

impl ExecutionPlanProperties for &dyn ExecutionPlan {
    fn output_partitioning(&self) -> &Partitioning {
        self.properties().output_partitioning()
    }

    fn execution_mode(&self) -> ExecutionMode {
        self.properties().execution_mode()
    }

    fn output_ordering(&self) -> Option<LexOrderingRef> {
        self.properties().output_ordering()
    }

    fn equivalence_properties(&self) -> &EquivalenceProperties {
        self.properties().equivalence_properties()
    }
}

/// Describes the execution mode of the result of calling
/// [`ExecutionPlan::execute`] with respect to its size and behavior.
///
/// The mode of the execution plan is determined by the mode of its input
/// execution plans and the details of the operator itself. For example, a
/// `FilterExec` operator will have the same execution mode as its input, but a
/// `SortExec` operator may have a different execution mode than its input,
/// depending on how the input stream is sorted.
///
/// There are three possible execution modes: `Bounded`, `Unbounded` and
/// `PipelineBreaking`.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum ExecutionMode {
    /// The stream is bounded / finite.
    ///
    /// In this case the stream will eventually return `None` to indicate that
    /// there are no more records to process.
    Bounded,
    /// The stream is unbounded / infinite.
    ///
    /// In this case, the stream will never be done (never return `None`),
    /// except in case of error.
    ///
    /// This mode is often used in "Steaming" use cases where data is
    /// incrementally processed as it arrives.
    ///
    /// Note that even though the operator generates an unbounded stream of
    /// results, it can execute with bounded memory and incrementally produces
    /// output.
    Unbounded,
    /// Some of the operator's input stream(s) are unbounded, but the operator
    /// cannot generate streaming results from these streaming inputs.
    ///
    /// In this case, the execution mode will be pipeline breaking, e.g. the
    /// operator requires unbounded memory to generate results. This
    /// information is used by the planner when performing sanity checks
    /// on plans processings unbounded data sources.
    PipelineBreaking,
}

impl ExecutionMode {
    /// Check whether the execution mode is unbounded or not.
    pub fn is_unbounded(&self) -> bool {
        matches!(self, ExecutionMode::Unbounded)
    }

    /// Check whether the execution is pipeline friendly. If so, operator can
    /// execute safely.
    pub fn pipeline_friendly(&self) -> bool {
        matches!(self, ExecutionMode::Bounded | ExecutionMode::Unbounded)
    }
}

/// Conservatively "combines" execution modes of a given collection of operators.
pub(crate) fn execution_mode_from_children<'a>(
    children: impl IntoIterator<Item = &'a Arc<dyn ExecutionPlan>>,
) -> ExecutionMode {
    let mut result = ExecutionMode::Bounded;
    for mode in children.into_iter().map(|child| child.execution_mode()) {
        match (mode, result) {
            (ExecutionMode::PipelineBreaking, _)
            | (_, ExecutionMode::PipelineBreaking) => {
                // If any of the modes is `PipelineBreaking`, so is the result:
                return ExecutionMode::PipelineBreaking;
            }
            (ExecutionMode::Unbounded, _) | (_, ExecutionMode::Unbounded) => {
                // Unbounded mode eats up bounded mode:
                result = ExecutionMode::Unbounded;
            }
            (ExecutionMode::Bounded, ExecutionMode::Bounded) => {
                // When both modes are bounded, so is the result:
                result = ExecutionMode::Bounded;
            }
        }
    }
    result
}

/// Stores certain, often expensive to compute, plan properties used in query
/// optimization.
///
/// These properties are stored a single structure to permit this information to
/// be computed once and then those cached results used multiple times without
/// recomputation (aka a cache)
#[derive(Debug, Clone)]
pub struct PlanProperties {
    /// See [ExecutionPlanProperties::equivalence_properties]
    pub eq_properties: EquivalenceProperties,
    /// See [ExecutionPlanProperties::output_partitioning]
    pub partitioning: Partitioning,
    /// See [ExecutionPlanProperties::execution_mode]
    pub execution_mode: ExecutionMode,
    /// See [ExecutionPlanProperties::output_ordering]
    output_ordering: Option<LexOrdering>,
}

impl PlanProperties {
    /// Construct a new `PlanPropertiesCache` from the
    pub fn new(
        eq_properties: EquivalenceProperties,
        partitioning: Partitioning,
        execution_mode: ExecutionMode,
    ) -> Self {
        // Output ordering can be derived from `eq_properties`.
        let output_ordering = eq_properties.output_ordering();
        Self {
            eq_properties,
            partitioning,
            execution_mode,
            output_ordering,
        }
    }

    /// Overwrite output partitioning with its new value.
    pub fn with_partitioning(mut self, partitioning: Partitioning) -> Self {
        self.partitioning = partitioning;
        self
    }

    /// Overwrite the execution Mode with its new value.
    pub fn with_execution_mode(mut self, execution_mode: ExecutionMode) -> Self {
        self.execution_mode = execution_mode;
        self
    }

    /// Overwrite equivalence properties with its new value.
    pub fn with_eq_properties(mut self, eq_properties: EquivalenceProperties) -> Self {
        // Changing equivalence properties also changes output ordering, so
        // make sure to overwrite it:
        self.output_ordering = eq_properties.output_ordering();
        self.eq_properties = eq_properties;
        self
    }

    pub fn equivalence_properties(&self) -> &EquivalenceProperties {
        &self.eq_properties
    }

    pub fn output_partitioning(&self) -> &Partitioning {
        &self.partitioning
    }

    pub fn output_ordering(&self) -> Option<LexOrderingRef> {
        self.output_ordering.as_deref()
    }

    pub fn execution_mode(&self) -> ExecutionMode {
        self.execution_mode
    }

    /// Get schema of the node.
    fn schema(&self) -> &SchemaRef {
        self.eq_properties.schema()
    }
}

/// Indicate whether a data exchange is needed for the input of `plan`, which will be very helpful
/// especially for the distributed engine to judge whether need to deal with shuffling.
/// Currently there are 3 kinds of execution plan which needs data exchange
///     1. RepartitionExec for changing the partition number between two `ExecutionPlan`s
///     2. CoalescePartitionsExec for collapsing all of the partitions into one without ordering guarantee
///     3. SortPreservingMergeExec for collapsing all of the sorted partitions into one with ordering guarantee
pub fn need_data_exchange(plan: Arc<dyn ExecutionPlan>) -> bool {
    if let Some(repartition) = plan.as_any().downcast_ref::<RepartitionExec>() {
        !matches!(
            repartition.properties().output_partitioning(),
            Partitioning::RoundRobinBatch(_)
        )
    } else if let Some(coalesce) = plan.as_any().downcast_ref::<CoalescePartitionsExec>()
    {
        coalesce.input().output_partitioning().partition_count() > 1
    } else if let Some(sort_preserving_merge) =
        plan.as_any().downcast_ref::<SortPreservingMergeExec>()
    {
        sort_preserving_merge
            .input()
            .output_partitioning()
            .partition_count()
            > 1
    } else {
        false
    }
}

/// Returns a copy of this plan if we change any child according to the pointer comparison.
/// The size of `children` must be equal to the size of `ExecutionPlan::children()`.
pub fn with_new_children_if_necessary(
    plan: Arc<dyn ExecutionPlan>,
    children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
    let old_children = plan.children();
    if children.len() != old_children.len() {
        internal_err!("Wrong number of children")
    } else if children.is_empty()
        || children
            .iter()
            .zip(old_children.iter())
            .any(|(c1, c2)| !Arc::ptr_eq(c1, c2))
    {
        plan.with_new_children(children)
    } else {
        Ok(plan)
    }
}

/// Return a [wrapper](DisplayableExecutionPlan) around an
/// [`ExecutionPlan`] which can be displayed in various easier to
/// understand ways.
pub fn displayable(plan: &dyn ExecutionPlan) -> DisplayableExecutionPlan<'_> {
    DisplayableExecutionPlan::new(plan)
}

/// Execute the [ExecutionPlan] and collect the results in memory
pub async fn collect(
    plan: Arc<dyn ExecutionPlan>,
    context: Arc<TaskContext>,
) -> Result<Vec<RecordBatch>> {
    let stream = execute_stream(plan, context)?;
    crate::common::collect(stream).await
}

/// Execute the [ExecutionPlan] and return a single stream of `RecordBatch`es.
///
/// See [collect] to buffer the `RecordBatch`es in memory.
///
/// # Aborting Execution
///
/// Dropping the stream will abort the execution of the query, and free up
/// any allocated resources
pub fn execute_stream(
    plan: Arc<dyn ExecutionPlan>,
    context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
    match plan.output_partitioning().partition_count() {
        0 => Ok(Box::pin(EmptyRecordBatchStream::new(plan.schema()))),
        1 => plan.execute(0, context),
        2.. => {
            // merge into a single partition
            let plan = CoalescePartitionsExec::new(Arc::clone(&plan));
            // CoalescePartitionsExec must produce a single partition
            assert_eq!(1, plan.properties().output_partitioning().partition_count());
            plan.execute(0, context)
        }
    }
}

/// Execute the [ExecutionPlan] and collect the results in memory
pub async fn collect_partitioned(
    plan: Arc<dyn ExecutionPlan>,
    context: Arc<TaskContext>,
) -> Result<Vec<Vec<RecordBatch>>> {
    let streams = execute_stream_partitioned(plan, context)?;

    let mut join_set = JoinSet::new();
    // Execute the plan and collect the results into batches.
    streams.into_iter().enumerate().for_each(|(idx, stream)| {
        join_set.spawn(async move {
            let result: Result<Vec<RecordBatch>> = stream.try_collect().await;
            (idx, result)
        });
    });

    let mut batches = vec![];
    // Note that currently this doesn't identify the thread that panicked
    //
    // TODO: Replace with [join_next_with_id](https://docs.rs/tokio/latest/tokio/task/struct.JoinSet.html#method.join_next_with_id
    // once it is stable
    while let Some(result) = join_set.join_next().await {
        match result {
            Ok((idx, res)) => batches.push((idx, res?)),
            Err(e) => {
                if e.is_panic() {
                    std::panic::resume_unwind(e.into_panic());
                } else {
                    unreachable!();
                }
            }
        }
    }

    batches.sort_by_key(|(idx, _)| *idx);
    let batches = batches.into_iter().map(|(_, batch)| batch).collect();

    Ok(batches)
}

/// Execute the [ExecutionPlan] and return a vec with one stream per output
/// partition
///
/// # Aborting Execution
///
/// Dropping the stream will abort the execution of the query, and free up
/// any allocated resources
pub fn execute_stream_partitioned(
    plan: Arc<dyn ExecutionPlan>,
    context: Arc<TaskContext>,
) -> Result<Vec<SendableRecordBatchStream>> {
    let num_partitions = plan.output_partitioning().partition_count();
    let mut streams = Vec::with_capacity(num_partitions);
    for i in 0..num_partitions {
        streams.push(plan.execute(i, Arc::clone(&context))?);
    }
    Ok(streams)
}

/// Executes an input stream and ensures that the resulting stream adheres to
/// the `not null` constraints specified in the `sink_schema`.
///
/// # Arguments
///
/// * `input` - An execution plan
/// * `sink_schema` - The schema to be applied to the output stream
/// * `partition` - The partition index to be executed
/// * `context` - The task context
///
/// # Returns
///
/// * `Result<SendableRecordBatchStream>` - A stream of `RecordBatch`es if successful
///
/// This function first executes the given input plan for the specified partition
/// and context. It then checks if there are any columns in the input that might
/// violate the `not null` constraints specified in the `sink_schema`. If there are
/// such columns, it wraps the resulting stream to enforce the `not null` constraints
/// by invoking the `check_not_null_contraits` function on each batch of the stream.
pub fn execute_input_stream(
    input: Arc<dyn ExecutionPlan>,
    sink_schema: SchemaRef,
    partition: usize,
    context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
    let input_stream = input.execute(partition, context)?;

    debug_assert_eq!(sink_schema.fields().len(), input.schema().fields().len());

    // Find input columns that may violate the not null constraint.
    let risky_columns: Vec<_> = sink_schema
        .fields()
        .iter()
        .zip(input.schema().fields().iter())
        .enumerate()
        .filter_map(|(idx, (sink_field, input_field))| {
            (!sink_field.is_nullable() && input_field.is_nullable()).then_some(idx)
        })
        .collect();

    if risky_columns.is_empty() {
        Ok(input_stream)
    } else {
        // Check not null constraint on the input stream
        Ok(Box::pin(RecordBatchStreamAdapter::new(
            sink_schema,
            input_stream
                .map(move |batch| check_not_null_constraints(batch?, &risky_columns)),
        )))
    }
}

/// Checks a `RecordBatch` for `not null` constraints on specified columns.
///
/// # Arguments
///
/// * `batch` - The `RecordBatch` to be checked
/// * `column_indices` - A vector of column indices that should be checked for
///   `not null` constraints.
///
/// # Returns
///
/// * `Result<RecordBatch>` - The original `RecordBatch` if all constraints are met
///
/// This function iterates over the specified column indices and ensures that none
/// of the columns contain null values. If any column contains null values, an error
/// is returned.
pub fn check_not_null_constraints(
    batch: RecordBatch,
    column_indices: &Vec<usize>,
) -> Result<RecordBatch> {
    for &index in column_indices {
        if batch.num_columns() <= index {
            return exec_err!(
                "Invalid batch column count {} expected > {}",
                batch.num_columns(),
                index
            );
        }

        if batch
            .column(index)
            .logical_nulls()
            .map(|nulls| nulls.null_count())
            .unwrap_or_default()
            > 0
        {
            return exec_err!(
                "Invalid batch column at '{}' has null but schema specifies non-nullable",
                index
            );
        }
    }

    Ok(batch)
}

/// Utility function yielding a string representation of the given [`ExecutionPlan`].
pub fn get_plan_string(plan: &Arc<dyn ExecutionPlan>) -> Vec<String> {
    let formatted = displayable(plan.as_ref()).indent(true).to_string();
    let actual: Vec<&str> = formatted.trim().lines().collect();
    actual.iter().map(|elem| elem.to_string()).collect()
}

/// Indicates the effect an execution plan operator will have on the cardinality
/// of its input stream
pub enum CardinalityEffect {
    /// Unknown effect. This is the default
    Unknown,
    /// The operator is guaranteed to produce exactly one row for
    /// each input row
    Equal,
    /// The operator may produce fewer output rows than it receives input rows
    LowerEqual,
    /// The operator may produce more output rows than it receives input rows
    GreaterEqual,
}

#[cfg(test)]
mod tests {
    use super::*;
    use arrow_array::{DictionaryArray, Int32Array, NullArray, RunArray};
    use arrow_schema::{DataType, Field, Schema, SchemaRef};
    use std::any::Any;
    use std::sync::Arc;

    use datafusion_common::{Result, Statistics};
    use datafusion_execution::{SendableRecordBatchStream, TaskContext};

    use crate::{DisplayAs, DisplayFormatType, ExecutionPlan};

    #[derive(Debug)]
    pub struct EmptyExec;

    impl EmptyExec {
        pub fn new(_schema: SchemaRef) -> Self {
            Self
        }
    }

    impl DisplayAs for EmptyExec {
        fn fmt_as(
            &self,
            _t: DisplayFormatType,
            _f: &mut std::fmt::Formatter,
        ) -> std::fmt::Result {
            unimplemented!()
        }
    }

    impl ExecutionPlan for EmptyExec {
        fn name(&self) -> &'static str {
            Self::static_name()
        }

        fn as_any(&self) -> &dyn Any {
            self
        }

        fn properties(&self) -> &PlanProperties {
            unimplemented!()
        }

        fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
            vec![]
        }

        fn with_new_children(
            self: Arc<Self>,
            _: Vec<Arc<dyn ExecutionPlan>>,
        ) -> Result<Arc<dyn ExecutionPlan>> {
            unimplemented!()
        }

        fn execute(
            &self,
            _partition: usize,
            _context: Arc<TaskContext>,
        ) -> Result<SendableRecordBatchStream> {
            unimplemented!()
        }

        fn statistics(&self) -> Result<Statistics> {
            unimplemented!()
        }
    }

    #[derive(Debug)]
    pub struct RenamedEmptyExec;

    impl RenamedEmptyExec {
        pub fn new(_schema: SchemaRef) -> Self {
            Self
        }
    }

    impl DisplayAs for RenamedEmptyExec {
        fn fmt_as(
            &self,
            _t: DisplayFormatType,
            _f: &mut std::fmt::Formatter,
        ) -> std::fmt::Result {
            unimplemented!()
        }
    }

    impl ExecutionPlan for RenamedEmptyExec {
        fn name(&self) -> &'static str {
            Self::static_name()
        }

        fn static_name() -> &'static str
        where
            Self: Sized,
        {
            "MyRenamedEmptyExec"
        }

        fn as_any(&self) -> &dyn Any {
            self
        }

        fn properties(&self) -> &PlanProperties {
            unimplemented!()
        }

        fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
            vec![]
        }

        fn with_new_children(
            self: Arc<Self>,
            _: Vec<Arc<dyn ExecutionPlan>>,
        ) -> Result<Arc<dyn ExecutionPlan>> {
            unimplemented!()
        }

        fn execute(
            &self,
            _partition: usize,
            _context: Arc<TaskContext>,
        ) -> Result<SendableRecordBatchStream> {
            unimplemented!()
        }

        fn statistics(&self) -> Result<Statistics> {
            unimplemented!()
        }
    }

    #[test]
    fn test_execution_plan_name() {
        let schema1 = Arc::new(Schema::empty());
        let default_name_exec = EmptyExec::new(schema1);
        assert_eq!(default_name_exec.name(), "EmptyExec");

        let schema2 = Arc::new(Schema::empty());
        let renamed_exec = RenamedEmptyExec::new(schema2);
        assert_eq!(renamed_exec.name(), "MyRenamedEmptyExec");
        assert_eq!(RenamedEmptyExec::static_name(), "MyRenamedEmptyExec");
    }

    /// A compilation test to ensure that the `ExecutionPlan::name()` method can
    /// be called from a trait object.
    /// Related ticket: https://github.com/apache/datafusion/pull/11047
    #[allow(dead_code)]
    fn use_execution_plan_as_trait_object(plan: &dyn ExecutionPlan) {
        let _ = plan.name();
    }

    #[test]
    fn test_check_not_null_constraints_accept_non_null() -> Result<()> {
        check_not_null_constraints(
            RecordBatch::try_new(
                Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, true)])),
                vec![Arc::new(Int32Array::from(vec![Some(1), Some(2), Some(3)]))],
            )?,
            &vec![0],
        )?;
        Ok(())
    }

    #[test]
    fn test_check_not_null_constraints_reject_null() -> Result<()> {
        let result = check_not_null_constraints(
            RecordBatch::try_new(
                Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, true)])),
                vec![Arc::new(Int32Array::from(vec![Some(1), None, Some(3)]))],
            )?,
            &vec![0],
        );
        assert!(result.is_err());
        assert_starts_with(
            result.err().unwrap().message().as_ref(),
            "Invalid batch column at '0' has null but schema specifies non-nullable",
        );
        Ok(())
    }

    #[test]
    fn test_check_not_null_constraints_with_run_end_array() -> Result<()> {
        // some null value inside REE array
        let run_ends = Int32Array::from(vec![1, 2, 3, 4]);
        let values = Int32Array::from(vec![Some(0), None, Some(1), None]);
        let run_end_array = RunArray::try_new(&run_ends, &values)?;
        let result = check_not_null_constraints(
            RecordBatch::try_new(
                Arc::new(Schema::new(vec![Field::new(
                    "a",
                    run_end_array.data_type().to_owned(),
                    true,
                )])),
                vec![Arc::new(run_end_array)],
            )?,
            &vec![0],
        );
        assert!(result.is_err());
        assert_starts_with(
            result.err().unwrap().message().as_ref(),
            "Invalid batch column at '0' has null but schema specifies non-nullable",
        );
        Ok(())
    }

    #[test]
    fn test_check_not_null_constraints_with_dictionary_array_with_null() -> Result<()> {
        let values = Arc::new(Int32Array::from(vec![Some(1), None, Some(3), Some(4)]));
        let keys = Int32Array::from(vec![0, 1, 2, 3]);
        let dictionary = DictionaryArray::new(keys, values);
        let result = check_not_null_constraints(
            RecordBatch::try_new(
                Arc::new(Schema::new(vec![Field::new(
                    "a",
                    dictionary.data_type().to_owned(),
                    true,
                )])),
                vec![Arc::new(dictionary)],
            )?,
            &vec![0],
        );
        assert!(result.is_err());
        assert_starts_with(
            result.err().unwrap().message().as_ref(),
            "Invalid batch column at '0' has null but schema specifies non-nullable",
        );
        Ok(())
    }

    #[test]
    fn test_check_not_null_constraints_with_dictionary_masking_null() -> Result<()> {
        // some null value marked out by dictionary array
        let values = Arc::new(Int32Array::from(vec![
            Some(1),
            None, // this null value is masked by dictionary keys
            Some(3),
            Some(4),
        ]));
        let keys = Int32Array::from(vec![0, /*1,*/ 2, 3]);
        let dictionary = DictionaryArray::new(keys, values);
        check_not_null_constraints(
            RecordBatch::try_new(
                Arc::new(Schema::new(vec![Field::new(
                    "a",
                    dictionary.data_type().to_owned(),
                    true,
                )])),
                vec![Arc::new(dictionary)],
            )?,
            &vec![0],
        )?;
        Ok(())
    }

    #[test]
    fn test_check_not_null_constraints_on_null_type() -> Result<()> {
        // null value of Null type
        let result = check_not_null_constraints(
            RecordBatch::try_new(
                Arc::new(Schema::new(vec![Field::new("a", DataType::Null, true)])),
                vec![Arc::new(NullArray::new(3))],
            )?,
            &vec![0],
        );
        assert!(result.is_err());
        assert_starts_with(
            result.err().unwrap().message().as_ref(),
            "Invalid batch column at '0' has null but schema specifies non-nullable",
        );
        Ok(())
    }

    fn assert_starts_with(actual: impl AsRef<str>, expected_prefix: impl AsRef<str>) {
        let actual = actual.as_ref();
        let expected_prefix = expected_prefix.as_ref();
        assert!(
            actual.starts_with(expected_prefix),
            "Expected '{}' to start with '{}'",
            actual,
            expected_prefix
        );
    }
}