datafusion_physical_plan/windows/
bounded_window_agg_exec.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Stream and channel implementations for window function expressions.
//! The executor given here uses bounded memory (does not maintain all
//! the input data seen so far), which makes it appropriate when processing
//! infinite inputs.

use std::any::Any;
use std::cmp::{min, Ordering};
use std::collections::{HashMap, VecDeque};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use super::utils::create_schema;
use crate::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use crate::windows::{
    calc_requirements, get_ordered_partition_by_indices, get_partition_by_sort_exprs,
    window_equivalence_properties,
};
use crate::{
    ColumnStatistics, DisplayAs, DisplayFormatType, Distribution, ExecutionPlan,
    ExecutionPlanProperties, InputOrderMode, PlanProperties, RecordBatchStream,
    SendableRecordBatchStream, Statistics, WindowExpr,
};
use ahash::RandomState;
use arrow::compute::take_record_batch;
use arrow::{
    array::{Array, ArrayRef, RecordBatchOptions, UInt32Builder},
    compute::{concat, concat_batches, sort_to_indices, take_arrays},
    datatypes::SchemaRef,
    record_batch::RecordBatch,
};
use datafusion_common::hash_utils::create_hashes;
use datafusion_common::stats::Precision;
use datafusion_common::utils::{
    evaluate_partition_ranges, get_at_indices, get_row_at_idx,
};
use datafusion_common::{arrow_datafusion_err, exec_err, DataFusionError, Result};
use datafusion_execution::TaskContext;
use datafusion_expr::window_state::{PartitionBatchState, WindowAggState};
use datafusion_expr::ColumnarValue;
use datafusion_physical_expr::window::{
    PartitionBatches, PartitionKey, PartitionWindowAggStates, WindowState,
};
use datafusion_physical_expr::PhysicalExpr;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, LexRequirement};
use futures::stream::Stream;
use futures::{ready, StreamExt};
use hashbrown::raw::RawTable;
use indexmap::IndexMap;
use log::debug;

/// Window execution plan
#[derive(Debug, Clone)]
pub struct BoundedWindowAggExec {
    /// Input plan
    input: Arc<dyn ExecutionPlan>,
    /// Window function expression
    window_expr: Vec<Arc<dyn WindowExpr>>,
    /// Schema after the window is run
    schema: SchemaRef,
    /// Partition Keys
    pub partition_keys: Vec<Arc<dyn PhysicalExpr>>,
    /// Execution metrics
    metrics: ExecutionPlanMetricsSet,
    /// Describes how the input is ordered relative to the partition keys
    pub input_order_mode: InputOrderMode,
    /// Partition by indices that define ordering
    // For example, if input ordering is ORDER BY a, b and window expression
    // contains PARTITION BY b, a; `ordered_partition_by_indices` would be 1, 0.
    // Similarly, if window expression contains PARTITION BY a, b; then
    // `ordered_partition_by_indices` would be 0, 1.
    // See `get_ordered_partition_by_indices` for more details.
    ordered_partition_by_indices: Vec<usize>,
    /// Cache holding plan properties like equivalences, output partitioning etc.
    cache: PlanProperties,
}

impl BoundedWindowAggExec {
    /// Create a new execution plan for window aggregates
    pub fn try_new(
        window_expr: Vec<Arc<dyn WindowExpr>>,
        input: Arc<dyn ExecutionPlan>,
        partition_keys: Vec<Arc<dyn PhysicalExpr>>,
        input_order_mode: InputOrderMode,
    ) -> Result<Self> {
        let schema = create_schema(&input.schema(), &window_expr)?;
        let schema = Arc::new(schema);
        let partition_by_exprs = window_expr[0].partition_by();
        let ordered_partition_by_indices = match &input_order_mode {
            InputOrderMode::Sorted => {
                let indices = get_ordered_partition_by_indices(
                    window_expr[0].partition_by(),
                    &input,
                );
                if indices.len() == partition_by_exprs.len() {
                    indices
                } else {
                    (0..partition_by_exprs.len()).collect::<Vec<_>>()
                }
            }
            InputOrderMode::PartiallySorted(ordered_indices) => ordered_indices.clone(),
            InputOrderMode::Linear => {
                vec![]
            }
        };
        let cache = Self::compute_properties(&input, &schema, &window_expr);
        Ok(Self {
            input,
            window_expr,
            schema,
            partition_keys,
            metrics: ExecutionPlanMetricsSet::new(),
            input_order_mode,
            ordered_partition_by_indices,
            cache,
        })
    }

    /// Window expressions
    pub fn window_expr(&self) -> &[Arc<dyn WindowExpr>] {
        &self.window_expr
    }

    /// Input plan
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }

    /// Return the output sort order of partition keys: For example
    /// OVER(PARTITION BY a, ORDER BY b) -> would give sorting of the column a
    // We are sure that partition by columns are always at the beginning of sort_keys
    // Hence returned `PhysicalSortExpr` corresponding to `PARTITION BY` columns can be used safely
    // to calculate partition separation points
    pub fn partition_by_sort_keys(&self) -> Result<LexOrdering> {
        let partition_by = self.window_expr()[0].partition_by();
        get_partition_by_sort_exprs(
            &self.input,
            partition_by,
            &self.ordered_partition_by_indices,
        )
    }

    /// Initializes the appropriate [`PartitionSearcher`] implementation from
    /// the state.
    fn get_search_algo(&self) -> Result<Box<dyn PartitionSearcher>> {
        let partition_by_sort_keys = self.partition_by_sort_keys()?;
        let ordered_partition_by_indices = self.ordered_partition_by_indices.clone();
        let input_schema = self.input().schema();
        Ok(match &self.input_order_mode {
            InputOrderMode::Sorted => {
                // In Sorted mode, all partition by columns should be ordered.
                if self.window_expr()[0].partition_by().len()
                    != ordered_partition_by_indices.len()
                {
                    return exec_err!("All partition by columns should have an ordering in Sorted mode.");
                }
                Box::new(SortedSearch {
                    partition_by_sort_keys,
                    ordered_partition_by_indices,
                    input_schema,
                })
            }
            InputOrderMode::Linear | InputOrderMode::PartiallySorted(_) => Box::new(
                LinearSearch::new(ordered_partition_by_indices, input_schema),
            ),
        })
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(
        input: &Arc<dyn ExecutionPlan>,
        schema: &SchemaRef,
        window_expr: &[Arc<dyn WindowExpr>],
    ) -> PlanProperties {
        // Calculate equivalence properties:
        let eq_properties = window_equivalence_properties(schema, input, window_expr);

        // As we can have repartitioning using the partition keys, this can
        // be either one or more than one, depending on the presence of
        // repartitioning.
        let output_partitioning = input.output_partitioning().clone();

        // Construct properties cache
        PlanProperties::new(
            eq_properties,          // Equivalence Properties
            output_partitioning,    // Output Partitioning
            input.execution_mode(), // Execution Mode
        )
    }
}

impl DisplayAs for BoundedWindowAggExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(f, "BoundedWindowAggExec: ")?;
                let g: Vec<String> = self
                    .window_expr
                    .iter()
                    .map(|e| {
                        format!(
                            "{}: {:?}, frame: {:?}",
                            e.name().to_owned(),
                            e.field(),
                            e.get_window_frame()
                        )
                    })
                    .collect();
                let mode = &self.input_order_mode;
                write!(f, "wdw=[{}], mode=[{:?}]", g.join(", "), mode)?;
            }
        }
        Ok(())
    }
}

impl ExecutionPlan for BoundedWindowAggExec {
    fn name(&self) -> &'static str {
        "BoundedWindowAggExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
        let partition_bys = self.window_expr()[0].partition_by();
        let order_keys = self.window_expr()[0].order_by();
        let partition_bys = self
            .ordered_partition_by_indices
            .iter()
            .map(|idx| &partition_bys[*idx]);
        vec![calc_requirements(partition_bys, order_keys.iter())]
    }

    fn required_input_distribution(&self) -> Vec<Distribution> {
        if self.partition_keys.is_empty() {
            debug!("No partition defined for BoundedWindowAggExec!!!");
            vec![Distribution::SinglePartition]
        } else {
            vec![Distribution::HashPartitioned(self.partition_keys.clone())]
        }
    }

    fn maintains_input_order(&self) -> Vec<bool> {
        vec![true]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(BoundedWindowAggExec::try_new(
            self.window_expr.clone(),
            Arc::clone(&children[0]),
            self.partition_keys.clone(),
            self.input_order_mode.clone(),
        )?))
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        let input = self.input.execute(partition, context)?;
        let search_mode = self.get_search_algo()?;
        let stream = Box::pin(BoundedWindowAggStream::new(
            Arc::clone(&self.schema),
            self.window_expr.clone(),
            input,
            BaselineMetrics::new(&self.metrics, partition),
            search_mode,
        )?);
        Ok(stream)
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn statistics(&self) -> Result<Statistics> {
        let input_stat = self.input.statistics()?;
        let win_cols = self.window_expr.len();
        let input_cols = self.input.schema().fields().len();
        // TODO stats: some windowing function will maintain invariants such as min, max...
        let mut column_statistics = Vec::with_capacity(win_cols + input_cols);
        // copy stats of the input to the beginning of the schema.
        column_statistics.extend(input_stat.column_statistics);
        for _ in 0..win_cols {
            column_statistics.push(ColumnStatistics::new_unknown())
        }
        Ok(Statistics {
            num_rows: input_stat.num_rows,
            column_statistics,
            total_byte_size: Precision::Absent,
        })
    }
}

/// Trait that specifies how we search for (or calculate) partitions. It has two
/// implementations: [`SortedSearch`] and [`LinearSearch`].
trait PartitionSearcher: Send {
    /// This method constructs output columns using the result of each window expression
    /// (each entry in the output vector comes from a window expression).
    /// Executor when producing output concatenates `input_buffer` (corresponding section), and
    /// result of this function to generate output `RecordBatch`. `input_buffer` is used to determine
    /// which sections of the window expression results should be used to generate output.
    /// `partition_buffers` contains corresponding section of the `RecordBatch` for each partition.
    /// `window_agg_states` stores per partition state for each window expression.
    /// None case means that no result is generated
    /// `Some(Vec<ArrayRef>)` is the result of each window expression.
    fn calculate_out_columns(
        &mut self,
        input_buffer: &RecordBatch,
        window_agg_states: &[PartitionWindowAggStates],
        partition_buffers: &mut PartitionBatches,
        window_expr: &[Arc<dyn WindowExpr>],
    ) -> Result<Option<Vec<ArrayRef>>>;

    /// Determine whether `[InputOrderMode]` is `[InputOrderMode::Linear]` or not.
    fn is_mode_linear(&self) -> bool {
        false
    }

    // Constructs corresponding batches for each partition for the record_batch.
    fn evaluate_partition_batches(
        &mut self,
        record_batch: &RecordBatch,
        window_expr: &[Arc<dyn WindowExpr>],
    ) -> Result<Vec<(PartitionKey, RecordBatch)>>;

    /// Prunes the state.
    fn prune(&mut self, _n_out: usize) {}

    /// Marks the partition as done if we are sure that corresponding partition
    /// cannot receive any more values.
    fn mark_partition_end(&self, partition_buffers: &mut PartitionBatches);

    /// Updates `input_buffer` and `partition_buffers` with the new `record_batch`.
    fn update_partition_batch(
        &mut self,
        input_buffer: &mut RecordBatch,
        record_batch: RecordBatch,
        window_expr: &[Arc<dyn WindowExpr>],
        partition_buffers: &mut PartitionBatches,
    ) -> Result<()> {
        if record_batch.num_rows() == 0 {
            return Ok(());
        }
        let partition_batches =
            self.evaluate_partition_batches(&record_batch, window_expr)?;
        for (partition_row, partition_batch) in partition_batches {
            let partition_batch_state = partition_buffers
                .entry(partition_row)
                // Use input_schema for the buffer schema, not `record_batch.schema()`
                // as it may not have the "correct" schema in terms of output
                // nullability constraints. For details, see the following issue:
                // https://github.com/apache/datafusion/issues/9320
                .or_insert_with(|| {
                    PartitionBatchState::new(Arc::clone(self.input_schema()))
                });
            partition_batch_state.extend(&partition_batch)?;
        }

        if self.is_mode_linear() {
            // In `Linear` mode, it is guaranteed that the first ORDER BY column
            // is sorted across partitions. Note that only the first ORDER BY
            // column is guaranteed to be ordered. As a counter example, consider
            // the case, `PARTITION BY b, ORDER BY a, c` when the input is sorted
            // by `[a, b, c]`. In this case, `BoundedWindowAggExec` mode will be
            // `Linear`. However, we cannot guarantee that the last row of the
            // input data will be the "last" data in terms of the ordering requirement
            // `[a, c]` -- it will be the "last" data in terms of `[a, b, c]`.
            // Hence, only column `a` should be used as a guarantee of the "last"
            // data across partitions. For other modes (`Sorted`, `PartiallySorted`),
            // we do not need to keep track of the most recent row guarantee across
            // partitions. Since leading ordering separates partitions, guaranteed
            // by the most recent row, already prune the previous partitions completely.
            let last_row = get_last_row_batch(&record_batch)?;
            for (_, partition_batch) in partition_buffers.iter_mut() {
                partition_batch.set_most_recent_row(last_row.clone());
            }
        }
        self.mark_partition_end(partition_buffers);

        *input_buffer = if input_buffer.num_rows() == 0 {
            record_batch
        } else {
            concat_batches(self.input_schema(), [input_buffer, &record_batch])?
        };

        Ok(())
    }

    fn input_schema(&self) -> &SchemaRef;
}

/// This object encapsulates the algorithm state for a simple linear scan
/// algorithm for computing partitions.
pub struct LinearSearch {
    /// Keeps the hash of input buffer calculated from PARTITION BY columns.
    /// Its length is equal to the `input_buffer` length.
    input_buffer_hashes: VecDeque<u64>,
    /// Used during hash value calculation.
    random_state: RandomState,
    /// Input ordering and partition by key ordering need not be the same, so
    /// this vector stores the mapping between them. For instance, if the input
    /// is ordered by a, b and the window expression contains a PARTITION BY b, a
    /// clause, this attribute stores [1, 0].
    ordered_partition_by_indices: Vec<usize>,
    /// We use this [`RawTable`] to calculate unique partitions for each new
    /// RecordBatch. First entry in the tuple is the hash value, the second
    /// entry is the unique ID for each partition (increments from 0 to n).
    row_map_batch: RawTable<(u64, usize)>,
    /// We use this [`RawTable`] to calculate the output columns that we can
    /// produce at each cycle. First entry in the tuple is the hash value, the
    /// second entry is the unique ID for each partition (increments from 0 to n).
    /// The third entry stores how many new outputs are calculated for the
    /// corresponding partition.
    row_map_out: RawTable<(u64, usize, usize)>,
    input_schema: SchemaRef,
}

impl PartitionSearcher for LinearSearch {
    /// This method constructs output columns using the result of each window expression.
    // Assume input buffer is         |      Partition Buffers would be (Where each partition and its data is seperated)
    // a, 2                           |      a, 2
    // b, 2                           |      a, 2
    // a, 2                           |      a, 2
    // b, 2                           |
    // a, 2                           |      b, 2
    // b, 2                           |      b, 2
    // b, 2                           |      b, 2
    //                                |      b, 2
    // Also assume we happen to calculate 2 new values for a, and 3 for b (To be calculate missing values we may need to consider future values).
    // Partition buffers effectively will be
    // a, 2, 1
    // a, 2, 2
    // a, 2, (missing)
    //
    // b, 2, 1
    // b, 2, 2
    // b, 2, 3
    // b, 2, (missing)
    // When partition buffers are mapped back to the original record batch. Result becomes
    // a, 2, 1
    // b, 2, 1
    // a, 2, 2
    // b, 2, 2
    // a, 2, (missing)
    // b, 2, 3
    // b, 2, (missing)
    // This function calculates the column result of window expression(s) (First 4 entry of 3rd column in the above section.)
    // 1
    // 1
    // 2
    // 2
    // Above section corresponds to calculated result which can be emitted without breaking input buffer ordering.
    fn calculate_out_columns(
        &mut self,
        input_buffer: &RecordBatch,
        window_agg_states: &[PartitionWindowAggStates],
        partition_buffers: &mut PartitionBatches,
        window_expr: &[Arc<dyn WindowExpr>],
    ) -> Result<Option<Vec<ArrayRef>>> {
        let partition_output_indices = self.calc_partition_output_indices(
            input_buffer,
            window_agg_states,
            window_expr,
        )?;

        let n_window_col = window_agg_states.len();
        let mut new_columns = vec![vec![]; n_window_col];
        // Size of all_indices can be at most input_buffer.num_rows():
        let mut all_indices = UInt32Builder::with_capacity(input_buffer.num_rows());
        for (row, indices) in partition_output_indices {
            let length = indices.len();
            for (idx, window_agg_state) in window_agg_states.iter().enumerate() {
                let partition = &window_agg_state[&row];
                let values = Arc::clone(&partition.state.out_col.slice(0, length));
                new_columns[idx].push(values);
            }
            let partition_batch_state = &mut partition_buffers[&row];
            // Store how many rows are generated for each partition
            partition_batch_state.n_out_row = length;
            // For each row keep corresponding index in the input record batch
            all_indices.append_slice(&indices);
        }
        let all_indices = all_indices.finish();
        if all_indices.is_empty() {
            // We couldn't generate any new value, return early:
            return Ok(None);
        }

        // Concatenate results for each column by converting `Vec<Vec<ArrayRef>>`
        // to Vec<ArrayRef> where inner `Vec<ArrayRef>`s are converted to `ArrayRef`s.
        let new_columns = new_columns
            .iter()
            .map(|items| {
                concat(&items.iter().map(|e| e.as_ref()).collect::<Vec<_>>())
                    .map_err(|e| arrow_datafusion_err!(e))
            })
            .collect::<Result<Vec<_>>>()?;
        // We should emit columns according to row index ordering.
        let sorted_indices = sort_to_indices(&all_indices, None, None)?;
        // Construct new column according to row ordering. This fixes ordering
        take_arrays(&new_columns, &sorted_indices, None)
            .map(Some)
            .map_err(|e| arrow_datafusion_err!(e))
    }

    fn evaluate_partition_batches(
        &mut self,
        record_batch: &RecordBatch,
        window_expr: &[Arc<dyn WindowExpr>],
    ) -> Result<Vec<(PartitionKey, RecordBatch)>> {
        let partition_bys =
            evaluate_partition_by_column_values(record_batch, window_expr)?;
        // NOTE: In Linear or PartiallySorted modes, we are sure that
        //       `partition_bys` are not empty.
        // Calculate indices for each partition and construct a new record
        // batch from the rows at these indices for each partition:
        self.get_per_partition_indices(&partition_bys, record_batch)?
            .into_iter()
            .map(|(row, indices)| {
                let mut new_indices = UInt32Builder::with_capacity(indices.len());
                new_indices.append_slice(&indices);
                let indices = new_indices.finish();
                Ok((row, take_record_batch(record_batch, &indices)?))
            })
            .collect()
    }

    fn prune(&mut self, n_out: usize) {
        // Delete hashes for the rows that are outputted.
        self.input_buffer_hashes.drain(0..n_out);
    }

    fn mark_partition_end(&self, partition_buffers: &mut PartitionBatches) {
        // We should be in the `PartiallySorted` case, otherwise we can not
        // tell when we are at the end of a given partition.
        if !self.ordered_partition_by_indices.is_empty() {
            if let Some((last_row, _)) = partition_buffers.last() {
                let last_sorted_cols = self
                    .ordered_partition_by_indices
                    .iter()
                    .map(|idx| last_row[*idx].clone())
                    .collect::<Vec<_>>();
                for (row, partition_batch_state) in partition_buffers.iter_mut() {
                    let sorted_cols = self
                        .ordered_partition_by_indices
                        .iter()
                        .map(|idx| &row[*idx]);
                    // All the partitions other than `last_sorted_cols` are done.
                    // We are sure that we will no longer receive values for these
                    // partitions (arrival of a new value would violate ordering).
                    partition_batch_state.is_end = !sorted_cols.eq(&last_sorted_cols);
                }
            }
        }
    }

    fn is_mode_linear(&self) -> bool {
        self.ordered_partition_by_indices.is_empty()
    }

    fn input_schema(&self) -> &SchemaRef {
        &self.input_schema
    }
}

impl LinearSearch {
    /// Initialize a new [`LinearSearch`] partition searcher.
    fn new(ordered_partition_by_indices: Vec<usize>, input_schema: SchemaRef) -> Self {
        LinearSearch {
            input_buffer_hashes: VecDeque::new(),
            random_state: Default::default(),
            ordered_partition_by_indices,
            row_map_batch: RawTable::with_capacity(256),
            row_map_out: RawTable::with_capacity(256),
            input_schema,
        }
    }

    /// Calculate indices of each partition (according to PARTITION BY expression)
    /// `columns` contain partition by expression results.
    fn get_per_partition_indices(
        &mut self,
        columns: &[ArrayRef],
        batch: &RecordBatch,
    ) -> Result<Vec<(PartitionKey, Vec<u32>)>> {
        let mut batch_hashes = vec![0; batch.num_rows()];
        create_hashes(columns, &self.random_state, &mut batch_hashes)?;
        self.input_buffer_hashes.extend(&batch_hashes);
        // reset row_map for new calculation
        self.row_map_batch.clear();
        // res stores PartitionKey and row indices (indices where these partition occurs in the `batch`) for each partition.
        let mut result: Vec<(PartitionKey, Vec<u32>)> = vec![];
        for (hash, row_idx) in batch_hashes.into_iter().zip(0u32..) {
            let entry = self.row_map_batch.get_mut(hash, |(_, group_idx)| {
                // We can safely get the first index of the partition indices
                // since partition indices has one element during initialization.
                let row = get_row_at_idx(columns, row_idx as usize).unwrap();
                // Handle hash collusions with an equality check:
                row.eq(&result[*group_idx].0)
            });
            if let Some((_, group_idx)) = entry {
                result[*group_idx].1.push(row_idx)
            } else {
                self.row_map_batch
                    .insert(hash, (hash, result.len()), |(hash, _)| *hash);
                let row = get_row_at_idx(columns, row_idx as usize)?;
                // This is a new partition its only index is row_idx for now.
                result.push((row, vec![row_idx]));
            }
        }
        Ok(result)
    }

    /// Calculates partition keys and result indices for each partition.
    /// The return value is a vector of tuples where the first entry stores
    /// the partition key (unique for each partition) and the second entry
    /// stores indices of the rows for which the partition is constructed.
    fn calc_partition_output_indices(
        &mut self,
        input_buffer: &RecordBatch,
        window_agg_states: &[PartitionWindowAggStates],
        window_expr: &[Arc<dyn WindowExpr>],
    ) -> Result<Vec<(PartitionKey, Vec<u32>)>> {
        let partition_by_columns =
            evaluate_partition_by_column_values(input_buffer, window_expr)?;
        // Reset the row_map state:
        self.row_map_out.clear();
        let mut partition_indices: Vec<(PartitionKey, Vec<u32>)> = vec![];
        for (hash, row_idx) in self.input_buffer_hashes.iter().zip(0u32..) {
            let entry = self.row_map_out.get_mut(*hash, |(_, group_idx, _)| {
                let row =
                    get_row_at_idx(&partition_by_columns, row_idx as usize).unwrap();
                row == partition_indices[*group_idx].0
            });
            if let Some((_, group_idx, n_out)) = entry {
                let (_, indices) = &mut partition_indices[*group_idx];
                if indices.len() >= *n_out {
                    break;
                }
                indices.push(row_idx);
            } else {
                let row = get_row_at_idx(&partition_by_columns, row_idx as usize)?;
                let min_out = window_agg_states
                    .iter()
                    .map(|window_agg_state| {
                        window_agg_state
                            .get(&row)
                            .map(|partition| partition.state.out_col.len())
                            .unwrap_or(0)
                    })
                    .min()
                    .unwrap_or(0);
                if min_out == 0 {
                    break;
                }
                self.row_map_out.insert(
                    *hash,
                    (*hash, partition_indices.len(), min_out),
                    |(hash, _, _)| *hash,
                );
                partition_indices.push((row, vec![row_idx]));
            }
        }
        Ok(partition_indices)
    }
}

/// This object encapsulates the algorithm state for sorted searching
/// when computing partitions.
pub struct SortedSearch {
    /// Stores partition by columns and their ordering information
    partition_by_sort_keys: LexOrdering,
    /// Input ordering and partition by key ordering need not be the same, so
    /// this vector stores the mapping between them. For instance, if the input
    /// is ordered by a, b and the window expression contains a PARTITION BY b, a
    /// clause, this attribute stores [1, 0].
    ordered_partition_by_indices: Vec<usize>,
    input_schema: SchemaRef,
}

impl PartitionSearcher for SortedSearch {
    /// This method constructs new output columns using the result of each window expression.
    fn calculate_out_columns(
        &mut self,
        _input_buffer: &RecordBatch,
        window_agg_states: &[PartitionWindowAggStates],
        partition_buffers: &mut PartitionBatches,
        _window_expr: &[Arc<dyn WindowExpr>],
    ) -> Result<Option<Vec<ArrayRef>>> {
        let n_out = self.calculate_n_out_row(window_agg_states, partition_buffers);
        if n_out == 0 {
            Ok(None)
        } else {
            window_agg_states
                .iter()
                .map(|map| get_aggregate_result_out_column(map, n_out).map(Some))
                .collect()
        }
    }

    fn evaluate_partition_batches(
        &mut self,
        record_batch: &RecordBatch,
        _window_expr: &[Arc<dyn WindowExpr>],
    ) -> Result<Vec<(PartitionKey, RecordBatch)>> {
        let num_rows = record_batch.num_rows();
        // Calculate result of partition by column expressions
        let partition_columns = self
            .partition_by_sort_keys
            .iter()
            .map(|elem| elem.evaluate_to_sort_column(record_batch))
            .collect::<Result<Vec<_>>>()?;
        // Reorder `partition_columns` such that its ordering matches input ordering.
        let partition_columns_ordered =
            get_at_indices(&partition_columns, &self.ordered_partition_by_indices)?;
        let partition_points =
            evaluate_partition_ranges(num_rows, &partition_columns_ordered)?;
        let partition_bys = partition_columns
            .into_iter()
            .map(|arr| arr.values)
            .collect::<Vec<ArrayRef>>();

        partition_points
            .iter()
            .map(|range| {
                let row = get_row_at_idx(&partition_bys, range.start)?;
                let len = range.end - range.start;
                let slice = record_batch.slice(range.start, len);
                Ok((row, slice))
            })
            .collect::<Result<Vec<_>>>()
    }

    fn mark_partition_end(&self, partition_buffers: &mut PartitionBatches) {
        // In Sorted case. We can mark all partitions besides last partition as ended.
        // We are sure that those partitions will never receive any values.
        // (Otherwise ordering invariant is violated.)
        let n_partitions = partition_buffers.len();
        for (idx, (_, partition_batch_state)) in partition_buffers.iter_mut().enumerate()
        {
            partition_batch_state.is_end |= idx < n_partitions - 1;
        }
    }

    fn input_schema(&self) -> &SchemaRef {
        &self.input_schema
    }
}

impl SortedSearch {
    /// Calculates how many rows we can output.
    fn calculate_n_out_row(
        &mut self,
        window_agg_states: &[PartitionWindowAggStates],
        partition_buffers: &mut PartitionBatches,
    ) -> usize {
        // Different window aggregators may produce results at different rates.
        // We produce the overall batch result only as fast as the slowest one.
        let mut counts = vec![];
        let out_col_counts = window_agg_states.iter().map(|window_agg_state| {
            // Store how many elements are generated for the current
            // window expression:
            let mut cur_window_expr_out_result_len = 0;
            // We iterate over `window_agg_state`, which is an IndexMap.
            // Iterations follow the insertion order, hence we preserve
            // sorting when partition columns are sorted.
            let mut per_partition_out_results = HashMap::new();
            for (row, WindowState { state, .. }) in window_agg_state.iter() {
                cur_window_expr_out_result_len += state.out_col.len();
                let count = per_partition_out_results.entry(row).or_insert(0);
                if *count < state.out_col.len() {
                    *count = state.out_col.len();
                }
                // If we do not generate all results for the current
                // partition, we do not generate results for next
                // partition --  otherwise we will lose input ordering.
                if state.n_row_result_missing > 0 {
                    break;
                }
            }
            counts.push(per_partition_out_results);
            cur_window_expr_out_result_len
        });
        argmin(out_col_counts).map_or(0, |(min_idx, minima)| {
            for (row, count) in counts.swap_remove(min_idx).into_iter() {
                let partition_batch = &mut partition_buffers[row];
                partition_batch.n_out_row = count;
            }
            minima
        })
    }
}

/// Calculates partition by expression results for each window expression
/// on `record_batch`.
fn evaluate_partition_by_column_values(
    record_batch: &RecordBatch,
    window_expr: &[Arc<dyn WindowExpr>],
) -> Result<Vec<ArrayRef>> {
    window_expr[0]
        .partition_by()
        .iter()
        .map(|item| match item.evaluate(record_batch)? {
            ColumnarValue::Array(array) => Ok(array),
            ColumnarValue::Scalar(scalar) => {
                scalar.to_array_of_size(record_batch.num_rows())
            }
        })
        .collect()
}

/// Stream for the bounded window aggregation plan.
pub struct BoundedWindowAggStream {
    schema: SchemaRef,
    input: SendableRecordBatchStream,
    /// The record batch executor receives as input (i.e. the columns needed
    /// while calculating aggregation results).
    input_buffer: RecordBatch,
    /// We separate `input_buffer` based on partitions (as
    /// determined by PARTITION BY columns) and store them per partition
    /// in `partition_batches`. We use this variable when calculating results
    /// for each window expression. This enables us to use the same batch for
    /// different window expressions without copying.
    // Note that we could keep record batches for each window expression in
    // `PartitionWindowAggStates`. However, this would use more memory (as
    // many times as the number of window expressions).
    partition_buffers: PartitionBatches,
    /// An executor can run multiple window expressions if the PARTITION BY
    /// and ORDER BY sections are same. We keep state of the each window
    /// expression inside `window_agg_states`.
    window_agg_states: Vec<PartitionWindowAggStates>,
    finished: bool,
    window_expr: Vec<Arc<dyn WindowExpr>>,
    baseline_metrics: BaselineMetrics,
    /// Search mode for partition columns. This determines the algorithm with
    /// which we group each partition.
    search_mode: Box<dyn PartitionSearcher>,
}

impl BoundedWindowAggStream {
    /// Prunes sections of the state that are no longer needed when calculating
    /// results (as determined by window frame boundaries and number of results generated).
    // For instance, if first `n` (not necessarily same with `n_out`) elements are no longer needed to
    // calculate window expression result (outside the window frame boundary) we retract first `n` elements
    // from `self.partition_batches` in corresponding partition.
    // For instance, if `n_out` number of rows are calculated, we can remove
    // first `n_out` rows from `self.input_buffer`.
    fn prune_state(&mut self, n_out: usize) -> Result<()> {
        // Prune `self.window_agg_states`:
        self.prune_out_columns();
        // Prune `self.partition_batches`:
        self.prune_partition_batches();
        // Prune `self.input_buffer`:
        self.prune_input_batch(n_out)?;
        // Prune internal state of search algorithm.
        self.search_mode.prune(n_out);
        Ok(())
    }
}

impl Stream for BoundedWindowAggStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        let poll = self.poll_next_inner(cx);
        self.baseline_metrics.record_poll(poll)
    }
}

impl BoundedWindowAggStream {
    /// Create a new BoundedWindowAggStream
    fn new(
        schema: SchemaRef,
        window_expr: Vec<Arc<dyn WindowExpr>>,
        input: SendableRecordBatchStream,
        baseline_metrics: BaselineMetrics,
        search_mode: Box<dyn PartitionSearcher>,
    ) -> Result<Self> {
        let state = window_expr.iter().map(|_| IndexMap::new()).collect();
        let empty_batch = RecordBatch::new_empty(Arc::clone(&schema));
        Ok(Self {
            schema,
            input,
            input_buffer: empty_batch,
            partition_buffers: IndexMap::new(),
            window_agg_states: state,
            finished: false,
            window_expr,
            baseline_metrics,
            search_mode,
        })
    }

    fn compute_aggregates(&mut self) -> Result<RecordBatch> {
        // calculate window cols
        for (cur_window_expr, state) in
            self.window_expr.iter().zip(&mut self.window_agg_states)
        {
            cur_window_expr.evaluate_stateful(&self.partition_buffers, state)?;
        }

        let schema = Arc::clone(&self.schema);
        let window_expr_out = self.search_mode.calculate_out_columns(
            &self.input_buffer,
            &self.window_agg_states,
            &mut self.partition_buffers,
            &self.window_expr,
        )?;
        if let Some(window_expr_out) = window_expr_out {
            let n_out = window_expr_out[0].len();
            // right append new columns to corresponding section in the original input buffer.
            let columns_to_show = self
                .input_buffer
                .columns()
                .iter()
                .map(|elem| elem.slice(0, n_out))
                .chain(window_expr_out)
                .collect::<Vec<_>>();
            let n_generated = columns_to_show[0].len();
            self.prune_state(n_generated)?;
            Ok(RecordBatch::try_new(schema, columns_to_show)?)
        } else {
            Ok(RecordBatch::new_empty(schema))
        }
    }

    #[inline]
    fn poll_next_inner(
        &mut self,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Result<RecordBatch>>> {
        if self.finished {
            return Poll::Ready(None);
        }

        let result = match ready!(self.input.poll_next_unpin(cx)) {
            Some(Ok(batch)) => {
                self.search_mode.update_partition_batch(
                    &mut self.input_buffer,
                    batch,
                    &self.window_expr,
                    &mut self.partition_buffers,
                )?;
                self.compute_aggregates()
            }
            Some(Err(e)) => Err(e),
            None => {
                self.finished = true;
                for (_, partition_batch_state) in self.partition_buffers.iter_mut() {
                    partition_batch_state.is_end = true;
                }
                self.compute_aggregates()
            }
        };
        Poll::Ready(Some(result))
    }

    /// Prunes the sections of the record batch (for each partition)
    /// that we no longer need to calculate the window function result.
    fn prune_partition_batches(&mut self) {
        // Remove partitions which we know already ended (is_end flag is true).
        // Since the retain method preserves insertion order, we still have
        // ordering in between partitions after removal.
        self.partition_buffers
            .retain(|_, partition_batch_state| !partition_batch_state.is_end);

        // The data in `self.partition_batches` is used by all window expressions.
        // Therefore, when removing from `self.partition_batches`, we need to remove
        // from the earliest range boundary among all window expressions. Variable
        // `n_prune_each_partition` fill the earliest range boundary information for
        // each partition. This way, we can delete the no-longer-needed sections from
        // `self.partition_batches`.
        // For instance, if window frame one uses [10, 20] and window frame two uses
        // [5, 15]; we only prune the first 5 elements from the corresponding record
        // batch in `self.partition_batches`.

        // Calculate how many elements to prune for each partition batch
        let mut n_prune_each_partition = HashMap::new();
        for window_agg_state in self.window_agg_states.iter_mut() {
            window_agg_state.retain(|_, WindowState { state, .. }| !state.is_end);
            for (partition_row, WindowState { state: value, .. }) in window_agg_state {
                let n_prune =
                    min(value.window_frame_range.start, value.last_calculated_index);
                if let Some(current) = n_prune_each_partition.get_mut(partition_row) {
                    if n_prune < *current {
                        *current = n_prune;
                    }
                } else {
                    n_prune_each_partition.insert(partition_row.clone(), n_prune);
                }
            }
        }

        // Retract no longer needed parts during window calculations from partition batch:
        for (partition_row, n_prune) in n_prune_each_partition.iter() {
            let pb_state = &mut self.partition_buffers[partition_row];

            let batch = &pb_state.record_batch;
            pb_state.record_batch = batch.slice(*n_prune, batch.num_rows() - n_prune);
            pb_state.n_out_row = 0;

            // Update state indices since we have pruned some rows from the beginning:
            for window_agg_state in self.window_agg_states.iter_mut() {
                window_agg_state[partition_row].state.prune_state(*n_prune);
            }
        }
    }

    /// Prunes the section of the input batch whose aggregate results
    /// are calculated and emitted.
    fn prune_input_batch(&mut self, n_out: usize) -> Result<()> {
        // Prune first n_out rows from the input_buffer
        let n_to_keep = self.input_buffer.num_rows() - n_out;
        let batch_to_keep = self
            .input_buffer
            .columns()
            .iter()
            .map(|elem| elem.slice(n_out, n_to_keep))
            .collect::<Vec<_>>();
        self.input_buffer = RecordBatch::try_new_with_options(
            self.input_buffer.schema(),
            batch_to_keep,
            &RecordBatchOptions::new().with_row_count(Some(n_to_keep)),
        )?;
        Ok(())
    }

    /// Prunes emitted parts from WindowAggState `out_col` field.
    fn prune_out_columns(&mut self) {
        // We store generated columns for each window expression in the `out_col`
        // field of `WindowAggState`. Given how many rows are emitted, we remove
        // these sections from state.
        for partition_window_agg_states in self.window_agg_states.iter_mut() {
            // Remove `n_out` entries from the `out_col` field of `WindowAggState`.
            // `n_out` is stored in `self.partition_buffers` for each partition.
            // If `is_end` is set, directly remove them; this shrinks the hash map.
            partition_window_agg_states
                .retain(|_, partition_batch_state| !partition_batch_state.state.is_end);
            for (
                partition_key,
                WindowState {
                    state: WindowAggState { out_col, .. },
                    ..
                },
            ) in partition_window_agg_states
            {
                let partition_batch = &mut self.partition_buffers[partition_key];
                let n_to_del = partition_batch.n_out_row;
                let n_to_keep = out_col.len() - n_to_del;
                *out_col = out_col.slice(n_to_del, n_to_keep);
            }
        }
    }
}

impl RecordBatchStream for BoundedWindowAggStream {
    /// Get the schema
    fn schema(&self) -> SchemaRef {
        Arc::clone(&self.schema)
    }
}

// Gets the index of minimum entry, returns None if empty.
fn argmin<T: PartialOrd>(data: impl Iterator<Item = T>) -> Option<(usize, T)> {
    data.enumerate()
        .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(Ordering::Equal))
}

/// Calculates the section we can show results for expression
fn get_aggregate_result_out_column(
    partition_window_agg_states: &PartitionWindowAggStates,
    len_to_show: usize,
) -> Result<ArrayRef> {
    let mut result = None;
    let mut running_length = 0;
    // We assume that iteration order is according to insertion order
    for (
        _,
        WindowState {
            state: WindowAggState { out_col, .. },
            ..
        },
    ) in partition_window_agg_states
    {
        if running_length < len_to_show {
            let n_to_use = min(len_to_show - running_length, out_col.len());
            let slice_to_use = out_col.slice(0, n_to_use);
            result = Some(match result {
                Some(arr) => concat(&[&arr, &slice_to_use])?,
                None => slice_to_use,
            });
            running_length += n_to_use;
        } else {
            break;
        }
    }
    if running_length != len_to_show {
        return exec_err!(
            "Generated row number should be {len_to_show}, it is {running_length}"
        );
    }
    result
        .ok_or_else(|| DataFusionError::Execution("Should contain something".to_string()))
}

/// Constructs a batch from the last row of batch in the argument.
pub(crate) fn get_last_row_batch(batch: &RecordBatch) -> Result<RecordBatch> {
    if batch.num_rows() == 0 {
        return exec_err!("Latest batch should have at least 1 row");
    }
    Ok(batch.slice(batch.num_rows() - 1, 1))
}

#[cfg(test)]
mod tests {
    use std::pin::Pin;
    use std::sync::Arc;
    use std::task::{Context, Poll};
    use std::time::Duration;

    use crate::common::collect;
    use crate::expressions::PhysicalSortExpr;
    use crate::memory::MemoryExec;
    use crate::projection::ProjectionExec;
    use crate::streaming::{PartitionStream, StreamingTableExec};
    use crate::windows::{create_window_expr, BoundedWindowAggExec, InputOrderMode};
    use crate::{execute_stream, get_plan_string, ExecutionPlan};

    use arrow_array::builder::{Int64Builder, UInt64Builder};
    use arrow_array::RecordBatch;
    use arrow_schema::{DataType, Field, Schema, SchemaRef, SortOptions};
    use datafusion_common::{
        assert_batches_eq, exec_datafusion_err, Result, ScalarValue,
    };
    use datafusion_execution::config::SessionConfig;
    use datafusion_execution::{
        RecordBatchStream, SendableRecordBatchStream, TaskContext,
    };
    use datafusion_expr::{
        WindowFrame, WindowFrameBound, WindowFrameUnits, WindowFunctionDefinition,
    };
    use datafusion_functions_aggregate::count::count_udaf;
    use datafusion_physical_expr::expressions::{col, Column, NthValue};
    use datafusion_physical_expr::window::{
        BuiltInWindowExpr, BuiltInWindowFunctionExpr,
    };
    use datafusion_physical_expr::{LexOrdering, PhysicalExpr};

    use datafusion_physical_expr_common::sort_expr::LexOrderingRef;
    use futures::future::Shared;
    use futures::{pin_mut, ready, FutureExt, Stream, StreamExt};
    use itertools::Itertools;
    use tokio::time::timeout;

    #[derive(Debug, Clone)]
    struct TestStreamPartition {
        schema: SchemaRef,
        batches: Vec<RecordBatch>,
        idx: usize,
        state: PolingState,
        sleep_duration: Duration,
        send_exit: bool,
    }

    impl PartitionStream for TestStreamPartition {
        fn schema(&self) -> &SchemaRef {
            &self.schema
        }

        fn execute(&self, _ctx: Arc<TaskContext>) -> SendableRecordBatchStream {
            // We create an iterator from the record batches and map them into Ok values,
            // converting the iterator into a futures::stream::Stream
            Box::pin(self.clone())
        }
    }

    impl Stream for TestStreamPartition {
        type Item = Result<RecordBatch>;

        fn poll_next(
            mut self: Pin<&mut Self>,
            cx: &mut Context<'_>,
        ) -> Poll<Option<Self::Item>> {
            self.poll_next_inner(cx)
        }
    }

    #[derive(Debug, Clone)]
    enum PolingState {
        Sleep(Shared<futures::future::BoxFuture<'static, ()>>),
        BatchReturn,
    }

    impl TestStreamPartition {
        fn poll_next_inner(
            self: &mut Pin<&mut Self>,
            cx: &mut Context<'_>,
        ) -> Poll<Option<Result<RecordBatch>>> {
            loop {
                match &mut self.state {
                    PolingState::BatchReturn => {
                        // Wait for self.sleep_duration before sending any new data
                        let f = tokio::time::sleep(self.sleep_duration).boxed().shared();
                        self.state = PolingState::Sleep(f);
                        let input_batch = if let Some(batch) =
                            self.batches.clone().get(self.idx)
                        {
                            batch.clone()
                        } else if self.send_exit {
                            // Send None to signal end of data
                            return Poll::Ready(None);
                        } else {
                            // Go to sleep mode
                            let f =
                                tokio::time::sleep(self.sleep_duration).boxed().shared();
                            self.state = PolingState::Sleep(f);
                            continue;
                        };
                        self.idx += 1;
                        return Poll::Ready(Some(Ok(input_batch)));
                    }
                    PolingState::Sleep(future) => {
                        pin_mut!(future);
                        ready!(future.poll_unpin(cx));
                        self.state = PolingState::BatchReturn;
                    }
                }
            }
        }
    }

    impl RecordBatchStream for TestStreamPartition {
        fn schema(&self) -> SchemaRef {
            Arc::clone(&self.schema)
        }
    }

    fn bounded_window_exec_pb_latent_range(
        input: Arc<dyn ExecutionPlan>,
        n_future_range: usize,
        hash: &str,
        order_by: &str,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        let schema = input.schema();
        let window_fn = WindowFunctionDefinition::AggregateUDF(count_udaf());
        let col_expr =
            Arc::new(Column::new(schema.fields[0].name(), 0)) as Arc<dyn PhysicalExpr>;
        let args = vec![col_expr];
        let partitionby_exprs = vec![col(hash, &schema)?];
        let orderby_exprs = LexOrdering::new(vec![PhysicalSortExpr {
            expr: col(order_by, &schema)?,
            options: SortOptions::default(),
        }]);
        let window_frame = WindowFrame::new_bounds(
            WindowFrameUnits::Range,
            WindowFrameBound::CurrentRow,
            WindowFrameBound::Following(ScalarValue::UInt64(Some(n_future_range as u64))),
        );
        let fn_name = format!(
            "{}({:?}) PARTITION BY: [{:?}], ORDER BY: [{:?}]",
            window_fn, args, partitionby_exprs, orderby_exprs
        );
        let input_order_mode = InputOrderMode::Linear;
        Ok(Arc::new(BoundedWindowAggExec::try_new(
            vec![create_window_expr(
                &window_fn,
                fn_name,
                &args,
                &partitionby_exprs,
                orderby_exprs.as_ref(),
                Arc::new(window_frame),
                &input.schema(),
                false,
            )?],
            input,
            partitionby_exprs,
            input_order_mode,
        )?))
    }

    fn projection_exec(input: Arc<dyn ExecutionPlan>) -> Result<Arc<dyn ExecutionPlan>> {
        let schema = input.schema();
        let exprs = input
            .schema()
            .fields
            .iter()
            .enumerate()
            .map(|(idx, field)| {
                let name = if field.name().len() > 20 {
                    format!("col_{idx}")
                } else {
                    field.name().clone()
                };
                let expr = col(field.name(), &schema).unwrap();
                (expr, name)
            })
            .collect::<Vec<_>>();
        Ok(Arc::new(ProjectionExec::try_new(exprs, input)?))
    }

    fn task_context_helper() -> TaskContext {
        let task_ctx = TaskContext::default();
        // Create session context with config
        let session_config = SessionConfig::new()
            .with_batch_size(1)
            .with_target_partitions(2)
            .with_round_robin_repartition(false);
        task_ctx.with_session_config(session_config)
    }

    fn task_context() -> Arc<TaskContext> {
        Arc::new(task_context_helper())
    }

    pub async fn collect_stream(
        mut stream: SendableRecordBatchStream,
        results: &mut Vec<RecordBatch>,
    ) -> Result<()> {
        while let Some(item) = stream.next().await {
            results.push(item?);
        }
        Ok(())
    }

    /// Execute the [ExecutionPlan] and collect the results in memory
    pub async fn collect_with_timeout(
        plan: Arc<dyn ExecutionPlan>,
        context: Arc<TaskContext>,
        timeout_duration: Duration,
    ) -> Result<Vec<RecordBatch>> {
        let stream = execute_stream(plan, context)?;
        let mut results = vec![];

        // Execute the asynchronous operation with a timeout
        if timeout(timeout_duration, collect_stream(stream, &mut results))
            .await
            .is_ok()
        {
            return Err(exec_datafusion_err!("shouldn't have completed"));
        };

        Ok(results)
    }

    /// Execute the [ExecutionPlan] and collect the results in memory
    #[allow(dead_code)]
    pub async fn collect_bonafide(
        plan: Arc<dyn ExecutionPlan>,
        context: Arc<TaskContext>,
    ) -> Result<Vec<RecordBatch>> {
        let stream = execute_stream(plan, context)?;
        let mut results = vec![];

        collect_stream(stream, &mut results).await?;

        Ok(results)
    }

    fn test_schema() -> SchemaRef {
        Arc::new(Schema::new(vec![
            Field::new("sn", DataType::UInt64, true),
            Field::new("hash", DataType::Int64, true),
        ]))
    }

    fn schema_orders(schema: &SchemaRef) -> Result<Vec<LexOrdering>> {
        let orderings = vec![LexOrdering::new(vec![PhysicalSortExpr {
            expr: col("sn", schema)?,
            options: SortOptions {
                descending: false,
                nulls_first: false,
            },
        }])];
        Ok(orderings)
    }

    fn is_integer_division_safe(lhs: usize, rhs: usize) -> bool {
        let res = lhs / rhs;
        res * rhs == lhs
    }
    fn generate_batches(
        schema: &SchemaRef,
        n_row: usize,
        n_chunk: usize,
    ) -> Result<Vec<RecordBatch>> {
        let mut batches = vec![];
        assert!(n_row > 0);
        assert!(n_chunk > 0);
        assert!(is_integer_division_safe(n_row, n_chunk));
        let hash_replicate = 4;

        let chunks = (0..n_row)
            .chunks(n_chunk)
            .into_iter()
            .map(|elem| elem.into_iter().collect::<Vec<_>>())
            .collect::<Vec<_>>();

        // Send 2 RecordBatches at the source
        for sn_values in chunks {
            let mut sn1_array = UInt64Builder::with_capacity(sn_values.len());
            let mut hash_array = Int64Builder::with_capacity(sn_values.len());

            for sn in sn_values {
                sn1_array.append_value(sn as u64);
                let hash_value = (2 - (sn / hash_replicate)) as i64;
                hash_array.append_value(hash_value);
            }

            let batch = RecordBatch::try_new(
                Arc::clone(schema),
                vec![Arc::new(sn1_array.finish()), Arc::new(hash_array.finish())],
            )?;
            batches.push(batch);
        }
        Ok(batches)
    }

    fn generate_never_ending_source(
        n_rows: usize,
        chunk_length: usize,
        n_partition: usize,
        is_infinite: bool,
        send_exit: bool,
        per_batch_wait_duration_in_millis: u64,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        assert!(n_partition > 0);

        // We use same hash value in the table. This makes sure that
        // After hashing computation will continue in only in one of the output partitions
        // In this case, data flow should still continue
        let schema = test_schema();
        let orderings = schema_orders(&schema)?;

        // Source waits per_batch_wait_duration_in_millis ms before sending other batch
        let per_batch_wait_duration =
            Duration::from_millis(per_batch_wait_duration_in_millis);

        let batches = generate_batches(&schema, n_rows, chunk_length)?;

        // Source has 2 partitions
        let partitions = vec![
            Arc::new(TestStreamPartition {
                schema: Arc::clone(&schema),
                batches,
                idx: 0,
                state: PolingState::BatchReturn,
                sleep_duration: per_batch_wait_duration,
                send_exit,
            }) as _;
            n_partition
        ];
        let source = Arc::new(StreamingTableExec::try_new(
            Arc::clone(&schema),
            partitions,
            None,
            orderings,
            is_infinite,
            None,
        )?) as _;
        Ok(source)
    }

    // Tests NTH_VALUE(negative index) with memoize feature.
    // To be able to trigger memoize feature for NTH_VALUE we need to
    // - feed BoundedWindowAggExec with batch stream data.
    // - Window frame should contain UNBOUNDED PRECEDING.
    // It hard to ensure these conditions are met, from the sql query.
    #[tokio::test]
    async fn test_window_nth_value_bounded_memoize() -> Result<()> {
        let config = SessionConfig::new().with_target_partitions(1);
        let task_ctx = Arc::new(TaskContext::default().with_session_config(config));

        let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)]));
        // Create a new batch of data to insert into the table
        let batch = RecordBatch::try_new(
            Arc::clone(&schema),
            vec![Arc::new(arrow_array::Int32Array::from(vec![1, 2, 3]))],
        )?;

        let memory_exec = MemoryExec::try_new(
            &[vec![batch.clone(), batch.clone(), batch.clone()]],
            Arc::clone(&schema),
            None,
        )
        .map(|e| Arc::new(e) as Arc<dyn ExecutionPlan>)?;
        let col_a = col("a", &schema)?;
        let nth_value_func1 = NthValue::nth(
            "nth_value(-1)",
            Arc::clone(&col_a),
            DataType::Int32,
            1,
            false,
        )?
        .reverse_expr()
        .unwrap();
        let nth_value_func2 = NthValue::nth(
            "nth_value(-2)",
            Arc::clone(&col_a),
            DataType::Int32,
            2,
            false,
        )?
        .reverse_expr()
        .unwrap();
        let last_value_func = Arc::new(NthValue::last(
            "last",
            Arc::clone(&col_a),
            DataType::Int32,
            false,
        )) as _;
        let window_exprs = vec![
            // LAST_VALUE(a)
            Arc::new(BuiltInWindowExpr::new(
                last_value_func,
                &[],
                LexOrderingRef::default(),
                Arc::new(WindowFrame::new_bounds(
                    WindowFrameUnits::Rows,
                    WindowFrameBound::Preceding(ScalarValue::UInt64(None)),
                    WindowFrameBound::CurrentRow,
                )),
            )) as _,
            // NTH_VALUE(a, -1)
            Arc::new(BuiltInWindowExpr::new(
                nth_value_func1,
                &[],
                LexOrderingRef::default(),
                Arc::new(WindowFrame::new_bounds(
                    WindowFrameUnits::Rows,
                    WindowFrameBound::Preceding(ScalarValue::UInt64(None)),
                    WindowFrameBound::CurrentRow,
                )),
            )) as _,
            // NTH_VALUE(a, -2)
            Arc::new(BuiltInWindowExpr::new(
                nth_value_func2,
                &[],
                LexOrderingRef::default(),
                Arc::new(WindowFrame::new_bounds(
                    WindowFrameUnits::Rows,
                    WindowFrameBound::Preceding(ScalarValue::UInt64(None)),
                    WindowFrameBound::CurrentRow,
                )),
            )) as _,
        ];
        let physical_plan = BoundedWindowAggExec::try_new(
            window_exprs,
            memory_exec,
            vec![],
            InputOrderMode::Sorted,
        )
        .map(|e| Arc::new(e) as Arc<dyn ExecutionPlan>)?;

        let batches = collect(physical_plan.execute(0, task_ctx)?).await?;

        let expected = vec![
            "BoundedWindowAggExec: wdw=[last: Ok(Field { name: \"last\", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: CurrentRow, is_causal: true }, nth_value(-1): Ok(Field { name: \"nth_value(-1)\", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: CurrentRow, is_causal: true }, nth_value(-2): Ok(Field { name: \"nth_value(-2)\", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: CurrentRow, is_causal: true }], mode=[Sorted]",
            "  MemoryExec: partitions=1, partition_sizes=[3]",
        ];
        // Get string representation of the plan
        let actual = get_plan_string(&physical_plan);
        assert_eq!(
            expected, actual,
            "\n**Optimized Plan Mismatch\n\nexpected:\n\n{expected:#?}\nactual:\n\n{actual:#?}\n\n"
        );

        let expected = [
            "+---+------+---------------+---------------+",
            "| a | last | nth_value(-1) | nth_value(-2) |",
            "+---+------+---------------+---------------+",
            "| 1 | 1    | 1             |               |",
            "| 2 | 2    | 2             | 1             |",
            "| 3 | 3    | 3             | 2             |",
            "| 1 | 1    | 1             | 3             |",
            "| 2 | 2    | 2             | 1             |",
            "| 3 | 3    | 3             | 2             |",
            "| 1 | 1    | 1             | 3             |",
            "| 2 | 2    | 2             | 1             |",
            "| 3 | 3    | 3             | 2             |",
            "+---+------+---------------+---------------+",
        ];
        assert_batches_eq!(expected, &batches);
        Ok(())
    }

    // This test, tests whether most recent row guarantee by the input batch of the `BoundedWindowAggExec`
    // helps `BoundedWindowAggExec` to generate low latency result in the `Linear` mode.
    // Input data generated at the source is
    //       "+----+------+",
    //       "| sn | hash |",
    //       "+----+------+",
    //       "| 0  | 2    |",
    //       "| 1  | 2    |",
    //       "| 2  | 2    |",
    //       "| 3  | 2    |",
    //       "| 4  | 1    |",
    //       "| 5  | 1    |",
    //       "| 6  | 1    |",
    //       "| 7  | 1    |",
    //       "| 8  | 0    |",
    //       "| 9  | 0    |",
    //       "+----+------+",
    //
    // Effectively following query is run on this data
    //
    //   SELECT *, count(*) OVER(PARTITION BY duplicated_hash ORDER BY sn RANGE BETWEEN CURRENT ROW AND 1 FOLLOWING)
    //   FROM test;
    //
    // partition `duplicated_hash=2` receives following data from the input
    //
    //       "+----+------+",
    //       "| sn | hash |",
    //       "+----+------+",
    //       "| 0  | 2    |",
    //       "| 1  | 2    |",
    //       "| 2  | 2    |",
    //       "| 3  | 2    |",
    //       "+----+------+",
    // normally `BoundedWindowExec` can only generate following result from the input above
    //
    //       "+----+------+---------+",
    //       "| sn | hash |  count  |",
    //       "+----+------+---------+",
    //       "| 0  | 2    |  2      |",
    //       "| 1  | 2    |  2      |",
    //       "| 2  | 2    |<not yet>|",
    //       "| 3  | 2    |<not yet>|",
    //       "+----+------+---------+",
    // where result of last 2 row is missing. Since window frame end is not may change with future data
    // since window frame end is determined by 1 following (To generate result for row=3[where sn=2] we
    // need to received sn=4 to make sure window frame end bound won't change with future data).
    //
    // With the ability of different partitions to use global ordering at the input (where most up-to date
    //   row is
    //      "| 9  | 0    |",
    //   )
    //
    // `BoundedWindowExec` should be able to generate following result in the test
    //
    //       "+----+------+-------+",
    //       "| sn | hash | col_2 |",
    //       "+----+------+-------+",
    //       "| 0  | 2    | 2     |",
    //       "| 1  | 2    | 2     |",
    //       "| 2  | 2    | 2     |",
    //       "| 3  | 2    | 1     |",
    //       "| 4  | 1    | 2     |",
    //       "| 5  | 1    | 2     |",
    //       "| 6  | 1    | 2     |",
    //       "| 7  | 1    | 1     |",
    //       "+----+------+-------+",
    //
    // where result for all rows except last 2 is calculated (To calculate result for row 9 where sn=8
    //   we need to receive sn=10 value to calculate it result.).
    // In this test, out aim is to test for which portion of the input data `BoundedWindowExec` can generate
    // a result. To test this behaviour, we generated the data at the source infinitely (no `None` signal
    //    is sent to output from source). After, row:
    //
    //       "| 9  | 0    |",
    //
    // is sent. Source stops sending data to output. We collect, result emitted by the `BoundedWindowExec` at the
    // end of the pipeline with a timeout (Since no `None` is sent from source. Collection never ends otherwise).
    #[tokio::test]
    async fn bounded_window_exec_linear_mode_range_information() -> Result<()> {
        let n_rows = 10;
        let chunk_length = 2;
        let n_future_range = 1;

        let timeout_duration = Duration::from_millis(2000);

        let source =
            generate_never_ending_source(n_rows, chunk_length, 1, true, false, 5)?;

        let window =
            bounded_window_exec_pb_latent_range(source, n_future_range, "hash", "sn")?;

        let plan = projection_exec(window)?;

        let expected_plan = vec![
            "ProjectionExec: expr=[sn@0 as sn, hash@1 as hash, count([Column { name: \"sn\", index: 0 }]) PARTITION BY: [[Column { name: \"hash\", index: 1 }]], ORDER BY: [LexOrdering { inner: [PhysicalSortExpr { expr: Column { name: \"sn\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }] }]@2 as col_2]",
            "  BoundedWindowAggExec: wdw=[count([Column { name: \"sn\", index: 0 }]) PARTITION BY: [[Column { name: \"hash\", index: 1 }]], ORDER BY: [LexOrdering { inner: [PhysicalSortExpr { expr: Column { name: \"sn\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }] }]: Ok(Field { name: \"count([Column { name: \\\"sn\\\", index: 0 }]) PARTITION BY: [[Column { name: \\\"hash\\\", index: 1 }]], ORDER BY: [LexOrdering { inner: [PhysicalSortExpr { expr: Column { name: \\\"sn\\\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }] }]\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(UInt64(1)), is_causal: false }], mode=[Linear]",
            "    StreamingTableExec: partition_sizes=1, projection=[sn, hash], infinite_source=true, output_ordering=[sn@0 ASC NULLS LAST]",
        ];

        // Get string representation of the plan
        let actual = get_plan_string(&plan);
        assert_eq!(
            expected_plan, actual,
            "\n**Optimized Plan Mismatch\n\nexpected:\n\n{expected_plan:#?}\nactual:\n\n{actual:#?}\n\n"
        );

        let task_ctx = task_context();
        let batches = collect_with_timeout(plan, task_ctx, timeout_duration).await?;

        let expected = [
            "+----+------+-------+",
            "| sn | hash | col_2 |",
            "+----+------+-------+",
            "| 0  | 2    | 2     |",
            "| 1  | 2    | 2     |",
            "| 2  | 2    | 2     |",
            "| 3  | 2    | 1     |",
            "| 4  | 1    | 2     |",
            "| 5  | 1    | 2     |",
            "| 6  | 1    | 2     |",
            "| 7  | 1    | 1     |",
            "+----+------+-------+",
        ];
        assert_batches_eq!(expected, &batches);

        Ok(())
    }
}