datafusion_physical_plan/windows/
window_agg_exec.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Stream and channel implementations for window function expressions.

use std::any::Any;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use super::utils::create_schema;
use crate::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use crate::windows::{
    calc_requirements, get_ordered_partition_by_indices, get_partition_by_sort_exprs,
    window_equivalence_properties,
};
use crate::{
    ColumnStatistics, DisplayAs, DisplayFormatType, Distribution, ExecutionMode,
    ExecutionPlan, ExecutionPlanProperties, PhysicalExpr, PlanProperties,
    RecordBatchStream, SendableRecordBatchStream, Statistics, WindowExpr,
};
use arrow::array::ArrayRef;
use arrow::compute::{concat, concat_batches};
use arrow::datatypes::SchemaRef;
use arrow::error::ArrowError;
use arrow::record_batch::RecordBatch;
use datafusion_common::stats::Precision;
use datafusion_common::utils::{evaluate_partition_ranges, transpose};
use datafusion_common::{internal_err, Result};
use datafusion_execution::TaskContext;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, LexRequirement};
use futures::{ready, Stream, StreamExt};

/// Window execution plan
#[derive(Debug, Clone)]
pub struct WindowAggExec {
    /// Input plan
    pub(crate) input: Arc<dyn ExecutionPlan>,
    /// Window function expression
    window_expr: Vec<Arc<dyn WindowExpr>>,
    /// Schema after the window is run
    schema: SchemaRef,
    /// Partition Keys
    pub partition_keys: Vec<Arc<dyn PhysicalExpr>>,
    /// Execution metrics
    metrics: ExecutionPlanMetricsSet,
    /// Partition by indices that defines preset for existing ordering
    // see `get_ordered_partition_by_indices` for more details.
    ordered_partition_by_indices: Vec<usize>,
    /// Cache holding plan properties like equivalences, output partitioning etc.
    cache: PlanProperties,
}

impl WindowAggExec {
    /// Create a new execution plan for window aggregates
    pub fn try_new(
        window_expr: Vec<Arc<dyn WindowExpr>>,
        input: Arc<dyn ExecutionPlan>,
        partition_keys: Vec<Arc<dyn PhysicalExpr>>,
    ) -> Result<Self> {
        let schema = create_schema(&input.schema(), &window_expr)?;
        let schema = Arc::new(schema);

        let ordered_partition_by_indices =
            get_ordered_partition_by_indices(window_expr[0].partition_by(), &input);
        let cache = Self::compute_properties(Arc::clone(&schema), &input, &window_expr);
        Ok(Self {
            input,
            window_expr,
            schema,
            partition_keys,
            metrics: ExecutionPlanMetricsSet::new(),
            ordered_partition_by_indices,
            cache,
        })
    }

    /// Window expressions
    pub fn window_expr(&self) -> &[Arc<dyn WindowExpr>] {
        &self.window_expr
    }

    /// Input plan
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }

    /// Return the output sort order of partition keys: For example
    /// OVER(PARTITION BY a, ORDER BY b) -> would give sorting of the column a
    // We are sure that partition by columns are always at the beginning of sort_keys
    // Hence returned `PhysicalSortExpr` corresponding to `PARTITION BY` columns can be used safely
    // to calculate partition separation points
    pub fn partition_by_sort_keys(&self) -> Result<LexOrdering> {
        let partition_by = self.window_expr()[0].partition_by();
        get_partition_by_sort_exprs(
            &self.input,
            partition_by,
            &self.ordered_partition_by_indices,
        )
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(
        schema: SchemaRef,
        input: &Arc<dyn ExecutionPlan>,
        window_expr: &[Arc<dyn WindowExpr>],
    ) -> PlanProperties {
        // Calculate equivalence properties:
        let eq_properties = window_equivalence_properties(&schema, input, window_expr);

        // Get output partitioning:
        // Because we can have repartitioning using the partition keys this
        // would be either 1 or more than 1 depending on the presence of repartitioning.
        let output_partitioning = input.output_partitioning().clone();

        // Determine execution mode:
        let mode = match input.execution_mode() {
            ExecutionMode::Bounded => ExecutionMode::Bounded,
            ExecutionMode::Unbounded | ExecutionMode::PipelineBreaking => {
                ExecutionMode::PipelineBreaking
            }
        };

        // Construct properties cache:
        PlanProperties::new(eq_properties, output_partitioning, mode)
    }
}

impl DisplayAs for WindowAggExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(f, "WindowAggExec: ")?;
                let g: Vec<String> = self
                    .window_expr
                    .iter()
                    .map(|e| {
                        format!(
                            "{}: {:?}, frame: {:?}",
                            e.name().to_owned(),
                            e.field(),
                            e.get_window_frame()
                        )
                    })
                    .collect();
                write!(f, "wdw=[{}]", g.join(", "))?;
            }
        }
        Ok(())
    }
}

impl ExecutionPlan for WindowAggExec {
    fn name(&self) -> &'static str {
        "WindowAggExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    fn maintains_input_order(&self) -> Vec<bool> {
        vec![true]
    }

    fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
        let partition_bys = self.window_expr()[0].partition_by();
        let order_keys = self.window_expr()[0].order_by();
        if self.ordered_partition_by_indices.len() < partition_bys.len() {
            vec![calc_requirements(partition_bys, order_keys.iter())]
        } else {
            let partition_bys = self
                .ordered_partition_by_indices
                .iter()
                .map(|idx| &partition_bys[*idx]);
            vec![calc_requirements(partition_bys, order_keys.iter())]
        }
    }

    fn required_input_distribution(&self) -> Vec<Distribution> {
        if self.partition_keys.is_empty() {
            vec![Distribution::SinglePartition]
        } else {
            vec![Distribution::HashPartitioned(self.partition_keys.clone())]
        }
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(WindowAggExec::try_new(
            self.window_expr.clone(),
            Arc::clone(&children[0]),
            self.partition_keys.clone(),
        )?))
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        let input = self.input.execute(partition, context)?;
        let stream = Box::pin(WindowAggStream::new(
            Arc::clone(&self.schema),
            self.window_expr.clone(),
            input,
            BaselineMetrics::new(&self.metrics, partition),
            self.partition_by_sort_keys()?,
            self.ordered_partition_by_indices.clone(),
        )?);
        Ok(stream)
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn statistics(&self) -> Result<Statistics> {
        let input_stat = self.input.statistics()?;
        let win_cols = self.window_expr.len();
        let input_cols = self.input.schema().fields().len();
        // TODO stats: some windowing function will maintain invariants such as min, max...
        let mut column_statistics = Vec::with_capacity(win_cols + input_cols);
        // copy stats of the input to the beginning of the schema.
        column_statistics.extend(input_stat.column_statistics);
        for _ in 0..win_cols {
            column_statistics.push(ColumnStatistics::new_unknown())
        }
        Ok(Statistics {
            num_rows: input_stat.num_rows,
            column_statistics,
            total_byte_size: Precision::Absent,
        })
    }
}

/// Compute the window aggregate columns
fn compute_window_aggregates(
    window_expr: &[Arc<dyn WindowExpr>],
    batch: &RecordBatch,
) -> Result<Vec<ArrayRef>> {
    window_expr
        .iter()
        .map(|window_expr| window_expr.evaluate(batch))
        .collect()
}

/// stream for window aggregation plan
pub struct WindowAggStream {
    schema: SchemaRef,
    input: SendableRecordBatchStream,
    batches: Vec<RecordBatch>,
    finished: bool,
    window_expr: Vec<Arc<dyn WindowExpr>>,
    partition_by_sort_keys: LexOrdering,
    baseline_metrics: BaselineMetrics,
    ordered_partition_by_indices: Vec<usize>,
}

impl WindowAggStream {
    /// Create a new WindowAggStream
    pub fn new(
        schema: SchemaRef,
        window_expr: Vec<Arc<dyn WindowExpr>>,
        input: SendableRecordBatchStream,
        baseline_metrics: BaselineMetrics,
        partition_by_sort_keys: LexOrdering,
        ordered_partition_by_indices: Vec<usize>,
    ) -> Result<Self> {
        // In WindowAggExec all partition by columns should be ordered.
        if window_expr[0].partition_by().len() != ordered_partition_by_indices.len() {
            return internal_err!("All partition by columns should have an ordering");
        }
        Ok(Self {
            schema,
            input,
            batches: vec![],
            finished: false,
            window_expr,
            baseline_metrics,
            partition_by_sort_keys,
            ordered_partition_by_indices,
        })
    }

    fn compute_aggregates(&self) -> Result<RecordBatch> {
        // record compute time on drop
        let _timer = self.baseline_metrics.elapsed_compute().timer();
        let batch = concat_batches(&self.input.schema(), &self.batches)?;
        if batch.num_rows() == 0 {
            return Ok(RecordBatch::new_empty(Arc::clone(&self.schema)));
        }

        let partition_by_sort_keys = self
            .ordered_partition_by_indices
            .iter()
            .map(|idx| self.partition_by_sort_keys[*idx].evaluate_to_sort_column(&batch))
            .collect::<Result<Vec<_>>>()?;
        let partition_points =
            evaluate_partition_ranges(batch.num_rows(), &partition_by_sort_keys)?;

        let mut partition_results = vec![];
        // Calculate window cols
        for partition_point in partition_points {
            let length = partition_point.end - partition_point.start;
            partition_results.push(compute_window_aggregates(
                &self.window_expr,
                &batch.slice(partition_point.start, length),
            )?)
        }
        let columns = transpose(partition_results)
            .iter()
            .map(|elems| concat(&elems.iter().map(|x| x.as_ref()).collect::<Vec<_>>()))
            .collect::<Vec<_>>()
            .into_iter()
            .collect::<Result<Vec<ArrayRef>, ArrowError>>()?;

        // combine with the original cols
        // note the setup of window aggregates is that they newly calculated window
        // expression results are always appended to the columns
        let mut batch_columns = batch.columns().to_vec();
        // calculate window cols
        batch_columns.extend_from_slice(&columns);
        Ok(RecordBatch::try_new(
            Arc::clone(&self.schema),
            batch_columns,
        )?)
    }
}

impl Stream for WindowAggStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        let poll = self.poll_next_inner(cx);
        self.baseline_metrics.record_poll(poll)
    }
}

impl WindowAggStream {
    #[inline]
    fn poll_next_inner(
        &mut self,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Result<RecordBatch>>> {
        if self.finished {
            return Poll::Ready(None);
        }

        loop {
            let result = match ready!(self.input.poll_next_unpin(cx)) {
                Some(Ok(batch)) => {
                    self.batches.push(batch);
                    continue;
                }
                Some(Err(e)) => Err(e),
                None => self.compute_aggregates(),
            };

            self.finished = true;

            return Poll::Ready(Some(result));
        }
    }
}

impl RecordBatchStream for WindowAggStream {
    /// Get the schema
    fn schema(&self) -> SchemaRef {
        Arc::clone(&self.schema)
    }
}