datafusion_physical_plan/
recursive_query.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines the recursive query plan

use std::any::Any;
use std::sync::Arc;
use std::task::{Context, Poll};

use super::{
    metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet},
    work_table::{ReservedBatches, WorkTable, WorkTableExec},
    PlanProperties, RecordBatchStream, SendableRecordBatchStream, Statistics,
};
use crate::{DisplayAs, DisplayFormatType, ExecutionMode, ExecutionPlan};

use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode};
use datafusion_common::{not_impl_err, DataFusionError, Result};
use datafusion_execution::memory_pool::{MemoryConsumer, MemoryReservation};
use datafusion_execution::TaskContext;
use datafusion_physical_expr::{EquivalenceProperties, Partitioning};

use futures::{ready, Stream, StreamExt};

/// Recursive query execution plan.
///
/// This plan has two components: a base part (the static term) and
/// a dynamic part (the recursive term). The execution will start from
/// the base, and as long as the previous iteration produced at least
/// a single new row (taking care of the distinction) the recursive
/// part will be continuously executed.
///
/// Before each execution of the dynamic part, the rows from the previous
/// iteration will be available in a "working table" (not a real table,
/// can be only accessed using a continuance operation).
///
/// Note that there won't be any limit or checks applied to detect
/// an infinite recursion, so it is up to the planner to ensure that
/// it won't happen.
#[derive(Debug, Clone)]
pub struct RecursiveQueryExec {
    /// Name of the query handler
    name: String,
    /// The working table of cte
    work_table: Arc<WorkTable>,
    /// The base part (static term)
    static_term: Arc<dyn ExecutionPlan>,
    /// The dynamic part (recursive term)
    recursive_term: Arc<dyn ExecutionPlan>,
    /// Distinction
    is_distinct: bool,
    /// Execution metrics
    metrics: ExecutionPlanMetricsSet,
    /// Cache holding plan properties like equivalences, output partitioning etc.
    cache: PlanProperties,
}

impl RecursiveQueryExec {
    /// Create a new RecursiveQueryExec
    pub fn try_new(
        name: String,
        static_term: Arc<dyn ExecutionPlan>,
        recursive_term: Arc<dyn ExecutionPlan>,
        is_distinct: bool,
    ) -> Result<Self> {
        // Each recursive query needs its own work table
        let work_table = Arc::new(WorkTable::new());
        // Use the same work table for both the WorkTableExec and the recursive term
        let recursive_term = assign_work_table(recursive_term, Arc::clone(&work_table))?;
        let cache = Self::compute_properties(static_term.schema());
        Ok(RecursiveQueryExec {
            name,
            static_term,
            recursive_term,
            is_distinct,
            work_table,
            metrics: ExecutionPlanMetricsSet::new(),
            cache,
        })
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(schema: SchemaRef) -> PlanProperties {
        let eq_properties = EquivalenceProperties::new(schema);

        PlanProperties::new(
            eq_properties,
            Partitioning::UnknownPartitioning(1),
            ExecutionMode::Bounded,
        )
    }
}

impl ExecutionPlan for RecursiveQueryExec {
    fn name(&self) -> &'static str {
        "RecursiveQueryExec"
    }

    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.static_term, &self.recursive_term]
    }

    // TODO: control these hints and see whether we can
    // infer some from the child plans (static/recurisve terms).
    fn maintains_input_order(&self) -> Vec<bool> {
        vec![false, false]
    }

    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
        vec![false, false]
    }

    fn required_input_distribution(&self) -> Vec<datafusion_physical_expr::Distribution> {
        vec![
            datafusion_physical_expr::Distribution::SinglePartition,
            datafusion_physical_expr::Distribution::SinglePartition,
        ]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        RecursiveQueryExec::try_new(
            self.name.clone(),
            Arc::clone(&children[0]),
            Arc::clone(&children[1]),
            self.is_distinct,
        )
        .map(|e| Arc::new(e) as _)
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        // TODO: we might be able to handle multiple partitions in the future.
        if partition != 0 {
            return Err(DataFusionError::Internal(format!(
                "RecursiveQueryExec got an invalid partition {} (expected 0)",
                partition
            )));
        }

        let static_stream = self.static_term.execute(partition, Arc::clone(&context))?;
        let baseline_metrics = BaselineMetrics::new(&self.metrics, partition);
        Ok(Box::pin(RecursiveQueryStream::new(
            context,
            Arc::clone(&self.work_table),
            Arc::clone(&self.recursive_term),
            static_stream,
            baseline_metrics,
        )))
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn statistics(&self) -> Result<Statistics> {
        Ok(Statistics::new_unknown(&self.schema()))
    }
}

impl DisplayAs for RecursiveQueryExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(
                    f,
                    "RecursiveQueryExec: name={}, is_distinct={}",
                    self.name, self.is_distinct
                )
            }
        }
    }
}

/// The actual logic of the recursive queries happens during the streaming
/// process. A simplified version of the algorithm is the following:
///
/// buffer = []
///
/// while batch := static_stream.next():
///    buffer.push(batch)
///    yield buffer
///
/// while buffer.len() > 0:
///    sender, receiver = Channel()
///    register_continuation(handle_name, receiver)
///    sender.send(buffer.drain())
///    recursive_stream = recursive_term.execute()
///    while batch := recursive_stream.next():
///        buffer.append(batch)
///        yield buffer
///
struct RecursiveQueryStream {
    /// The context to be used for managing handlers & executing new tasks
    task_context: Arc<TaskContext>,
    /// The working table state, representing the self referencing cte table
    work_table: Arc<WorkTable>,
    /// The dynamic part (recursive term) as is (without being executed)
    recursive_term: Arc<dyn ExecutionPlan>,
    /// The static part (static term) as a stream. If the processing of this
    /// part is completed, then it will be None.
    static_stream: Option<SendableRecordBatchStream>,
    /// The dynamic part (recursive term) as a stream. If the processing of this
    /// part has not started yet, or has been completed, then it will be None.
    recursive_stream: Option<SendableRecordBatchStream>,
    /// The schema of the output.
    schema: SchemaRef,
    /// In-memory buffer for storing a copy of the current results. Will be
    /// cleared after each iteration.
    buffer: Vec<RecordBatch>,
    /// Tracks the memory used by the buffer
    reservation: MemoryReservation,
    // /// Metrics.
    _baseline_metrics: BaselineMetrics,
}

impl RecursiveQueryStream {
    /// Create a new recursive query stream
    fn new(
        task_context: Arc<TaskContext>,
        work_table: Arc<WorkTable>,
        recursive_term: Arc<dyn ExecutionPlan>,
        static_stream: SendableRecordBatchStream,
        baseline_metrics: BaselineMetrics,
    ) -> Self {
        let schema = static_stream.schema();
        let reservation =
            MemoryConsumer::new("RecursiveQuery").register(task_context.memory_pool());
        Self {
            task_context,
            work_table,
            recursive_term,
            static_stream: Some(static_stream),
            recursive_stream: None,
            schema,
            buffer: vec![],
            reservation,
            _baseline_metrics: baseline_metrics,
        }
    }

    /// Push a clone of the given batch to the in memory buffer, and then return
    /// a poll with it.
    fn push_batch(
        mut self: std::pin::Pin<&mut Self>,
        batch: RecordBatch,
    ) -> Poll<Option<Result<RecordBatch>>> {
        if let Err(e) = self.reservation.try_grow(batch.get_array_memory_size()) {
            return Poll::Ready(Some(Err(e)));
        }

        self.buffer.push(batch.clone());
        Poll::Ready(Some(Ok(batch)))
    }

    /// Start polling for the next iteration, will be called either after the static term
    /// is completed or another term is completed. It will follow the algorithm above on
    /// to check whether the recursion has ended.
    fn poll_next_iteration(
        mut self: std::pin::Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Result<RecordBatch>>> {
        let total_length = self
            .buffer
            .iter()
            .fold(0, |acc, batch| acc + batch.num_rows());

        if total_length == 0 {
            return Poll::Ready(None);
        }

        // Update the work table with the current buffer
        let reserved_batches = ReservedBatches::new(
            std::mem::take(&mut self.buffer),
            self.reservation.take(),
        );
        self.work_table.update(reserved_batches);

        // We always execute (and re-execute iteratively) the first partition.
        // Downstream plans should not expect any partitioning.
        let partition = 0;

        let recursive_plan = reset_plan_states(Arc::clone(&self.recursive_term))?;
        self.recursive_stream =
            Some(recursive_plan.execute(partition, Arc::clone(&self.task_context))?);
        self.poll_next(cx)
    }
}

fn assign_work_table(
    plan: Arc<dyn ExecutionPlan>,
    work_table: Arc<WorkTable>,
) -> Result<Arc<dyn ExecutionPlan>> {
    let mut work_table_refs = 0;
    plan.transform_down(|plan| {
        if let Some(exec) = plan.as_any().downcast_ref::<WorkTableExec>() {
            if work_table_refs > 0 {
                not_impl_err!(
                    "Multiple recursive references to the same CTE are not supported"
                )
            } else {
                work_table_refs += 1;
                Ok(Transformed::yes(Arc::new(
                    exec.with_work_table(Arc::clone(&work_table)),
                )))
            }
        } else if plan.as_any().is::<RecursiveQueryExec>() {
            not_impl_err!("Recursive queries cannot be nested")
        } else {
            Ok(Transformed::no(plan))
        }
    })
    .data()
}

/// Some plans will change their internal states after execution, making them unable to be executed again.
/// This function uses `ExecutionPlan::with_new_children` to fork a new plan with initial states.
///
/// An example is `CrossJoinExec`, which loads the left table into memory and stores it in the plan.
/// However, if the data of the left table is derived from the work table, it will become outdated
/// as the work table changes. When the next iteration executes this plan again, we must clear the left table.
fn reset_plan_states(plan: Arc<dyn ExecutionPlan>) -> Result<Arc<dyn ExecutionPlan>> {
    plan.transform_up(|plan| {
        // WorkTableExec's states have already been updated correctly.
        if plan.as_any().is::<WorkTableExec>() {
            Ok(Transformed::no(plan))
        } else {
            let new_plan = Arc::clone(&plan)
                .with_new_children(plan.children().into_iter().cloned().collect())?;
            Ok(Transformed::yes(new_plan))
        }
    })
    .data()
}

impl Stream for RecursiveQueryStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: std::pin::Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        // TODO: we should use this poll to record some metrics!
        if let Some(static_stream) = &mut self.static_stream {
            // While the static term's stream is available, we'll be forwarding the batches from it (also
            // saving them for the initial iteration of the recursive term).
            let batch_result = ready!(static_stream.poll_next_unpin(cx));
            match &batch_result {
                None => {
                    // Once this is done, we can start running the setup for the recursive term.
                    self.static_stream = None;
                    self.poll_next_iteration(cx)
                }
                Some(Ok(batch)) => self.push_batch(batch.clone()),
                _ => Poll::Ready(batch_result),
            }
        } else if let Some(recursive_stream) = &mut self.recursive_stream {
            let batch_result = ready!(recursive_stream.poll_next_unpin(cx));
            match batch_result {
                None => {
                    self.recursive_stream = None;
                    self.poll_next_iteration(cx)
                }
                Some(Ok(batch)) => self.push_batch(batch),
                _ => Poll::Ready(batch_result),
            }
        } else {
            Poll::Ready(None)
        }
    }
}

impl RecordBatchStream for RecursiveQueryStream {
    /// Get the schema
    fn schema(&self) -> SchemaRef {
        Arc::clone(&self.schema)
    }
}

#[cfg(test)]
mod tests {}