datafusion_physical_plan/coalesce/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use arrow::compute::concat_batches;
use arrow_array::builder::StringViewBuilder;
use arrow_array::cast::AsArray;
use arrow_array::{Array, ArrayRef, RecordBatch, RecordBatchOptions};
use arrow_schema::SchemaRef;
use std::sync::Arc;

/// Concatenate multiple [`RecordBatch`]es
///
/// `BatchCoalescer` concatenates multiple small [`RecordBatch`]es, produced by
/// operations such as `FilterExec` and `RepartitionExec`, into larger ones for
/// more efficient processing by subsequent operations.
///
/// # Background
///
/// Generally speaking, larger [`RecordBatch`]es are more efficient to process
/// than smaller record batches (until the CPU cache is exceeded) because there
/// is fixed processing overhead per batch. DataFusion tries to operate on
/// batches of `target_batch_size` rows to amortize this overhead
///
/// ```text
/// ┌────────────────────┐
/// │    RecordBatch     │
/// │   num_rows = 23    │
/// └────────────────────┘                 ┌────────────────────┐
///                                        │                    │
/// ┌────────────────────┐     Coalesce    │                    │
/// │                    │      Batches    │                    │
/// │    RecordBatch     │                 │                    │
/// │   num_rows = 50    │  ─ ─ ─ ─ ─ ─ ▶  │                    │
/// │                    │                 │    RecordBatch     │
/// │                    │                 │   num_rows = 106   │
/// └────────────────────┘                 │                    │
///                                        │                    │
/// ┌────────────────────┐                 │                    │
/// │                    │                 │                    │
/// │    RecordBatch     │                 │                    │
/// │   num_rows = 33    │                 └────────────────────┘
/// │                    │
/// └────────────────────┘
/// ```
///
/// # Notes:
///
/// 1. Output rows are produced in the same order as the input rows
///
/// 2. The output is a sequence of batches, with all but the last being at least
///    `target_batch_size` rows.
///
/// 3. Eventually this may also be able to handle other optimizations such as a
///    combined filter/coalesce operation.
///
#[derive(Debug)]
pub struct BatchCoalescer {
    /// The input schema
    schema: SchemaRef,
    /// Minimum number of rows for coalesces batches
    target_batch_size: usize,
    /// Total number of rows returned so far
    total_rows: usize,
    /// Buffered batches
    buffer: Vec<RecordBatch>,
    /// Buffered row count
    buffered_rows: usize,
    /// Limit: maximum number of rows to fetch, `None` means fetch all rows
    fetch: Option<usize>,
}

impl BatchCoalescer {
    /// Create a new `BatchCoalescer`
    ///
    /// # Arguments
    /// - `schema` - the schema of the output batches
    /// - `target_batch_size` - the minimum number of rows for each
    ///    output batch (until limit reached)
    /// - `fetch` - the maximum number of rows to fetch, `None` means fetch all rows
    pub fn new(
        schema: SchemaRef,
        target_batch_size: usize,
        fetch: Option<usize>,
    ) -> Self {
        Self {
            schema,
            target_batch_size,
            total_rows: 0,
            buffer: vec![],
            buffered_rows: 0,
            fetch,
        }
    }

    /// Return the schema of the output batches
    pub fn schema(&self) -> SchemaRef {
        Arc::clone(&self.schema)
    }

    /// Push next batch, and returns [`CoalescerState`] indicating the current
    /// state of the buffer.
    pub fn push_batch(&mut self, batch: RecordBatch) -> CoalescerState {
        let batch = gc_string_view_batch(&batch);
        if self.limit_reached(&batch) {
            CoalescerState::LimitReached
        } else if self.target_reached(batch) {
            CoalescerState::TargetReached
        } else {
            CoalescerState::Continue
        }
    }

    /// Return true if the there is no data buffered
    pub fn is_empty(&self) -> bool {
        self.buffer.is_empty()
    }

    /// Checks if the buffer will reach the specified limit after getting
    /// `batch`.
    ///
    /// If fetch would be exceeded, slices the received batch, updates the
    /// buffer with it, and returns `true`.
    ///
    /// Otherwise: does nothing and returns `false`.
    fn limit_reached(&mut self, batch: &RecordBatch) -> bool {
        match self.fetch {
            Some(fetch) if self.total_rows + batch.num_rows() >= fetch => {
                // Limit is reached
                let remaining_rows = fetch - self.total_rows;
                debug_assert!(remaining_rows > 0);

                let batch = batch.slice(0, remaining_rows);
                self.buffered_rows += batch.num_rows();
                self.total_rows = fetch;
                self.buffer.push(batch);
                true
            }
            _ => false,
        }
    }

    /// Updates the buffer with the given batch.
    ///
    /// If the target batch size is reached, returns `true`. Otherwise, returns
    /// `false`.
    fn target_reached(&mut self, batch: RecordBatch) -> bool {
        if batch.num_rows() == 0 {
            false
        } else {
            self.total_rows += batch.num_rows();
            self.buffered_rows += batch.num_rows();
            self.buffer.push(batch);
            self.buffered_rows >= self.target_batch_size
        }
    }

    /// Concatenates and returns all buffered batches, and clears the buffer.
    pub fn finish_batch(&mut self) -> datafusion_common::Result<RecordBatch> {
        let batch = concat_batches(&self.schema, &self.buffer)?;
        self.buffer.clear();
        self.buffered_rows = 0;
        Ok(batch)
    }
}

/// Indicates the state of the [`BatchCoalescer`] buffer after the
/// [`BatchCoalescer::push_batch()`] operation.
///
/// The caller should take diferent actions, depending on the variant returned.
pub enum CoalescerState {
    /// Neither the limit nor the target batch size is reached.
    ///
    /// Action: continue pushing batches.
    Continue,
    /// The limit has been reached.
    ///
    /// Action: call [`BatchCoalescer::finish_batch()`] to get the final
    /// buffered results as a batch and finish the query.
    LimitReached,
    /// The specified minimum number of rows a batch should have is reached.
    ///
    /// Action: call [`BatchCoalescer::finish_batch()`] to get the current
    /// buffered results as a batch and then continue pushing batches.
    TargetReached,
}

/// Heuristically compact `StringViewArray`s to reduce memory usage, if needed
///
/// Decides when to consolidate the StringView into a new buffer to reduce
/// memory usage and improve string locality for better performance.
///
/// This differs from `StringViewArray::gc` because:
/// 1. It may not compact the array depending on a heuristic.
/// 2. It uses a precise block size to reduce the number of buffers to track.
///
/// # Heuristic
///
/// If the average size of each view is larger than 32 bytes, we compact the array.
///
/// `StringViewArray` include pointers to buffer that hold the underlying data.
/// One of the great benefits of `StringViewArray` is that many operations
/// (e.g., `filter`) can be done without copying the underlying data.
///
/// However, after a while (e.g., after `FilterExec` or `HashJoinExec`) the
/// `StringViewArray` may only refer to a small portion of the buffer,
/// significantly increasing memory usage.
fn gc_string_view_batch(batch: &RecordBatch) -> RecordBatch {
    let new_columns: Vec<ArrayRef> = batch
        .columns()
        .iter()
        .map(|c| {
            // Try to re-create the `StringViewArray` to prevent holding the underlying buffer too long.
            let Some(s) = c.as_string_view_opt() else {
                return Arc::clone(c);
            };
            let ideal_buffer_size: usize = s
                .views()
                .iter()
                .map(|v| {
                    let len = (*v as u32) as usize;
                    if len > 12 {
                        len
                    } else {
                        0
                    }
                })
                .sum();
            let actual_buffer_size = s.get_buffer_memory_size();

            // Re-creating the array copies data and can be time consuming.
            // We only do it if the array is sparse
            if actual_buffer_size > (ideal_buffer_size * 2) {
                // We set the block size to `ideal_buffer_size` so that the new StringViewArray only has one buffer, which accelerate later concat_batches.
                // See https://github.com/apache/arrow-rs/issues/6094 for more details.
                let mut builder = StringViewBuilder::with_capacity(s.len());
                if ideal_buffer_size > 0 {
                    builder = builder.with_fixed_block_size(ideal_buffer_size as u32);
                }

                for v in s.iter() {
                    builder.append_option(v);
                }

                let gc_string = builder.finish();

                debug_assert!(gc_string.data_buffers().len() <= 1); // buffer count can be 0 if the `ideal_buffer_size` is 0

                Arc::new(gc_string)
            } else {
                Arc::clone(c)
            }
        })
        .collect();
    let mut options = RecordBatchOptions::new();
    options = options.with_row_count(Some(batch.num_rows()));
    RecordBatch::try_new_with_options(batch.schema(), new_columns, &options)
        .expect("Failed to re-create the gc'ed record batch")
}

#[cfg(test)]
mod tests {
    use std::ops::Range;

    use super::*;

    use arrow::datatypes::{DataType, Field, Schema};
    use arrow_array::builder::ArrayBuilder;
    use arrow_array::{StringViewArray, UInt32Array};

    #[test]
    fn test_coalesce() {
        let batch = uint32_batch(0..8);
        Test::new()
            .with_batches(std::iter::repeat(batch).take(10))
            // expected output is batches of at least 20 rows (except for the final batch)
            .with_target_batch_size(21)
            .with_expected_output_sizes(vec![24, 24, 24, 8])
            .run()
    }

    #[test]
    fn test_coalesce_with_fetch_larger_than_input_size() {
        let batch = uint32_batch(0..8);
        Test::new()
            .with_batches(std::iter::repeat(batch).take(10))
            // input is 10 batches x 8 rows (80 rows) with fetch limit of 100
            // expected to behave the same as `test_concat_batches`
            .with_target_batch_size(21)
            .with_fetch(Some(100))
            .with_expected_output_sizes(vec![24, 24, 24, 8])
            .run();
    }

    #[test]
    fn test_coalesce_with_fetch_less_than_input_size() {
        let batch = uint32_batch(0..8);
        Test::new()
            .with_batches(std::iter::repeat(batch).take(10))
            // input is 10 batches x 8 rows (80 rows) with fetch limit of 50
            .with_target_batch_size(21)
            .with_fetch(Some(50))
            .with_expected_output_sizes(vec![24, 24, 2])
            .run();
    }

    #[test]
    fn test_coalesce_with_fetch_less_than_target_and_no_remaining_rows() {
        let batch = uint32_batch(0..8);
        Test::new()
            .with_batches(std::iter::repeat(batch).take(10))
            // input is 10 batches x 8 rows (80 rows) with fetch limit of 48
            .with_target_batch_size(21)
            .with_fetch(Some(48))
            .with_expected_output_sizes(vec![24, 24])
            .run();
    }

    #[test]
    fn test_coalesce_with_fetch_less_target_batch_size() {
        let batch = uint32_batch(0..8);
        Test::new()
            .with_batches(std::iter::repeat(batch).take(10))
            // input is 10 batches x 8 rows (80 rows) with fetch limit of 10
            .with_target_batch_size(21)
            .with_fetch(Some(10))
            .with_expected_output_sizes(vec![10])
            .run();
    }

    #[test]
    fn test_coalesce_single_large_batch_over_fetch() {
        let large_batch = uint32_batch(0..100);
        Test::new()
            .with_batch(large_batch)
            .with_target_batch_size(20)
            .with_fetch(Some(7))
            .with_expected_output_sizes(vec![7])
            .run()
    }

    /// Test for [`BatchCoalescer`]
    ///
    /// Pushes the input batches to the coalescer and verifies that the resulting
    /// batches have the expected number of rows and contents.
    #[derive(Debug, Clone, Default)]
    struct Test {
        /// Batches to feed to the coalescer. Tests must have at least one
        /// schema
        input_batches: Vec<RecordBatch>,
        /// Expected output sizes of the resulting batches
        expected_output_sizes: Vec<usize>,
        /// target batch size
        target_batch_size: usize,
        /// Fetch (limit)
        fetch: Option<usize>,
    }

    impl Test {
        fn new() -> Self {
            Self::default()
        }

        /// Set the target batch size
        fn with_target_batch_size(mut self, target_batch_size: usize) -> Self {
            self.target_batch_size = target_batch_size;
            self
        }

        /// Set the fetch (limit)
        fn with_fetch(mut self, fetch: Option<usize>) -> Self {
            self.fetch = fetch;
            self
        }

        /// Extend the input batches with `batch`
        fn with_batch(mut self, batch: RecordBatch) -> Self {
            self.input_batches.push(batch);
            self
        }

        /// Extends the input batches with `batches`
        fn with_batches(
            mut self,
            batches: impl IntoIterator<Item = RecordBatch>,
        ) -> Self {
            self.input_batches.extend(batches);
            self
        }

        /// Extends `sizes` to expected output sizes
        fn with_expected_output_sizes(
            mut self,
            sizes: impl IntoIterator<Item = usize>,
        ) -> Self {
            self.expected_output_sizes.extend(sizes);
            self
        }

        /// Runs the test -- see documentation on [`Test`] for details
        fn run(self) {
            let Self {
                input_batches,
                target_batch_size,
                fetch,
                expected_output_sizes,
            } = self;

            let schema = input_batches[0].schema();

            // create a single large input batch for output comparison
            let single_input_batch = concat_batches(&schema, &input_batches).unwrap();

            let mut coalescer =
                BatchCoalescer::new(Arc::clone(&schema), target_batch_size, fetch);

            let mut output_batches = vec![];
            for batch in input_batches {
                match coalescer.push_batch(batch) {
                    CoalescerState::Continue => {}
                    CoalescerState::LimitReached => {
                        output_batches.push(coalescer.finish_batch().unwrap());
                        break;
                    }
                    CoalescerState::TargetReached => {
                        coalescer.buffered_rows = 0;
                        output_batches.push(coalescer.finish_batch().unwrap());
                    }
                }
            }
            if coalescer.buffered_rows != 0 {
                output_batches.extend(coalescer.buffer);
            }

            // make sure we got the expected number of output batches and content
            let mut starting_idx = 0;
            assert_eq!(expected_output_sizes.len(), output_batches.len());
            for (i, (expected_size, batch)) in
                expected_output_sizes.iter().zip(output_batches).enumerate()
            {
                assert_eq!(
                    *expected_size,
                    batch.num_rows(),
                    "Unexpected number of rows in Batch {i}"
                );

                // compare the contents of the batch (using `==` compares the
                // underlying memory layout too)
                let expected_batch =
                    single_input_batch.slice(starting_idx, *expected_size);
                let batch_strings = batch_to_pretty_strings(&batch);
                let expected_batch_strings = batch_to_pretty_strings(&expected_batch);
                let batch_strings = batch_strings.lines().collect::<Vec<_>>();
                let expected_batch_strings =
                    expected_batch_strings.lines().collect::<Vec<_>>();
                assert_eq!(
                    expected_batch_strings, batch_strings,
                    "Unexpected content in Batch {i}:\
                    \n\nExpected:\n{expected_batch_strings:#?}\n\nActual:\n{batch_strings:#?}"
                );
                starting_idx += *expected_size;
            }
        }
    }

    /// Return a batch of  UInt32 with the specified range
    fn uint32_batch(range: Range<u32>) -> RecordBatch {
        let schema =
            Arc::new(Schema::new(vec![Field::new("c0", DataType::UInt32, false)]));

        RecordBatch::try_new(
            Arc::clone(&schema),
            vec![Arc::new(UInt32Array::from_iter_values(range))],
        )
        .unwrap()
    }

    #[test]
    fn test_gc_string_view_batch_small_no_compact() {
        // view with only short strings (no buffers) --> no need to compact
        let array = StringViewTest {
            rows: 1000,
            strings: vec![Some("a"), Some("b"), Some("c")],
        }
        .build();

        let gc_array = do_gc(array.clone());
        compare_string_array_values(&array, &gc_array);
        assert_eq!(array.data_buffers().len(), 0);
        assert_eq!(array.data_buffers().len(), gc_array.data_buffers().len()); // no compaction
    }

    #[test]
    fn test_gc_string_view_test_batch_empty() {
        let schema = Schema::empty();
        let batch = RecordBatch::new_empty(schema.into());
        let output_batch = gc_string_view_batch(&batch);
        assert_eq!(batch.num_columns(), output_batch.num_columns());
        assert_eq!(batch.num_rows(), output_batch.num_rows());
    }

    #[test]
    fn test_gc_string_view_batch_large_no_compact() {
        // view with large strings (has buffers) but full --> no need to compact
        let array = StringViewTest {
            rows: 1000,
            strings: vec![Some("This string is longer than 12 bytes")],
        }
        .build();

        let gc_array = do_gc(array.clone());
        compare_string_array_values(&array, &gc_array);
        assert_eq!(array.data_buffers().len(), 5);
        assert_eq!(array.data_buffers().len(), gc_array.data_buffers().len()); // no compaction
    }

    #[test]
    fn test_gc_string_view_batch_large_slice_compact() {
        // view with large strings (has buffers) and only partially used  --> no need to compact
        let array = StringViewTest {
            rows: 1000,
            strings: vec![Some("this string is longer than 12 bytes")],
        }
        .build();

        // slice only 11 rows, so most of the buffer is not used
        let array = array.slice(11, 22);

        let gc_array = do_gc(array.clone());
        compare_string_array_values(&array, &gc_array);
        assert_eq!(array.data_buffers().len(), 5);
        assert_eq!(gc_array.data_buffers().len(), 1); // compacted into a single buffer
    }

    /// Compares the values of two string view arrays
    fn compare_string_array_values(arr1: &StringViewArray, arr2: &StringViewArray) {
        assert_eq!(arr1.len(), arr2.len());
        for (s1, s2) in arr1.iter().zip(arr2.iter()) {
            assert_eq!(s1, s2);
        }
    }

    /// runs garbage collection on string view array
    /// and ensures the number of rows are the same
    fn do_gc(array: StringViewArray) -> StringViewArray {
        let batch =
            RecordBatch::try_from_iter(vec![("a", Arc::new(array) as ArrayRef)]).unwrap();
        let gc_batch = gc_string_view_batch(&batch);
        assert_eq!(batch.num_rows(), gc_batch.num_rows());
        assert_eq!(batch.schema(), gc_batch.schema());
        gc_batch
            .column(0)
            .as_any()
            .downcast_ref::<StringViewArray>()
            .unwrap()
            .clone()
    }

    /// Describes parameters for creating a `StringViewArray`
    struct StringViewTest {
        /// The number of rows in the array
        rows: usize,
        /// The strings to use in the array (repeated over and over
        strings: Vec<Option<&'static str>>,
    }

    impl StringViewTest {
        /// Create a `StringViewArray` with the parameters specified in this struct
        fn build(self) -> StringViewArray {
            let mut builder =
                StringViewBuilder::with_capacity(100).with_fixed_block_size(8192);
            loop {
                for &v in self.strings.iter() {
                    builder.append_option(v);
                    if builder.len() >= self.rows {
                        return builder.finish();
                    }
                }
            }
        }
    }
    fn batch_to_pretty_strings(batch: &RecordBatch) -> String {
        arrow::util::pretty::pretty_format_batches(&[batch.clone()])
            .unwrap()
            .to_string()
    }
}