datafusion_physical_plan/aggregates/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Aggregates functionalities
use std::any::Any;
use std::sync::Arc;
use super::{DisplayAs, ExecutionMode, ExecutionPlanProperties, PlanProperties};
use crate::aggregates::{
no_grouping::AggregateStream, row_hash::GroupedHashAggregateStream,
topk_stream::GroupedTopKAggregateStream,
};
use crate::metrics::{ExecutionPlanMetricsSet, MetricsSet};
use crate::projection::get_field_metadata;
use crate::windows::get_ordered_partition_by_indices;
use crate::{
DisplayFormatType, Distribution, ExecutionPlan, InputOrderMode,
SendableRecordBatchStream, Statistics,
};
use arrow::array::ArrayRef;
use arrow::datatypes::{Field, Schema, SchemaRef};
use arrow::record_batch::RecordBatch;
use arrow_array::{UInt16Array, UInt32Array, UInt64Array, UInt8Array};
use datafusion_common::stats::Precision;
use datafusion_common::{internal_err, not_impl_err, Result};
use datafusion_execution::TaskContext;
use datafusion_expr::{Accumulator, Aggregate};
use datafusion_physical_expr::{
equivalence::{collapse_lex_req, ProjectionMapping},
expressions::Column,
physical_exprs_contains, EquivalenceProperties, LexOrdering, LexRequirement,
PhysicalExpr, PhysicalSortRequirement,
};
use crate::execution_plan::CardinalityEffect;
use datafusion_physical_expr::aggregate::AggregateFunctionExpr;
use itertools::Itertools;
pub mod group_values;
mod no_grouping;
pub mod order;
mod row_hash;
mod topk;
mod topk_stream;
/// Hash aggregate modes
///
/// See [`Accumulator::state`] for background information on multi-phase
/// aggregation and how these modes are used.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum AggregateMode {
/// Partial aggregate that can be applied in parallel across input
/// partitions.
///
/// This is the first phase of a multi-phase aggregation.
Partial,
/// Final aggregate that produces a single partition of output by combining
/// the output of multiple partial aggregates.
///
/// This is the second phase of a multi-phase aggregation.
Final,
/// Final aggregate that works on pre-partitioned data.
///
/// This requires the invariant that all rows with a particular
/// grouping key are in the same partitions, such as is the case
/// with Hash repartitioning on the group keys. If a group key is
/// duplicated, duplicate groups would be produced
FinalPartitioned,
/// Applies the entire logical aggregation operation in a single operator,
/// as opposed to Partial / Final modes which apply the logical aggregation using
/// two operators.
///
/// This mode requires that the input is a single partition (like Final)
Single,
/// Applies the entire logical aggregation operation in a single operator,
/// as opposed to Partial / Final modes which apply the logical aggregation using
/// two operators.
///
/// This mode requires that the input is partitioned by group key (like
/// FinalPartitioned)
SinglePartitioned,
}
impl AggregateMode {
/// Checks whether this aggregation step describes a "first stage" calculation.
/// In other words, its input is not another aggregation result and the
/// `merge_batch` method will not be called for these modes.
pub fn is_first_stage(&self) -> bool {
match self {
AggregateMode::Partial
| AggregateMode::Single
| AggregateMode::SinglePartitioned => true,
AggregateMode::Final | AggregateMode::FinalPartitioned => false,
}
}
}
/// Represents `GROUP BY` clause in the plan (including the more general GROUPING SET)
/// In the case of a simple `GROUP BY a, b` clause, this will contain the expression [a, b]
/// and a single group [false, false].
/// In the case of `GROUP BY GROUPING SETS/CUBE/ROLLUP` the planner will expand the expression
/// into multiple groups, using null expressions to align each group.
/// For example, with a group by clause `GROUP BY GROUPING SETS ((a,b),(a),(b))` the planner should
/// create a `PhysicalGroupBy` like
/// ```text
/// PhysicalGroupBy {
/// expr: [(col(a), a), (col(b), b)],
/// null_expr: [(NULL, a), (NULL, b)],
/// groups: [
/// [false, false], // (a,b)
/// [false, true], // (a) <=> (a, NULL)
/// [true, false] // (b) <=> (NULL, b)
/// ]
/// }
/// ```
#[derive(Clone, Debug, Default)]
pub struct PhysicalGroupBy {
/// Distinct (Physical Expr, Alias) in the grouping set
expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
/// Corresponding NULL expressions for expr
null_expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
/// Null mask for each group in this grouping set. Each group is
/// composed of either one of the group expressions in expr or a null
/// expression in null_expr. If `groups[i][j]` is true, then the
/// j-th expression in the i-th group is NULL, otherwise it is `expr[j]`.
groups: Vec<Vec<bool>>,
}
impl PhysicalGroupBy {
/// Create a new `PhysicalGroupBy`
pub fn new(
expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
null_expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
groups: Vec<Vec<bool>>,
) -> Self {
Self {
expr,
null_expr,
groups,
}
}
/// Create a GROUPING SET with only a single group. This is the "standard"
/// case when building a plan from an expression such as `GROUP BY a,b,c`
pub fn new_single(expr: Vec<(Arc<dyn PhysicalExpr>, String)>) -> Self {
let num_exprs = expr.len();
Self {
expr,
null_expr: vec![],
groups: vec![vec![false; num_exprs]],
}
}
/// Calculate GROUP BY expressions nullable
pub fn exprs_nullable(&self) -> Vec<bool> {
let mut exprs_nullable = vec![false; self.expr.len()];
for group in self.groups.iter() {
group.iter().enumerate().for_each(|(index, is_null)| {
if *is_null {
exprs_nullable[index] = true;
}
})
}
exprs_nullable
}
/// Returns the group expressions
pub fn expr(&self) -> &[(Arc<dyn PhysicalExpr>, String)] {
&self.expr
}
/// Returns the null expressions
pub fn null_expr(&self) -> &[(Arc<dyn PhysicalExpr>, String)] {
&self.null_expr
}
/// Returns the group null masks
pub fn groups(&self) -> &[Vec<bool>] {
&self.groups
}
/// Returns true if this `PhysicalGroupBy` has no group expressions
pub fn is_empty(&self) -> bool {
self.expr.is_empty()
}
/// Check whether grouping set is single group
pub fn is_single(&self) -> bool {
self.null_expr.is_empty()
}
/// Calculate GROUP BY expressions according to input schema.
pub fn input_exprs(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.expr
.iter()
.map(|(expr, _alias)| Arc::clone(expr))
.collect()
}
/// The number of expressions in the output schema.
fn num_output_exprs(&self) -> usize {
let mut num_exprs = self.expr.len();
if !self.is_single() {
num_exprs += 1
}
num_exprs
}
/// Return grouping expressions as they occur in the output schema.
pub fn output_exprs(&self) -> Vec<Arc<dyn PhysicalExpr>> {
let num_output_exprs = self.num_output_exprs();
let mut output_exprs = Vec::with_capacity(num_output_exprs);
output_exprs.extend(
self.expr
.iter()
.enumerate()
.take(num_output_exprs)
.map(|(index, (_, name))| Arc::new(Column::new(name, index)) as _),
);
if !self.is_single() {
output_exprs.push(Arc::new(Column::new(
Aggregate::INTERNAL_GROUPING_ID,
self.expr.len(),
)) as _);
}
output_exprs
}
/// Returns the number expression as grouping keys.
fn num_group_exprs(&self) -> usize {
if self.is_single() {
self.expr.len()
} else {
self.expr.len() + 1
}
}
/// Returns the fields that are used as the grouping keys.
fn group_fields(&self, input_schema: &Schema) -> Result<Vec<Field>> {
let mut fields = Vec::with_capacity(self.num_group_exprs());
for ((expr, name), group_expr_nullable) in
self.expr.iter().zip(self.exprs_nullable().into_iter())
{
fields.push(
Field::new(
name,
expr.data_type(input_schema)?,
group_expr_nullable || expr.nullable(input_schema)?,
)
.with_metadata(
get_field_metadata(expr, input_schema).unwrap_or_default(),
),
);
}
if !self.is_single() {
fields.push(Field::new(
Aggregate::INTERNAL_GROUPING_ID,
Aggregate::grouping_id_type(self.expr.len()),
false,
));
}
Ok(fields)
}
/// Returns the output fields of the group by.
///
/// This might be different from the `group_fields` that might contain internal expressions that
/// should not be part of the output schema.
fn output_fields(&self, input_schema: &Schema) -> Result<Vec<Field>> {
let mut fields = self.group_fields(input_schema)?;
fields.truncate(self.num_output_exprs());
Ok(fields)
}
/// Returns the `PhysicalGroupBy` for a final aggregation if `self` is used for a partial
/// aggregation.
pub fn as_final(&self) -> PhysicalGroupBy {
let expr: Vec<_> =
self.output_exprs()
.into_iter()
.zip(
self.expr.iter().map(|t| t.1.clone()).chain(std::iter::once(
Aggregate::INTERNAL_GROUPING_ID.to_owned(),
)),
)
.collect();
let num_exprs = expr.len();
Self {
expr,
null_expr: vec![],
groups: vec![vec![false; num_exprs]],
}
}
}
impl PartialEq for PhysicalGroupBy {
fn eq(&self, other: &PhysicalGroupBy) -> bool {
self.expr.len() == other.expr.len()
&& self
.expr
.iter()
.zip(other.expr.iter())
.all(|((expr1, name1), (expr2, name2))| expr1.eq(expr2) && name1 == name2)
&& self.null_expr.len() == other.null_expr.len()
&& self
.null_expr
.iter()
.zip(other.null_expr.iter())
.all(|((expr1, name1), (expr2, name2))| expr1.eq(expr2) && name1 == name2)
&& self.groups == other.groups
}
}
enum StreamType {
AggregateStream(AggregateStream),
GroupedHash(GroupedHashAggregateStream),
GroupedPriorityQueue(GroupedTopKAggregateStream),
}
impl From<StreamType> for SendableRecordBatchStream {
fn from(stream: StreamType) -> Self {
match stream {
StreamType::AggregateStream(stream) => Box::pin(stream),
StreamType::GroupedHash(stream) => Box::pin(stream),
StreamType::GroupedPriorityQueue(stream) => Box::pin(stream),
}
}
}
/// Hash aggregate execution plan
#[derive(Debug, Clone)]
pub struct AggregateExec {
/// Aggregation mode (full, partial)
mode: AggregateMode,
/// Group by expressions
group_by: PhysicalGroupBy,
/// Aggregate expressions
aggr_expr: Vec<Arc<AggregateFunctionExpr>>,
/// FILTER (WHERE clause) expression for each aggregate expression
filter_expr: Vec<Option<Arc<dyn PhysicalExpr>>>,
/// Set if the output of this aggregation is truncated by a upstream sort/limit clause
limit: Option<usize>,
/// Input plan, could be a partial aggregate or the input to the aggregate
pub input: Arc<dyn ExecutionPlan>,
/// Schema after the aggregate is applied
schema: SchemaRef,
/// Input schema before any aggregation is applied. For partial aggregate this will be the
/// same as input.schema() but for the final aggregate it will be the same as the input
/// to the partial aggregate, i.e., partial and final aggregates have same `input_schema`.
/// We need the input schema of partial aggregate to be able to deserialize aggregate
/// expressions from protobuf for final aggregate.
pub input_schema: SchemaRef,
/// Execution metrics
metrics: ExecutionPlanMetricsSet,
required_input_ordering: Option<LexRequirement>,
/// Describes how the input is ordered relative to the group by columns
input_order_mode: InputOrderMode,
cache: PlanProperties,
}
impl AggregateExec {
/// Function used in `OptimizeAggregateOrder` optimizer rule,
/// where we need parts of the new value, others cloned from the old one
/// Rewrites aggregate exec with new aggregate expressions.
pub fn with_new_aggr_exprs(
&self,
aggr_expr: Vec<Arc<AggregateFunctionExpr>>,
) -> Self {
Self {
aggr_expr,
// clone the rest of the fields
required_input_ordering: self.required_input_ordering.clone(),
metrics: ExecutionPlanMetricsSet::new(),
input_order_mode: self.input_order_mode.clone(),
cache: self.cache.clone(),
mode: self.mode,
group_by: self.group_by.clone(),
filter_expr: self.filter_expr.clone(),
limit: self.limit,
input: Arc::clone(&self.input),
schema: Arc::clone(&self.schema),
input_schema: Arc::clone(&self.input_schema),
}
}
pub fn cache(&self) -> &PlanProperties {
&self.cache
}
/// Create a new hash aggregate execution plan
pub fn try_new(
mode: AggregateMode,
group_by: PhysicalGroupBy,
aggr_expr: Vec<Arc<AggregateFunctionExpr>>,
filter_expr: Vec<Option<Arc<dyn PhysicalExpr>>>,
input: Arc<dyn ExecutionPlan>,
input_schema: SchemaRef,
) -> Result<Self> {
let schema = create_schema(&input.schema(), &group_by, &aggr_expr, mode)?;
let schema = Arc::new(schema);
AggregateExec::try_new_with_schema(
mode,
group_by,
aggr_expr,
filter_expr,
input,
input_schema,
schema,
)
}
/// Create a new hash aggregate execution plan with the given schema.
/// This constructor isn't part of the public API, it is used internally
/// by DataFusion to enforce schema consistency during when re-creating
/// `AggregateExec`s inside optimization rules. Schema field names of an
/// `AggregateExec` depends on the names of aggregate expressions. Since
/// a rule may re-write aggregate expressions (e.g. reverse them) during
/// initialization, field names may change inadvertently if one re-creates
/// the schema in such cases.
#[allow(clippy::too_many_arguments)]
fn try_new_with_schema(
mode: AggregateMode,
group_by: PhysicalGroupBy,
mut aggr_expr: Vec<Arc<AggregateFunctionExpr>>,
filter_expr: Vec<Option<Arc<dyn PhysicalExpr>>>,
input: Arc<dyn ExecutionPlan>,
input_schema: SchemaRef,
schema: SchemaRef,
) -> Result<Self> {
// Make sure arguments are consistent in size
if aggr_expr.len() != filter_expr.len() {
return internal_err!("Inconsistent aggregate expr: {:?} and filter expr: {:?} for AggregateExec, their size should match", aggr_expr, filter_expr);
}
let input_eq_properties = input.equivalence_properties();
// Get GROUP BY expressions:
let groupby_exprs = group_by.input_exprs();
// If existing ordering satisfies a prefix of the GROUP BY expressions,
// prefix requirements with this section. In this case, aggregation will
// work more efficiently.
let indices = get_ordered_partition_by_indices(&groupby_exprs, &input);
let mut new_requirement = LexRequirement::new(
indices
.iter()
.map(|&idx| PhysicalSortRequirement {
expr: Arc::clone(&groupby_exprs[idx]),
options: None,
})
.collect::<Vec<_>>(),
);
let req = get_finer_aggregate_exprs_requirement(
&mut aggr_expr,
&group_by,
input_eq_properties,
&mode,
)?;
new_requirement.inner.extend(req);
new_requirement = collapse_lex_req(new_requirement);
// If our aggregation has grouping sets then our base grouping exprs will
// be expanded based on the flags in `group_by.groups` where for each
// group we swap the grouping expr for `null` if the flag is `true`
// That means that each index in `indices` is valid if and only if
// it is not null in every group
let indices: Vec<usize> = indices
.into_iter()
.filter(|idx| group_by.groups.iter().all(|group| !group[*idx]))
.collect();
let input_order_mode = if indices.len() == groupby_exprs.len()
&& !indices.is_empty()
&& group_by.groups.len() == 1
{
InputOrderMode::Sorted
} else if !indices.is_empty() {
InputOrderMode::PartiallySorted(indices)
} else {
InputOrderMode::Linear
};
// construct a map from the input expression to the output expression of the Aggregation group by
let projection_mapping =
ProjectionMapping::try_new(&group_by.expr, &input.schema())?;
let required_input_ordering =
(!new_requirement.is_empty()).then_some(new_requirement);
let cache = Self::compute_properties(
&input,
Arc::clone(&schema),
&projection_mapping,
&mode,
&input_order_mode,
);
Ok(AggregateExec {
mode,
group_by,
aggr_expr,
filter_expr,
input,
schema,
input_schema,
metrics: ExecutionPlanMetricsSet::new(),
required_input_ordering,
limit: None,
input_order_mode,
cache,
})
}
/// Aggregation mode (full, partial)
pub fn mode(&self) -> &AggregateMode {
&self.mode
}
/// Set the `limit` of this AggExec
pub fn with_limit(mut self, limit: Option<usize>) -> Self {
self.limit = limit;
self
}
/// Grouping expressions
pub fn group_expr(&self) -> &PhysicalGroupBy {
&self.group_by
}
/// Grouping expressions as they occur in the output schema
pub fn output_group_expr(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.group_by.output_exprs()
}
/// Aggregate expressions
pub fn aggr_expr(&self) -> &[Arc<AggregateFunctionExpr>] {
&self.aggr_expr
}
/// FILTER (WHERE clause) expression for each aggregate expression
pub fn filter_expr(&self) -> &[Option<Arc<dyn PhysicalExpr>>] {
&self.filter_expr
}
/// Input plan
pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
&self.input
}
/// Get the input schema before any aggregates are applied
pub fn input_schema(&self) -> SchemaRef {
Arc::clone(&self.input_schema)
}
/// number of rows soft limit of the AggregateExec
pub fn limit(&self) -> Option<usize> {
self.limit
}
fn execute_typed(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<StreamType> {
// no group by at all
if self.group_by.expr.is_empty() {
return Ok(StreamType::AggregateStream(AggregateStream::new(
self, context, partition,
)?));
}
// grouping by an expression that has a sort/limit upstream
if let Some(limit) = self.limit {
if !self.is_unordered_unfiltered_group_by_distinct() {
return Ok(StreamType::GroupedPriorityQueue(
GroupedTopKAggregateStream::new(self, context, partition, limit)?,
));
}
}
// grouping by something else and we need to just materialize all results
Ok(StreamType::GroupedHash(GroupedHashAggregateStream::new(
self, context, partition,
)?))
}
/// Finds the DataType and SortDirection for this Aggregate, if there is one
pub fn get_minmax_desc(&self) -> Option<(Field, bool)> {
let agg_expr = self.aggr_expr.iter().exactly_one().ok()?;
agg_expr.get_minmax_desc()
}
/// true, if this Aggregate has a group-by with no required or explicit ordering,
/// no filtering and no aggregate expressions
/// This method qualifies the use of the LimitedDistinctAggregation rewrite rule
/// on an AggregateExec.
pub fn is_unordered_unfiltered_group_by_distinct(&self) -> bool {
// ensure there is a group by
if self.group_expr().is_empty() {
return false;
}
// ensure there are no aggregate expressions
if !self.aggr_expr().is_empty() {
return false;
}
// ensure there are no filters on aggregate expressions; the above check
// may preclude this case
if self.filter_expr().iter().any(|e| e.is_some()) {
return false;
}
// ensure there are no order by expressions
if self.aggr_expr().iter().any(|e| e.order_bys().is_some()) {
return false;
}
// ensure there is no output ordering; can this rule be relaxed?
if self.properties().output_ordering().is_some() {
return false;
}
// ensure no ordering is required on the input
if self.required_input_ordering()[0].is_some() {
return false;
}
true
}
/// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
pub fn compute_properties(
input: &Arc<dyn ExecutionPlan>,
schema: SchemaRef,
projection_mapping: &ProjectionMapping,
mode: &AggregateMode,
input_order_mode: &InputOrderMode,
) -> PlanProperties {
// Construct equivalence properties:
let eq_properties = input
.equivalence_properties()
.project(projection_mapping, schema);
// Get output partitioning:
let input_partitioning = input.output_partitioning().clone();
let output_partitioning = if mode.is_first_stage() {
// First stage aggregation will not change the output partitioning,
// but needs to respect aliases (e.g. mapping in the GROUP BY
// expression).
let input_eq_properties = input.equivalence_properties();
input_partitioning.project(projection_mapping, input_eq_properties)
} else {
input_partitioning.clone()
};
// Determine execution mode:
let mut exec_mode = input.execution_mode();
if exec_mode == ExecutionMode::Unbounded
&& *input_order_mode == InputOrderMode::Linear
{
// Cannot run without breaking the pipeline
exec_mode = ExecutionMode::PipelineBreaking;
}
PlanProperties::new(eq_properties, output_partitioning, exec_mode)
}
pub fn input_order_mode(&self) -> &InputOrderMode {
&self.input_order_mode
}
}
impl DisplayAs for AggregateExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "AggregateExec: mode={:?}", self.mode)?;
let g: Vec<String> = if self.group_by.is_single() {
self.group_by
.expr
.iter()
.map(|(e, alias)| {
let e = e.to_string();
if &e != alias {
format!("{e} as {alias}")
} else {
e
}
})
.collect()
} else {
self.group_by
.groups
.iter()
.map(|group| {
let terms = group
.iter()
.enumerate()
.map(|(idx, is_null)| {
if *is_null {
let (e, alias) = &self.group_by.null_expr[idx];
let e = e.to_string();
if &e != alias {
format!("{e} as {alias}")
} else {
e
}
} else {
let (e, alias) = &self.group_by.expr[idx];
let e = e.to_string();
if &e != alias {
format!("{e} as {alias}")
} else {
e
}
}
})
.collect::<Vec<String>>()
.join(", ");
format!("({terms})")
})
.collect()
};
write!(f, ", gby=[{}]", g.join(", "))?;
let a: Vec<String> = self
.aggr_expr
.iter()
.map(|agg| agg.name().to_string())
.collect();
write!(f, ", aggr=[{}]", a.join(", "))?;
if let Some(limit) = self.limit {
write!(f, ", lim=[{limit}]")?;
}
if self.input_order_mode != InputOrderMode::Linear {
write!(f, ", ordering_mode={:?}", self.input_order_mode)?;
}
}
}
Ok(())
}
}
impl ExecutionPlan for AggregateExec {
fn name(&self) -> &'static str {
"AggregateExec"
}
/// Return a reference to Any that can be used for down-casting
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn required_input_distribution(&self) -> Vec<Distribution> {
match &self.mode {
AggregateMode::Partial => {
vec![Distribution::UnspecifiedDistribution]
}
AggregateMode::FinalPartitioned | AggregateMode::SinglePartitioned => {
vec![Distribution::HashPartitioned(self.group_by.input_exprs())]
}
AggregateMode::Final | AggregateMode::Single => {
vec![Distribution::SinglePartition]
}
}
}
fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
vec![self.required_input_ordering.clone()]
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![&self.input]
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
let mut me = AggregateExec::try_new_with_schema(
self.mode,
self.group_by.clone(),
self.aggr_expr.clone(),
self.filter_expr.clone(),
Arc::clone(&children[0]),
Arc::clone(&self.input_schema),
Arc::clone(&self.schema),
)?;
me.limit = self.limit;
Ok(Arc::new(me))
}
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
self.execute_typed(partition, context)
.map(|stream| stream.into())
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Result<Statistics> {
// TODO stats: group expressions:
// - once expressions will be able to compute their own stats, use it here
// - case where we group by on a column for which with have the `distinct` stat
// TODO stats: aggr expression:
// - aggregations sometimes also preserve invariants such as min, max...
let column_statistics = Statistics::unknown_column(&self.schema());
match self.mode {
AggregateMode::Final | AggregateMode::FinalPartitioned
if self.group_by.expr.is_empty() =>
{
Ok(Statistics {
num_rows: Precision::Exact(1),
column_statistics,
total_byte_size: Precision::Absent,
})
}
_ => {
// When the input row count is 0 or 1, we can adopt that statistic keeping its reliability.
// When it is larger than 1, we degrade the precision since it may decrease after aggregation.
let num_rows = if let Some(value) =
self.input().statistics()?.num_rows.get_value()
{
if *value > 1 {
self.input().statistics()?.num_rows.to_inexact()
} else if *value == 0 {
// Aggregation on an empty table creates a null row.
self.input()
.statistics()?
.num_rows
.add(&Precision::Exact(1))
} else {
// num_rows = 1 case
self.input().statistics()?.num_rows
}
} else {
Precision::Absent
};
Ok(Statistics {
num_rows,
column_statistics,
total_byte_size: Precision::Absent,
})
}
}
}
fn cardinality_effect(&self) -> CardinalityEffect {
CardinalityEffect::LowerEqual
}
}
fn create_schema(
input_schema: &Schema,
group_by: &PhysicalGroupBy,
aggr_expr: &[Arc<AggregateFunctionExpr>],
mode: AggregateMode,
) -> Result<Schema> {
let mut fields = Vec::with_capacity(group_by.num_output_exprs() + aggr_expr.len());
fields.extend(group_by.output_fields(input_schema)?);
match mode {
AggregateMode::Partial => {
// in partial mode, the fields of the accumulator's state
for expr in aggr_expr {
fields.extend(expr.state_fields()?.iter().cloned())
}
}
AggregateMode::Final
| AggregateMode::FinalPartitioned
| AggregateMode::Single
| AggregateMode::SinglePartitioned => {
// in final mode, the field with the final result of the accumulator
for expr in aggr_expr {
fields.push(expr.field())
}
}
}
Ok(Schema::new_with_metadata(
fields,
input_schema.metadata().clone(),
))
}
fn group_schema(input_schema: &Schema, group_by: &PhysicalGroupBy) -> Result<SchemaRef> {
Ok(Arc::new(Schema::new(group_by.group_fields(input_schema)?)))
}
/// Determines the lexical ordering requirement for an aggregate expression.
///
/// # Parameters
///
/// - `aggr_expr`: A reference to an `AggregateFunctionExpr` representing the
/// aggregate expression.
/// - `group_by`: A reference to a `PhysicalGroupBy` instance representing the
/// physical GROUP BY expression.
/// - `agg_mode`: A reference to an `AggregateMode` instance representing the
/// mode of aggregation.
///
/// # Returns
///
/// A `LexOrdering` instance indicating the lexical ordering requirement for
/// the aggregate expression.
fn get_aggregate_expr_req(
aggr_expr: &AggregateFunctionExpr,
group_by: &PhysicalGroupBy,
agg_mode: &AggregateMode,
) -> LexOrdering {
// If the aggregation function is ordering requirement is not absolutely
// necessary, or the aggregation is performing a "second stage" calculation,
// then ignore the ordering requirement.
if !aggr_expr.order_sensitivity().hard_requires() || !agg_mode.is_first_stage() {
return LexOrdering::default();
}
let mut req = LexOrdering::from_ref(aggr_expr.order_bys().unwrap_or_default());
// In non-first stage modes, we accumulate data (using `merge_batch`) from
// different partitions (i.e. merge partial results). During this merge, we
// consider the ordering of each partial result. Hence, we do not need to
// use the ordering requirement in such modes as long as partial results are
// generated with the correct ordering.
if group_by.is_single() {
// Remove all orderings that occur in the group by. These requirements
// will definitely be satisfied -- Each group by expression will have
// distinct values per group, hence all requirements are satisfied.
let physical_exprs = group_by.input_exprs();
req.retain(|sort_expr| {
!physical_exprs_contains(&physical_exprs, &sort_expr.expr)
});
}
req
}
/// Computes the finer ordering for between given existing ordering requirement
/// of aggregate expression.
///
/// # Parameters
///
/// * `existing_req` - The existing lexical ordering that needs refinement.
/// * `aggr_expr` - A reference to an aggregate expression trait object.
/// * `group_by` - Information about the physical grouping (e.g group by expression).
/// * `eq_properties` - Equivalence properties relevant to the computation.
/// * `agg_mode` - The mode of aggregation (e.g., Partial, Final, etc.).
///
/// # Returns
///
/// An `Option<LexOrdering>` representing the computed finer lexical ordering,
/// or `None` if there is no finer ordering; e.g. the existing requirement and
/// the aggregator requirement is incompatible.
fn finer_ordering(
existing_req: &LexOrdering,
aggr_expr: &AggregateFunctionExpr,
group_by: &PhysicalGroupBy,
eq_properties: &EquivalenceProperties,
agg_mode: &AggregateMode,
) -> Option<LexOrdering> {
let aggr_req = get_aggregate_expr_req(aggr_expr, group_by, agg_mode);
eq_properties.get_finer_ordering(existing_req.as_ref(), aggr_req.as_ref())
}
/// Concatenates the given slices.
pub fn concat_slices<T: Clone>(lhs: &[T], rhs: &[T]) -> Vec<T> {
[lhs, rhs].concat()
}
/// Get the common requirement that satisfies all the aggregate expressions.
///
/// # Parameters
///
/// - `aggr_exprs`: A slice of `AggregateFunctionExpr` containing all the
/// aggregate expressions.
/// - `group_by`: A reference to a `PhysicalGroupBy` instance representing the
/// physical GROUP BY expression.
/// - `eq_properties`: A reference to an `EquivalenceProperties` instance
/// representing equivalence properties for ordering.
/// - `agg_mode`: A reference to an `AggregateMode` instance representing the
/// mode of aggregation.
///
/// # Returns
///
/// A `LexRequirement` instance, which is the requirement that satisfies all the
/// aggregate requirements. Returns an error in case of conflicting requirements.
pub fn get_finer_aggregate_exprs_requirement(
aggr_exprs: &mut [Arc<AggregateFunctionExpr>],
group_by: &PhysicalGroupBy,
eq_properties: &EquivalenceProperties,
agg_mode: &AggregateMode,
) -> Result<LexRequirement> {
let mut requirement = LexOrdering::default();
for aggr_expr in aggr_exprs.iter_mut() {
if let Some(finer_ordering) =
finer_ordering(&requirement, aggr_expr, group_by, eq_properties, agg_mode)
{
if eq_properties.ordering_satisfy(finer_ordering.as_ref()) {
// Requirement is satisfied by existing ordering
requirement = finer_ordering;
continue;
}
}
if let Some(reverse_aggr_expr) = aggr_expr.reverse_expr() {
if let Some(finer_ordering) = finer_ordering(
&requirement,
&reverse_aggr_expr,
group_by,
eq_properties,
agg_mode,
) {
if eq_properties.ordering_satisfy(finer_ordering.as_ref()) {
// Reverse requirement is satisfied by exiting ordering.
// Hence reverse the aggregator
requirement = finer_ordering;
*aggr_expr = Arc::new(reverse_aggr_expr);
continue;
}
}
}
if let Some(finer_ordering) =
finer_ordering(&requirement, aggr_expr, group_by, eq_properties, agg_mode)
{
// There is a requirement that both satisfies existing requirement and current
// aggregate requirement. Use updated requirement
requirement = finer_ordering;
continue;
}
if let Some(reverse_aggr_expr) = aggr_expr.reverse_expr() {
if let Some(finer_ordering) = finer_ordering(
&requirement,
&reverse_aggr_expr,
group_by,
eq_properties,
agg_mode,
) {
// There is a requirement that both satisfies existing requirement and reverse
// aggregate requirement. Use updated requirement
requirement = finer_ordering;
*aggr_expr = Arc::new(reverse_aggr_expr);
continue;
}
}
// Neither the existing requirement and current aggregate requirement satisfy the other, this means
// requirements are conflicting. Currently, we do not support
// conflicting requirements.
return not_impl_err!(
"Conflicting ordering requirements in aggregate functions is not supported"
);
}
Ok(PhysicalSortRequirement::from_sort_exprs(
requirement.inner.iter(),
))
}
/// Returns physical expressions for arguments to evaluate against a batch.
///
/// The expressions are different depending on `mode`:
/// * Partial: AggregateFunctionExpr::expressions
/// * Final: columns of `AggregateFunctionExpr::state_fields()`
pub fn aggregate_expressions(
aggr_expr: &[Arc<AggregateFunctionExpr>],
mode: &AggregateMode,
col_idx_base: usize,
) -> Result<Vec<Vec<Arc<dyn PhysicalExpr>>>> {
match mode {
AggregateMode::Partial
| AggregateMode::Single
| AggregateMode::SinglePartitioned => Ok(aggr_expr
.iter()
.map(|agg| {
let mut result = agg.expressions();
// Append ordering requirements to expressions' results. This
// way order sensitive aggregators can satisfy requirement
// themselves.
if let Some(ordering_req) = agg.order_bys() {
result.extend(ordering_req.iter().map(|item| Arc::clone(&item.expr)));
}
result
})
.collect()),
// In this mode, we build the merge expressions of the aggregation.
AggregateMode::Final | AggregateMode::FinalPartitioned => {
let mut col_idx_base = col_idx_base;
aggr_expr
.iter()
.map(|agg| {
let exprs = merge_expressions(col_idx_base, agg)?;
col_idx_base += exprs.len();
Ok(exprs)
})
.collect()
}
}
}
/// uses `state_fields` to build a vec of physical column expressions required to merge the
/// AggregateFunctionExpr' accumulator's state.
///
/// `index_base` is the starting physical column index for the next expanded state field.
fn merge_expressions(
index_base: usize,
expr: &AggregateFunctionExpr,
) -> Result<Vec<Arc<dyn PhysicalExpr>>> {
expr.state_fields().map(|fields| {
fields
.iter()
.enumerate()
.map(|(idx, f)| Arc::new(Column::new(f.name(), index_base + idx)) as _)
.collect()
})
}
pub type AccumulatorItem = Box<dyn Accumulator>;
pub fn create_accumulators(
aggr_expr: &[Arc<AggregateFunctionExpr>],
) -> Result<Vec<AccumulatorItem>> {
aggr_expr
.iter()
.map(|expr| expr.create_accumulator())
.collect()
}
/// returns a vector of ArrayRefs, where each entry corresponds to either the
/// final value (mode = Final, FinalPartitioned and Single) or states (mode = Partial)
pub fn finalize_aggregation(
accumulators: &mut [AccumulatorItem],
mode: &AggregateMode,
) -> Result<Vec<ArrayRef>> {
match mode {
AggregateMode::Partial => {
// Build the vector of states
accumulators
.iter_mut()
.map(|accumulator| {
accumulator.state().and_then(|e| {
e.iter()
.map(|v| v.to_array())
.collect::<Result<Vec<ArrayRef>>>()
})
})
.flatten_ok()
.collect()
}
AggregateMode::Final
| AggregateMode::FinalPartitioned
| AggregateMode::Single
| AggregateMode::SinglePartitioned => {
// Merge the state to the final value
accumulators
.iter_mut()
.map(|accumulator| accumulator.evaluate().and_then(|v| v.to_array()))
.collect()
}
}
}
/// Evaluates expressions against a record batch.
fn evaluate(
expr: &[Arc<dyn PhysicalExpr>],
batch: &RecordBatch,
) -> Result<Vec<ArrayRef>> {
expr.iter()
.map(|expr| {
expr.evaluate(batch)
.and_then(|v| v.into_array(batch.num_rows()))
})
.collect()
}
/// Evaluates expressions against a record batch.
pub(crate) fn evaluate_many(
expr: &[Vec<Arc<dyn PhysicalExpr>>],
batch: &RecordBatch,
) -> Result<Vec<Vec<ArrayRef>>> {
expr.iter().map(|expr| evaluate(expr, batch)).collect()
}
fn evaluate_optional(
expr: &[Option<Arc<dyn PhysicalExpr>>],
batch: &RecordBatch,
) -> Result<Vec<Option<ArrayRef>>> {
expr.iter()
.map(|expr| {
expr.as_ref()
.map(|expr| {
expr.evaluate(batch)
.and_then(|v| v.into_array(batch.num_rows()))
})
.transpose()
})
.collect()
}
fn group_id_array(group: &[bool], batch: &RecordBatch) -> Result<ArrayRef> {
if group.len() > 64 {
return not_impl_err!(
"Grouping sets with more than 64 columns are not supported"
);
}
let group_id = group.iter().fold(0u64, |acc, &is_null| {
(acc << 1) | if is_null { 1 } else { 0 }
});
let num_rows = batch.num_rows();
if group.len() <= 8 {
Ok(Arc::new(UInt8Array::from(vec![group_id as u8; num_rows])))
} else if group.len() <= 16 {
Ok(Arc::new(UInt16Array::from(vec![group_id as u16; num_rows])))
} else if group.len() <= 32 {
Ok(Arc::new(UInt32Array::from(vec![group_id as u32; num_rows])))
} else {
Ok(Arc::new(UInt64Array::from(vec![group_id; num_rows])))
}
}
/// Evaluate a group by expression against a `RecordBatch`
///
/// Arguments:
/// - `group_by`: the expression to evaluate
/// - `batch`: the `RecordBatch` to evaluate against
///
/// Returns: A Vec of Vecs of Array of results
/// The outer Vec appears to be for grouping sets
/// The inner Vec contains the results per expression
/// The inner-inner Array contains the results per row
pub(crate) fn evaluate_group_by(
group_by: &PhysicalGroupBy,
batch: &RecordBatch,
) -> Result<Vec<Vec<ArrayRef>>> {
let exprs: Vec<ArrayRef> = group_by
.expr
.iter()
.map(|(expr, _)| {
let value = expr.evaluate(batch)?;
value.into_array(batch.num_rows())
})
.collect::<Result<Vec<_>>>()?;
let null_exprs: Vec<ArrayRef> = group_by
.null_expr
.iter()
.map(|(expr, _)| {
let value = expr.evaluate(batch)?;
value.into_array(batch.num_rows())
})
.collect::<Result<Vec<_>>>()?;
group_by
.groups
.iter()
.map(|group| {
let mut group_values = Vec::with_capacity(group_by.num_group_exprs());
group_values.extend(group.iter().enumerate().map(|(idx, is_null)| {
if *is_null {
Arc::clone(&null_exprs[idx])
} else {
Arc::clone(&exprs[idx])
}
}));
if !group_by.is_single() {
group_values.push(group_id_array(group, batch)?);
}
Ok(group_values)
})
.collect()
}
#[cfg(test)]
mod tests {
use std::task::{Context, Poll};
use super::*;
use crate::coalesce_batches::CoalesceBatchesExec;
use crate::coalesce_partitions::CoalescePartitionsExec;
use crate::common;
use crate::expressions::col;
use crate::memory::MemoryExec;
use crate::test::assert_is_pending;
use crate::test::exec::{assert_strong_count_converges_to_zero, BlockingExec};
use crate::RecordBatchStream;
use arrow::array::{Float64Array, UInt32Array};
use arrow::compute::{concat_batches, SortOptions};
use arrow::datatypes::{DataType, Int32Type};
use arrow_array::{
DictionaryArray, Float32Array, Int32Array, StructArray, UInt64Array,
};
use datafusion_common::{
assert_batches_eq, assert_batches_sorted_eq, internal_err, DataFusionError,
ScalarValue,
};
use datafusion_execution::config::SessionConfig;
use datafusion_execution::memory_pool::FairSpillPool;
use datafusion_execution::runtime_env::RuntimeEnvBuilder;
use datafusion_functions_aggregate::array_agg::array_agg_udaf;
use datafusion_functions_aggregate::average::avg_udaf;
use datafusion_functions_aggregate::count::count_udaf;
use datafusion_functions_aggregate::first_last::{first_value_udaf, last_value_udaf};
use datafusion_functions_aggregate::median::median_udaf;
use datafusion_functions_aggregate::sum::sum_udaf;
use datafusion_physical_expr::expressions::lit;
use datafusion_physical_expr::PhysicalSortExpr;
use crate::common::collect;
use datafusion_physical_expr::aggregate::AggregateExprBuilder;
use datafusion_physical_expr::expressions::Literal;
use datafusion_physical_expr::Partitioning;
use futures::{FutureExt, Stream};
// Generate a schema which consists of 5 columns (a, b, c, d, e)
fn create_test_schema() -> Result<SchemaRef> {
let a = Field::new("a", DataType::Int32, true);
let b = Field::new("b", DataType::Int32, true);
let c = Field::new("c", DataType::Int32, true);
let d = Field::new("d", DataType::Int32, true);
let e = Field::new("e", DataType::Int32, true);
let schema = Arc::new(Schema::new(vec![a, b, c, d, e]));
Ok(schema)
}
/// some mock data to aggregates
fn some_data() -> (Arc<Schema>, Vec<RecordBatch>) {
// define a schema.
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::UInt32, false),
Field::new("b", DataType::Float64, false),
]));
// define data.
(
Arc::clone(&schema),
vec![
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(UInt32Array::from(vec![2, 3, 4, 4])),
Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0])),
],
)
.unwrap(),
RecordBatch::try_new(
schema,
vec![
Arc::new(UInt32Array::from(vec![2, 3, 3, 4])),
Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0])),
],
)
.unwrap(),
],
)
}
/// Generates some mock data for aggregate tests.
fn some_data_v2() -> (Arc<Schema>, Vec<RecordBatch>) {
// Define a schema:
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::UInt32, false),
Field::new("b", DataType::Float64, false),
]));
// Generate data so that first and last value results are at 2nd and
// 3rd partitions. With this construction, we guarantee we don't receive
// the expected result by accident, but merging actually works properly;
// i.e. it doesn't depend on the data insertion order.
(
Arc::clone(&schema),
vec![
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(UInt32Array::from(vec![2, 3, 4, 4])),
Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0])),
],
)
.unwrap(),
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(UInt32Array::from(vec![2, 3, 3, 4])),
Arc::new(Float64Array::from(vec![0.0, 1.0, 2.0, 3.0])),
],
)
.unwrap(),
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(UInt32Array::from(vec![2, 3, 3, 4])),
Arc::new(Float64Array::from(vec![3.0, 4.0, 5.0, 6.0])),
],
)
.unwrap(),
RecordBatch::try_new(
schema,
vec![
Arc::new(UInt32Array::from(vec![2, 3, 3, 4])),
Arc::new(Float64Array::from(vec![2.0, 3.0, 4.0, 5.0])),
],
)
.unwrap(),
],
)
}
fn new_spill_ctx(batch_size: usize, max_memory: usize) -> Arc<TaskContext> {
let session_config = SessionConfig::new().with_batch_size(batch_size);
let runtime = RuntimeEnvBuilder::default()
.with_memory_pool(Arc::new(FairSpillPool::new(max_memory)))
.build_arc()
.unwrap();
let task_ctx = TaskContext::default()
.with_session_config(session_config)
.with_runtime(runtime);
Arc::new(task_ctx)
}
async fn check_grouping_sets(
input: Arc<dyn ExecutionPlan>,
spill: bool,
) -> Result<()> {
let input_schema = input.schema();
let grouping_set = PhysicalGroupBy::new(
vec![
(col("a", &input_schema)?, "a".to_string()),
(col("b", &input_schema)?, "b".to_string()),
],
vec![
(lit(ScalarValue::UInt32(None)), "a".to_string()),
(lit(ScalarValue::Float64(None)), "b".to_string()),
],
vec![
vec![false, true], // (a, NULL)
vec![true, false], // (NULL, b)
vec![false, false], // (a,b)
],
);
let aggregates = vec![Arc::new(
AggregateExprBuilder::new(count_udaf(), vec![lit(1i8)])
.schema(Arc::clone(&input_schema))
.alias("COUNT(1)")
.build()?,
)];
let task_ctx = if spill {
// adjust the max memory size to have the partial aggregate result for spill mode.
new_spill_ctx(4, 500)
} else {
Arc::new(TaskContext::default())
};
let partial_aggregate = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
grouping_set.clone(),
aggregates.clone(),
vec![None],
input,
Arc::clone(&input_schema),
)?);
let result =
collect(partial_aggregate.execute(0, Arc::clone(&task_ctx))?).await?;
let expected = if spill {
// In spill mode, we test with the limited memory, if the mem usage exceeds,
// we trigger the early emit rule, which turns out the partial aggregate result.
vec![
"+---+-----+---------------+-----------------+",
"| a | b | __grouping_id | COUNT(1)[count] |",
"+---+-----+---------------+-----------------+",
"| | 1.0 | 2 | 1 |",
"| | 1.0 | 2 | 1 |",
"| | 2.0 | 2 | 1 |",
"| | 2.0 | 2 | 1 |",
"| | 3.0 | 2 | 1 |",
"| | 3.0 | 2 | 1 |",
"| | 4.0 | 2 | 1 |",
"| | 4.0 | 2 | 1 |",
"| 2 | | 1 | 1 |",
"| 2 | | 1 | 1 |",
"| 2 | 1.0 | 0 | 1 |",
"| 2 | 1.0 | 0 | 1 |",
"| 3 | | 1 | 1 |",
"| 3 | | 1 | 2 |",
"| 3 | 2.0 | 0 | 2 |",
"| 3 | 3.0 | 0 | 1 |",
"| 4 | | 1 | 1 |",
"| 4 | | 1 | 2 |",
"| 4 | 3.0 | 0 | 1 |",
"| 4 | 4.0 | 0 | 2 |",
"+---+-----+---------------+-----------------+",
]
} else {
vec![
"+---+-----+---------------+-----------------+",
"| a | b | __grouping_id | COUNT(1)[count] |",
"+---+-----+---------------+-----------------+",
"| | 1.0 | 2 | 2 |",
"| | 2.0 | 2 | 2 |",
"| | 3.0 | 2 | 2 |",
"| | 4.0 | 2 | 2 |",
"| 2 | | 1 | 2 |",
"| 2 | 1.0 | 0 | 2 |",
"| 3 | | 1 | 3 |",
"| 3 | 2.0 | 0 | 2 |",
"| 3 | 3.0 | 0 | 1 |",
"| 4 | | 1 | 3 |",
"| 4 | 3.0 | 0 | 1 |",
"| 4 | 4.0 | 0 | 2 |",
"+---+-----+---------------+-----------------+",
]
};
assert_batches_sorted_eq!(expected, &result);
let merge = Arc::new(CoalescePartitionsExec::new(partial_aggregate));
let final_grouping_set = grouping_set.as_final();
let task_ctx = if spill {
new_spill_ctx(4, 3160)
} else {
task_ctx
};
let merged_aggregate = Arc::new(AggregateExec::try_new(
AggregateMode::Final,
final_grouping_set,
aggregates,
vec![None],
merge,
input_schema,
)?);
let result = collect(merged_aggregate.execute(0, Arc::clone(&task_ctx))?).await?;
let batch = concat_batches(&result[0].schema(), &result)?;
assert_eq!(batch.num_columns(), 4);
assert_eq!(batch.num_rows(), 12);
let expected = vec![
"+---+-----+---------------+----------+",
"| a | b | __grouping_id | COUNT(1) |",
"+---+-----+---------------+----------+",
"| | 1.0 | 2 | 2 |",
"| | 2.0 | 2 | 2 |",
"| | 3.0 | 2 | 2 |",
"| | 4.0 | 2 | 2 |",
"| 2 | | 1 | 2 |",
"| 2 | 1.0 | 0 | 2 |",
"| 3 | | 1 | 3 |",
"| 3 | 2.0 | 0 | 2 |",
"| 3 | 3.0 | 0 | 1 |",
"| 4 | | 1 | 3 |",
"| 4 | 3.0 | 0 | 1 |",
"| 4 | 4.0 | 0 | 2 |",
"+---+-----+---------------+----------+",
];
assert_batches_sorted_eq!(&expected, &result);
let metrics = merged_aggregate.metrics().unwrap();
let output_rows = metrics.output_rows().unwrap();
assert_eq!(12, output_rows);
Ok(())
}
/// build the aggregates on the data from some_data() and check the results
async fn check_aggregates(input: Arc<dyn ExecutionPlan>, spill: bool) -> Result<()> {
let input_schema = input.schema();
let grouping_set = PhysicalGroupBy::new(
vec![(col("a", &input_schema)?, "a".to_string())],
vec![],
vec![vec![false]],
);
let aggregates: Vec<Arc<AggregateFunctionExpr>> = vec![Arc::new(
AggregateExprBuilder::new(avg_udaf(), vec![col("b", &input_schema)?])
.schema(Arc::clone(&input_schema))
.alias("AVG(b)")
.build()?,
)];
let task_ctx = if spill {
// set to an appropriate value to trigger spill
new_spill_ctx(2, 1600)
} else {
Arc::new(TaskContext::default())
};
let partial_aggregate = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
grouping_set.clone(),
aggregates.clone(),
vec![None],
input,
Arc::clone(&input_schema),
)?);
let result =
collect(partial_aggregate.execute(0, Arc::clone(&task_ctx))?).await?;
let expected = if spill {
vec![
"+---+---------------+-------------+",
"| a | AVG(b)[count] | AVG(b)[sum] |",
"+---+---------------+-------------+",
"| 2 | 1 | 1.0 |",
"| 2 | 1 | 1.0 |",
"| 3 | 1 | 2.0 |",
"| 3 | 2 | 5.0 |",
"| 4 | 3 | 11.0 |",
"+---+---------------+-------------+",
]
} else {
vec![
"+---+---------------+-------------+",
"| a | AVG(b)[count] | AVG(b)[sum] |",
"+---+---------------+-------------+",
"| 2 | 2 | 2.0 |",
"| 3 | 3 | 7.0 |",
"| 4 | 3 | 11.0 |",
"+---+---------------+-------------+",
]
};
assert_batches_sorted_eq!(expected, &result);
let merge = Arc::new(CoalescePartitionsExec::new(partial_aggregate));
let final_grouping_set = grouping_set.as_final();
let merged_aggregate = Arc::new(AggregateExec::try_new(
AggregateMode::Final,
final_grouping_set,
aggregates,
vec![None],
merge,
input_schema,
)?);
let task_ctx = if spill {
// enlarge memory limit to let the final aggregation finish
new_spill_ctx(2, 2600)
} else {
Arc::clone(&task_ctx)
};
let result = collect(merged_aggregate.execute(0, task_ctx)?).await?;
let batch = concat_batches(&result[0].schema(), &result)?;
assert_eq!(batch.num_columns(), 2);
assert_eq!(batch.num_rows(), 3);
let expected = vec![
"+---+--------------------+",
"| a | AVG(b) |",
"+---+--------------------+",
"| 2 | 1.0 |",
"| 3 | 2.3333333333333335 |", // 3, (2 + 3 + 2) / 3
"| 4 | 3.6666666666666665 |", // 4, (3 + 4 + 4) / 3
"+---+--------------------+",
];
assert_batches_sorted_eq!(&expected, &result);
let metrics = merged_aggregate.metrics().unwrap();
let output_rows = metrics.output_rows().unwrap();
let spill_count = metrics.spill_count().unwrap();
let spilled_bytes = metrics.spilled_bytes().unwrap();
let spilled_rows = metrics.spilled_rows().unwrap();
if spill {
// When spilling, the output rows metrics become partial output size + final output size
// This is because final aggregation starts while partial aggregation is still emitting
assert_eq!(8, output_rows);
assert!(spill_count > 0);
assert!(spilled_bytes > 0);
assert!(spilled_rows > 0);
} else {
assert_eq!(3, output_rows);
assert_eq!(0, spill_count);
assert_eq!(0, spilled_bytes);
assert_eq!(0, spilled_rows);
}
Ok(())
}
/// Define a test source that can yield back to runtime before returning its first item ///
#[derive(Debug)]
struct TestYieldingExec {
/// True if this exec should yield back to runtime the first time it is polled
pub yield_first: bool,
cache: PlanProperties,
}
impl TestYieldingExec {
fn new(yield_first: bool) -> Self {
let schema = some_data().0;
let cache = Self::compute_properties(schema);
Self { yield_first, cache }
}
/// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
fn compute_properties(schema: SchemaRef) -> PlanProperties {
let eq_properties = EquivalenceProperties::new(schema);
PlanProperties::new(
eq_properties,
// Output Partitioning
Partitioning::UnknownPartitioning(1),
// Execution Mode
ExecutionMode::Bounded,
)
}
}
impl DisplayAs for TestYieldingExec {
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default | DisplayFormatType::Verbose => {
write!(f, "TestYieldingExec")
}
}
}
}
impl ExecutionPlan for TestYieldingExec {
fn name(&self) -> &'static str {
"TestYieldingExec"
}
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
&self.cache
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![]
}
fn with_new_children(
self: Arc<Self>,
_: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
internal_err!("Children cannot be replaced in {self:?}")
}
fn execute(
&self,
_partition: usize,
_context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
let stream = if self.yield_first {
TestYieldingStream::New
} else {
TestYieldingStream::Yielded
};
Ok(Box::pin(stream))
}
fn statistics(&self) -> Result<Statistics> {
let (_, batches) = some_data();
Ok(common::compute_record_batch_statistics(
&[batches],
&self.schema(),
None,
))
}
}
/// A stream using the demo data. If inited as new, it will first yield to runtime before returning records
enum TestYieldingStream {
New,
Yielded,
ReturnedBatch1,
ReturnedBatch2,
}
impl Stream for TestYieldingStream {
type Item = Result<RecordBatch>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
match &*self {
TestYieldingStream::New => {
*(self.as_mut()) = TestYieldingStream::Yielded;
cx.waker().wake_by_ref();
Poll::Pending
}
TestYieldingStream::Yielded => {
*(self.as_mut()) = TestYieldingStream::ReturnedBatch1;
Poll::Ready(Some(Ok(some_data().1[0].clone())))
}
TestYieldingStream::ReturnedBatch1 => {
*(self.as_mut()) = TestYieldingStream::ReturnedBatch2;
Poll::Ready(Some(Ok(some_data().1[1].clone())))
}
TestYieldingStream::ReturnedBatch2 => Poll::Ready(None),
}
}
}
impl RecordBatchStream for TestYieldingStream {
fn schema(&self) -> SchemaRef {
some_data().0
}
}
//--- Tests ---//
#[tokio::test]
async fn aggregate_source_not_yielding() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(false));
check_aggregates(input, false).await
}
#[tokio::test]
async fn aggregate_grouping_sets_source_not_yielding() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(false));
check_grouping_sets(input, false).await
}
#[tokio::test]
async fn aggregate_source_with_yielding() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(true));
check_aggregates(input, false).await
}
#[tokio::test]
async fn aggregate_grouping_sets_with_yielding() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(true));
check_grouping_sets(input, false).await
}
#[tokio::test]
async fn aggregate_source_not_yielding_with_spill() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(false));
check_aggregates(input, true).await
}
#[tokio::test]
async fn aggregate_grouping_sets_source_not_yielding_with_spill() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(false));
check_grouping_sets(input, true).await
}
#[tokio::test]
async fn aggregate_source_with_yielding_with_spill() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(true));
check_aggregates(input, true).await
}
#[tokio::test]
async fn aggregate_grouping_sets_with_yielding_with_spill() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(true));
check_grouping_sets(input, true).await
}
// Median(a)
fn test_median_agg_expr(schema: SchemaRef) -> Result<AggregateFunctionExpr> {
AggregateExprBuilder::new(median_udaf(), vec![col("a", &schema)?])
.schema(schema)
.alias("MEDIAN(a)")
.build()
}
#[tokio::test]
async fn test_oom() -> Result<()> {
let input: Arc<dyn ExecutionPlan> = Arc::new(TestYieldingExec::new(true));
let input_schema = input.schema();
let runtime = RuntimeEnvBuilder::default()
.with_memory_limit(1, 1.0)
.build_arc()?;
let task_ctx = TaskContext::default().with_runtime(runtime);
let task_ctx = Arc::new(task_ctx);
let groups_none = PhysicalGroupBy::default();
let groups_some = PhysicalGroupBy::new(
vec![(col("a", &input_schema)?, "a".to_string())],
vec![],
vec![vec![false]],
);
// something that allocates within the aggregator
let aggregates_v0: Vec<Arc<AggregateFunctionExpr>> =
vec![Arc::new(test_median_agg_expr(Arc::clone(&input_schema))?)];
// use fast-path in `row_hash.rs`.
let aggregates_v2: Vec<Arc<AggregateFunctionExpr>> = vec![Arc::new(
AggregateExprBuilder::new(avg_udaf(), vec![col("b", &input_schema)?])
.schema(Arc::clone(&input_schema))
.alias("AVG(b)")
.build()?,
)];
for (version, groups, aggregates) in [
(0, groups_none, aggregates_v0),
(2, groups_some, aggregates_v2),
] {
let n_aggr = aggregates.len();
let partial_aggregate = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
groups,
aggregates,
vec![None; n_aggr],
Arc::clone(&input),
Arc::clone(&input_schema),
)?);
let stream = partial_aggregate.execute_typed(0, Arc::clone(&task_ctx))?;
// ensure that we really got the version we wanted
match version {
0 => {
assert!(matches!(stream, StreamType::AggregateStream(_)));
}
1 => {
assert!(matches!(stream, StreamType::GroupedHash(_)));
}
2 => {
assert!(matches!(stream, StreamType::GroupedHash(_)));
}
_ => panic!("Unknown version: {version}"),
}
let stream: SendableRecordBatchStream = stream.into();
let err = collect(stream).await.unwrap_err();
// error root cause traversal is a bit complicated, see #4172.
let err = err.find_root();
assert!(
matches!(err, DataFusionError::ResourcesExhausted(_)),
"Wrong error type: {err}",
);
}
Ok(())
}
#[tokio::test]
async fn test_drop_cancel_without_groups() -> Result<()> {
let task_ctx = Arc::new(TaskContext::default());
let schema =
Arc::new(Schema::new(vec![Field::new("a", DataType::Float64, true)]));
let groups = PhysicalGroupBy::default();
let aggregates: Vec<Arc<AggregateFunctionExpr>> = vec![Arc::new(
AggregateExprBuilder::new(avg_udaf(), vec![col("a", &schema)?])
.schema(Arc::clone(&schema))
.alias("AVG(a)")
.build()?,
)];
let blocking_exec = Arc::new(BlockingExec::new(Arc::clone(&schema), 1));
let refs = blocking_exec.refs();
let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
groups.clone(),
aggregates.clone(),
vec![None],
blocking_exec,
schema,
)?);
let fut = crate::collect(aggregate_exec, task_ctx);
let mut fut = fut.boxed();
assert_is_pending(&mut fut);
drop(fut);
assert_strong_count_converges_to_zero(refs).await;
Ok(())
}
#[tokio::test]
async fn test_drop_cancel_with_groups() -> Result<()> {
let task_ctx = Arc::new(TaskContext::default());
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Float64, true),
Field::new("b", DataType::Float64, true),
]));
let groups =
PhysicalGroupBy::new_single(vec![(col("a", &schema)?, "a".to_string())]);
let aggregates: Vec<Arc<AggregateFunctionExpr>> = vec![Arc::new(
AggregateExprBuilder::new(avg_udaf(), vec![col("b", &schema)?])
.schema(Arc::clone(&schema))
.alias("AVG(b)")
.build()?,
)];
let blocking_exec = Arc::new(BlockingExec::new(Arc::clone(&schema), 1));
let refs = blocking_exec.refs();
let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
groups,
aggregates.clone(),
vec![None],
blocking_exec,
schema,
)?);
let fut = crate::collect(aggregate_exec, task_ctx);
let mut fut = fut.boxed();
assert_is_pending(&mut fut);
drop(fut);
assert_strong_count_converges_to_zero(refs).await;
Ok(())
}
#[tokio::test]
async fn run_first_last_multi_partitions() -> Result<()> {
for use_coalesce_batches in [false, true] {
for is_first_acc in [false, true] {
for spill in [false, true] {
first_last_multi_partitions(
use_coalesce_batches,
is_first_acc,
spill,
4200,
)
.await?
}
}
}
Ok(())
}
// FIRST_VALUE(b ORDER BY b <SortOptions>)
fn test_first_value_agg_expr(
schema: &Schema,
sort_options: SortOptions,
) -> Result<Arc<AggregateFunctionExpr>> {
let ordering_req = [PhysicalSortExpr {
expr: col("b", schema)?,
options: sort_options,
}];
let args = [col("b", schema)?];
AggregateExprBuilder::new(first_value_udaf(), args.to_vec())
.order_by(LexOrdering::new(ordering_req.to_vec()))
.schema(Arc::new(schema.clone()))
.alias(String::from("first_value(b) ORDER BY [b ASC NULLS LAST]"))
.build()
.map(Arc::new)
}
// LAST_VALUE(b ORDER BY b <SortOptions>)
fn test_last_value_agg_expr(
schema: &Schema,
sort_options: SortOptions,
) -> Result<Arc<AggregateFunctionExpr>> {
let ordering_req = [PhysicalSortExpr {
expr: col("b", schema)?,
options: sort_options,
}];
let args = [col("b", schema)?];
AggregateExprBuilder::new(last_value_udaf(), args.to_vec())
.order_by(LexOrdering::new(ordering_req.to_vec()))
.schema(Arc::new(schema.clone()))
.alias(String::from("last_value(b) ORDER BY [b ASC NULLS LAST]"))
.build()
.map(Arc::new)
}
// This function either constructs the physical plan below,
//
// "AggregateExec: mode=Final, gby=[a@0 as a], aggr=[FIRST_VALUE(b)]",
// " CoalesceBatchesExec: target_batch_size=1024",
// " CoalescePartitionsExec",
// " AggregateExec: mode=Partial, gby=[a@0 as a], aggr=[FIRST_VALUE(b)], ordering_mode=None",
// " MemoryExec: partitions=4, partition_sizes=[1, 1, 1, 1]",
//
// or
//
// "AggregateExec: mode=Final, gby=[a@0 as a], aggr=[FIRST_VALUE(b)]",
// " CoalescePartitionsExec",
// " AggregateExec: mode=Partial, gby=[a@0 as a], aggr=[FIRST_VALUE(b)], ordering_mode=None",
// " MemoryExec: partitions=4, partition_sizes=[1, 1, 1, 1]",
//
// and checks whether the function `merge_batch` works correctly for
// FIRST_VALUE and LAST_VALUE functions.
async fn first_last_multi_partitions(
use_coalesce_batches: bool,
is_first_acc: bool,
spill: bool,
max_memory: usize,
) -> Result<()> {
let task_ctx = if spill {
new_spill_ctx(2, max_memory)
} else {
Arc::new(TaskContext::default())
};
let (schema, data) = some_data_v2();
let partition1 = data[0].clone();
let partition2 = data[1].clone();
let partition3 = data[2].clone();
let partition4 = data[3].clone();
let groups =
PhysicalGroupBy::new_single(vec![(col("a", &schema)?, "a".to_string())]);
let sort_options = SortOptions {
descending: false,
nulls_first: false,
};
let aggregates: Vec<Arc<AggregateFunctionExpr>> = if is_first_acc {
vec![test_first_value_agg_expr(&schema, sort_options)?]
} else {
vec![test_last_value_agg_expr(&schema, sort_options)?]
};
let memory_exec = Arc::new(MemoryExec::try_new(
&[
vec![partition1],
vec![partition2],
vec![partition3],
vec![partition4],
],
Arc::clone(&schema),
None,
)?);
let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
groups.clone(),
aggregates.clone(),
vec![None],
memory_exec,
Arc::clone(&schema),
)?);
let coalesce = if use_coalesce_batches {
let coalesce = Arc::new(CoalescePartitionsExec::new(aggregate_exec));
Arc::new(CoalesceBatchesExec::new(coalesce, 1024)) as Arc<dyn ExecutionPlan>
} else {
Arc::new(CoalescePartitionsExec::new(aggregate_exec))
as Arc<dyn ExecutionPlan>
};
let aggregate_final = Arc::new(AggregateExec::try_new(
AggregateMode::Final,
groups,
aggregates.clone(),
vec![None],
coalesce,
schema,
)?) as Arc<dyn ExecutionPlan>;
let result = crate::collect(aggregate_final, task_ctx).await?;
if is_first_acc {
let expected = [
"+---+--------------------------------------------+",
"| a | first_value(b) ORDER BY [b ASC NULLS LAST] |",
"+---+--------------------------------------------+",
"| 2 | 0.0 |",
"| 3 | 1.0 |",
"| 4 | 3.0 |",
"+---+--------------------------------------------+",
];
assert_batches_eq!(expected, &result);
} else {
let expected = [
"+---+-------------------------------------------+",
"| a | last_value(b) ORDER BY [b ASC NULLS LAST] |",
"+---+-------------------------------------------+",
"| 2 | 3.0 |",
"| 3 | 5.0 |",
"| 4 | 6.0 |",
"+---+-------------------------------------------+",
];
assert_batches_eq!(expected, &result);
};
Ok(())
}
#[tokio::test]
async fn test_get_finest_requirements() -> Result<()> {
let test_schema = create_test_schema()?;
// Assume column a and b are aliases
// Assume also that a ASC and c DESC describe the same global ordering for the table. (Since they are ordering equivalent).
let options1 = SortOptions {
descending: false,
nulls_first: false,
};
let col_a = &col("a", &test_schema)?;
let col_b = &col("b", &test_schema)?;
let col_c = &col("c", &test_schema)?;
let mut eq_properties = EquivalenceProperties::new(Arc::clone(&test_schema));
// Columns a and b are equal.
eq_properties.add_equal_conditions(col_a, col_b)?;
// Aggregate requirements are
// [None], [a ASC], [a ASC, b ASC, c ASC], [a ASC, b ASC] respectively
let order_by_exprs = vec![
None,
Some(vec![PhysicalSortExpr {
expr: Arc::clone(col_a),
options: options1,
}]),
Some(vec![
PhysicalSortExpr {
expr: Arc::clone(col_a),
options: options1,
},
PhysicalSortExpr {
expr: Arc::clone(col_b),
options: options1,
},
PhysicalSortExpr {
expr: Arc::clone(col_c),
options: options1,
},
]),
Some(vec![
PhysicalSortExpr {
expr: Arc::clone(col_a),
options: options1,
},
PhysicalSortExpr {
expr: Arc::clone(col_b),
options: options1,
},
]),
];
let common_requirement = LexOrdering::new(vec![
PhysicalSortExpr {
expr: Arc::clone(col_a),
options: options1,
},
PhysicalSortExpr {
expr: Arc::clone(col_c),
options: options1,
},
]);
let mut aggr_exprs = order_by_exprs
.into_iter()
.map(|order_by_expr| {
let ordering_req = order_by_expr.unwrap_or_default();
AggregateExprBuilder::new(array_agg_udaf(), vec![Arc::clone(col_a)])
.alias("a")
.order_by(LexOrdering::new(ordering_req.to_vec()))
.schema(Arc::clone(&test_schema))
.build()
.map(Arc::new)
.unwrap()
})
.collect::<Vec<_>>();
let group_by = PhysicalGroupBy::new_single(vec![]);
let res = get_finer_aggregate_exprs_requirement(
&mut aggr_exprs,
&group_by,
&eq_properties,
&AggregateMode::Partial,
)?;
let res = PhysicalSortRequirement::to_sort_exprs(res);
assert_eq!(res, common_requirement);
Ok(())
}
#[test]
fn test_agg_exec_same_schema() -> Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Float32, true),
Field::new("b", DataType::Float32, true),
]));
let col_a = col("a", &schema)?;
let option_desc = SortOptions {
descending: true,
nulls_first: true,
};
let groups = PhysicalGroupBy::new_single(vec![(col_a, "a".to_string())]);
let aggregates: Vec<Arc<AggregateFunctionExpr>> = vec![
test_first_value_agg_expr(&schema, option_desc)?,
test_last_value_agg_expr(&schema, option_desc)?,
];
let blocking_exec = Arc::new(BlockingExec::new(Arc::clone(&schema), 1));
let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
groups,
aggregates,
vec![None, None],
Arc::clone(&blocking_exec) as Arc<dyn ExecutionPlan>,
schema,
)?);
let new_agg =
Arc::clone(&aggregate_exec).with_new_children(vec![blocking_exec])?;
assert_eq!(new_agg.schema(), aggregate_exec.schema());
Ok(())
}
#[tokio::test]
async fn test_agg_exec_group_by_const() -> Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Float32, true),
Field::new("b", DataType::Float32, true),
Field::new("const", DataType::Int32, false),
]));
let col_a = col("a", &schema)?;
let col_b = col("b", &schema)?;
let const_expr = Arc::new(Literal::new(ScalarValue::Int32(Some(1))));
let groups = PhysicalGroupBy::new(
vec![
(col_a, "a".to_string()),
(col_b, "b".to_string()),
(const_expr, "const".to_string()),
],
vec![
(
Arc::new(Literal::new(ScalarValue::Float32(None))),
"a".to_string(),
),
(
Arc::new(Literal::new(ScalarValue::Float32(None))),
"b".to_string(),
),
(
Arc::new(Literal::new(ScalarValue::Int32(None))),
"const".to_string(),
),
],
vec![
vec![false, true, true],
vec![true, false, true],
vec![true, true, false],
],
);
let aggregates: Vec<Arc<AggregateFunctionExpr>> =
vec![AggregateExprBuilder::new(count_udaf(), vec![lit(1)])
.schema(Arc::clone(&schema))
.alias("1")
.build()
.map(Arc::new)?];
let input_batches = (0..4)
.map(|_| {
let a = Arc::new(Float32Array::from(vec![0.; 8192]));
let b = Arc::new(Float32Array::from(vec![0.; 8192]));
let c = Arc::new(Int32Array::from(vec![1; 8192]));
RecordBatch::try_new(Arc::clone(&schema), vec![a, b, c]).unwrap()
})
.collect();
let input = Arc::new(MemoryExec::try_new(
&[input_batches],
Arc::clone(&schema),
None,
)?);
let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::Single,
groups,
aggregates.clone(),
vec![None],
input,
schema,
)?);
let output =
collect(aggregate_exec.execute(0, Arc::new(TaskContext::default()))?).await?;
let expected = [
"+-----+-----+-------+---------------+-------+",
"| a | b | const | __grouping_id | 1 |",
"+-----+-----+-------+---------------+-------+",
"| | | 1 | 6 | 32768 |",
"| | 0.0 | | 5 | 32768 |",
"| 0.0 | | | 3 | 32768 |",
"+-----+-----+-------+---------------+-------+",
];
assert_batches_sorted_eq!(expected, &output);
Ok(())
}
#[tokio::test]
async fn test_agg_exec_struct_of_dicts() -> Result<()> {
let batch = RecordBatch::try_new(
Arc::new(Schema::new(vec![
Field::new(
"labels".to_string(),
DataType::Struct(
vec![
Field::new_dict(
"a".to_string(),
DataType::Dictionary(
Box::new(DataType::Int32),
Box::new(DataType::Utf8),
),
true,
0,
false,
),
Field::new_dict(
"b".to_string(),
DataType::Dictionary(
Box::new(DataType::Int32),
Box::new(DataType::Utf8),
),
true,
0,
false,
),
]
.into(),
),
false,
),
Field::new("value", DataType::UInt64, false),
])),
vec![
Arc::new(StructArray::from(vec![
(
Arc::new(Field::new_dict(
"a".to_string(),
DataType::Dictionary(
Box::new(DataType::Int32),
Box::new(DataType::Utf8),
),
true,
0,
false,
)),
Arc::new(
vec![Some("a"), None, Some("a")]
.into_iter()
.collect::<DictionaryArray<Int32Type>>(),
) as ArrayRef,
),
(
Arc::new(Field::new_dict(
"b".to_string(),
DataType::Dictionary(
Box::new(DataType::Int32),
Box::new(DataType::Utf8),
),
true,
0,
false,
)),
Arc::new(
vec![Some("b"), Some("c"), Some("b")]
.into_iter()
.collect::<DictionaryArray<Int32Type>>(),
) as ArrayRef,
),
])),
Arc::new(UInt64Array::from(vec![1, 1, 1])),
],
)
.expect("Failed to create RecordBatch");
let group_by = PhysicalGroupBy::new_single(vec![(
col("labels", &batch.schema())?,
"labels".to_string(),
)]);
let aggr_expr = vec![AggregateExprBuilder::new(
sum_udaf(),
vec![col("value", &batch.schema())?],
)
.schema(Arc::clone(&batch.schema()))
.alias(String::from("SUM(value)"))
.build()
.map(Arc::new)?];
let input = Arc::new(MemoryExec::try_new(
&[vec![batch.clone()]],
Arc::<Schema>::clone(&batch.schema()),
None,
)?);
let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::FinalPartitioned,
group_by,
aggr_expr,
vec![None],
Arc::clone(&input) as Arc<dyn ExecutionPlan>,
batch.schema(),
)?);
let session_config = SessionConfig::default();
let ctx = TaskContext::default().with_session_config(session_config);
let output = collect(aggregate_exec.execute(0, Arc::new(ctx))?).await?;
let expected = [
"+--------------+------------+",
"| labels | SUM(value) |",
"+--------------+------------+",
"| {a: a, b: b} | 2 |",
"| {a: , b: c} | 1 |",
"+--------------+------------+",
];
assert_batches_eq!(expected, &output);
Ok(())
}
#[tokio::test]
async fn test_skip_aggregation_after_first_batch() -> Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("key", DataType::Int32, true),
Field::new("val", DataType::Int32, true),
]));
let group_by =
PhysicalGroupBy::new_single(vec![(col("key", &schema)?, "key".to_string())]);
let aggr_expr =
vec![
AggregateExprBuilder::new(count_udaf(), vec![col("val", &schema)?])
.schema(Arc::clone(&schema))
.alias(String::from("COUNT(val)"))
.build()
.map(Arc::new)?,
];
let input_data = vec![
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![1, 2, 3])),
Arc::new(Int32Array::from(vec![0, 0, 0])),
],
)
.unwrap(),
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![2, 3, 4])),
Arc::new(Int32Array::from(vec![0, 0, 0])),
],
)
.unwrap(),
];
let input = Arc::new(MemoryExec::try_new(
&[input_data],
Arc::clone(&schema),
None,
)?);
let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
group_by,
aggr_expr,
vec![None],
Arc::clone(&input) as Arc<dyn ExecutionPlan>,
schema,
)?);
let mut session_config = SessionConfig::default();
session_config = session_config.set(
"datafusion.execution.skip_partial_aggregation_probe_rows_threshold",
&ScalarValue::Int64(Some(2)),
);
session_config = session_config.set(
"datafusion.execution.skip_partial_aggregation_probe_ratio_threshold",
&ScalarValue::Float64(Some(0.1)),
);
let ctx = TaskContext::default().with_session_config(session_config);
let output = collect(aggregate_exec.execute(0, Arc::new(ctx))?).await?;
let expected = [
"+-----+-------------------+",
"| key | COUNT(val)[count] |",
"+-----+-------------------+",
"| 1 | 1 |",
"| 2 | 1 |",
"| 3 | 1 |",
"| 2 | 1 |",
"| 3 | 1 |",
"| 4 | 1 |",
"+-----+-------------------+",
];
assert_batches_eq!(expected, &output);
Ok(())
}
#[tokio::test]
async fn test_skip_aggregation_after_threshold() -> Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("key", DataType::Int32, true),
Field::new("val", DataType::Int32, true),
]));
let group_by =
PhysicalGroupBy::new_single(vec![(col("key", &schema)?, "key".to_string())]);
let aggr_expr =
vec![
AggregateExprBuilder::new(count_udaf(), vec![col("val", &schema)?])
.schema(Arc::clone(&schema))
.alias(String::from("COUNT(val)"))
.build()
.map(Arc::new)?,
];
let input_data = vec![
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![1, 2, 3])),
Arc::new(Int32Array::from(vec![0, 0, 0])),
],
)
.unwrap(),
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![2, 3, 4])),
Arc::new(Int32Array::from(vec![0, 0, 0])),
],
)
.unwrap(),
RecordBatch::try_new(
Arc::clone(&schema),
vec![
Arc::new(Int32Array::from(vec![2, 3, 4])),
Arc::new(Int32Array::from(vec![0, 0, 0])),
],
)
.unwrap(),
];
let input = Arc::new(MemoryExec::try_new(
&[input_data],
Arc::clone(&schema),
None,
)?);
let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
group_by,
aggr_expr,
vec![None],
Arc::clone(&input) as Arc<dyn ExecutionPlan>,
schema,
)?);
let mut session_config = SessionConfig::default();
session_config = session_config.set(
"datafusion.execution.skip_partial_aggregation_probe_rows_threshold",
&ScalarValue::Int64(Some(5)),
);
session_config = session_config.set(
"datafusion.execution.skip_partial_aggregation_probe_ratio_threshold",
&ScalarValue::Float64(Some(0.1)),
);
let ctx = TaskContext::default().with_session_config(session_config);
let output = collect(aggregate_exec.execute(0, Arc::new(ctx))?).await?;
let expected = [
"+-----+-------------------+",
"| key | COUNT(val)[count] |",
"+-----+-------------------+",
"| 1 | 1 |",
"| 2 | 2 |",
"| 3 | 2 |",
"| 4 | 1 |",
"| 2 | 1 |",
"| 3 | 1 |",
"| 4 | 1 |",
"+-----+-------------------+",
];
assert_batches_eq!(expected, &output);
Ok(())
}
#[test]
fn group_exprs_nullable() -> Result<()> {
let input_schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Float32, false),
Field::new("b", DataType::Float32, false),
]));
let aggr_expr =
vec![
AggregateExprBuilder::new(count_udaf(), vec![col("a", &input_schema)?])
.schema(Arc::clone(&input_schema))
.alias("COUNT(a)")
.build()
.map(Arc::new)?,
];
let grouping_set = PhysicalGroupBy::new(
vec![
(col("a", &input_schema)?, "a".to_string()),
(col("b", &input_schema)?, "b".to_string()),
],
vec![
(lit(ScalarValue::Float32(None)), "a".to_string()),
(lit(ScalarValue::Float32(None)), "b".to_string()),
],
vec![
vec![false, true], // (a, NULL)
vec![false, false], // (a,b)
],
);
let aggr_schema = create_schema(
&input_schema,
&grouping_set,
&aggr_expr,
AggregateMode::Final,
)?;
let expected_schema = Schema::new(vec![
Field::new("a", DataType::Float32, false),
Field::new("b", DataType::Float32, true),
Field::new("__grouping_id", DataType::UInt8, false),
Field::new("COUNT(a)", DataType::Int64, false),
]);
assert_eq!(aggr_schema, expected_schema);
Ok(())
}
}