datafusion_physical_plan/
coalesce_batches.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`CoalesceBatchesExec`] combines small batches into larger batches.

use std::any::Any;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use super::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use super::{DisplayAs, ExecutionPlanProperties, PlanProperties, Statistics};
use crate::{
    DisplayFormatType, ExecutionPlan, RecordBatchStream, SendableRecordBatchStream,
};

use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use datafusion_common::Result;
use datafusion_execution::TaskContext;

use crate::coalesce::{BatchCoalescer, CoalescerState};
use crate::execution_plan::CardinalityEffect;
use futures::ready;
use futures::stream::{Stream, StreamExt};

/// `CoalesceBatchesExec` combines small batches into larger batches for more
/// efficient vectorized processing by later operators.
///
/// The operator buffers batches until it collects `target_batch_size` rows and
/// then emits a single concatenated batch. When only a limited number of rows
/// are necessary (specified by the `fetch` parameter), the operator will stop
/// buffering and returns the final batch once the number of collected rows
/// reaches the `fetch` value.
///
/// See [`BatchCoalescer`] for more information
#[derive(Debug, Clone)]
pub struct CoalesceBatchesExec {
    /// The input plan
    input: Arc<dyn ExecutionPlan>,
    /// Minimum number of rows for coalescing batches
    target_batch_size: usize,
    /// Maximum number of rows to fetch, `None` means fetching all rows
    fetch: Option<usize>,
    /// Execution metrics
    metrics: ExecutionPlanMetricsSet,
    cache: PlanProperties,
}

impl CoalesceBatchesExec {
    /// Create a new CoalesceBatchesExec
    pub fn new(input: Arc<dyn ExecutionPlan>, target_batch_size: usize) -> Self {
        let cache = Self::compute_properties(&input);
        Self {
            input,
            target_batch_size,
            fetch: None,
            metrics: ExecutionPlanMetricsSet::new(),
            cache,
        }
    }

    /// Update fetch with the argument
    pub fn with_fetch(mut self, fetch: Option<usize>) -> Self {
        self.fetch = fetch;
        self
    }

    /// The input plan
    pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
        &self.input
    }

    /// Minimum number of rows for coalesces batches
    pub fn target_batch_size(&self) -> usize {
        self.target_batch_size
    }

    /// This function creates the cache object that stores the plan properties such as schema, equivalence properties, ordering, partitioning, etc.
    fn compute_properties(input: &Arc<dyn ExecutionPlan>) -> PlanProperties {
        // The coalesce batches operator does not make any changes to the
        // partitioning of its input.
        PlanProperties::new(
            input.equivalence_properties().clone(), // Equivalence Properties
            input.output_partitioning().clone(),    // Output Partitioning
            input.execution_mode(),                 // Execution Mode
        )
    }
}

impl DisplayAs for CoalesceBatchesExec {
    fn fmt_as(
        &self,
        t: DisplayFormatType,
        f: &mut std::fmt::Formatter,
    ) -> std::fmt::Result {
        match t {
            DisplayFormatType::Default | DisplayFormatType::Verbose => {
                write!(
                    f,
                    "CoalesceBatchesExec: target_batch_size={}",
                    self.target_batch_size,
                )?;
                if let Some(fetch) = self.fetch {
                    write!(f, ", fetch={fetch}")?;
                };

                Ok(())
            }
        }
    }
}

impl ExecutionPlan for CoalesceBatchesExec {
    fn name(&self) -> &'static str {
        "CoalesceBatchesExec"
    }

    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn properties(&self) -> &PlanProperties {
        &self.cache
    }

    fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
        vec![&self.input]
    }

    fn maintains_input_order(&self) -> Vec<bool> {
        vec![true]
    }

    fn benefits_from_input_partitioning(&self) -> Vec<bool> {
        vec![false]
    }

    fn with_new_children(
        self: Arc<Self>,
        children: Vec<Arc<dyn ExecutionPlan>>,
    ) -> Result<Arc<dyn ExecutionPlan>> {
        Ok(Arc::new(
            CoalesceBatchesExec::new(Arc::clone(&children[0]), self.target_batch_size)
                .with_fetch(self.fetch),
        ))
    }

    fn execute(
        &self,
        partition: usize,
        context: Arc<TaskContext>,
    ) -> Result<SendableRecordBatchStream> {
        Ok(Box::pin(CoalesceBatchesStream {
            input: self.input.execute(partition, context)?,
            coalescer: BatchCoalescer::new(
                self.input.schema(),
                self.target_batch_size,
                self.fetch,
            ),
            baseline_metrics: BaselineMetrics::new(&self.metrics, partition),
            // Start by pulling data
            inner_state: CoalesceBatchesStreamState::Pull,
        }))
    }

    fn metrics(&self) -> Option<MetricsSet> {
        Some(self.metrics.clone_inner())
    }

    fn statistics(&self) -> Result<Statistics> {
        Statistics::with_fetch(self.input.statistics()?, self.schema(), self.fetch, 0, 1)
    }

    fn with_fetch(&self, limit: Option<usize>) -> Option<Arc<dyn ExecutionPlan>> {
        Some(Arc::new(CoalesceBatchesExec {
            input: Arc::clone(&self.input),
            target_batch_size: self.target_batch_size,
            fetch: limit,
            metrics: self.metrics.clone(),
            cache: self.cache.clone(),
        }))
    }

    fn fetch(&self) -> Option<usize> {
        self.fetch
    }

    fn cardinality_effect(&self) -> CardinalityEffect {
        CardinalityEffect::Equal
    }
}

/// Stream for [`CoalesceBatchesExec`]. See [`CoalesceBatchesExec`] for more details.
struct CoalesceBatchesStream {
    /// The input plan
    input: SendableRecordBatchStream,
    /// Buffer for combining batches
    coalescer: BatchCoalescer,
    /// Execution metrics
    baseline_metrics: BaselineMetrics,
    /// The current inner state of the stream. This state dictates the current
    /// action or operation to be performed in the streaming process.
    inner_state: CoalesceBatchesStreamState,
}

impl Stream for CoalesceBatchesStream {
    type Item = Result<RecordBatch>;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        let poll = self.poll_next_inner(cx);
        self.baseline_metrics.record_poll(poll)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // we can't predict the size of incoming batches so re-use the size hint from the input
        self.input.size_hint()
    }
}

/// Enumeration of possible states for `CoalesceBatchesStream`.
/// It represents different stages in the lifecycle of a stream of record batches.
///
/// An example of state transition:
/// Notation:
/// `[3000]`: A batch with size 3000
/// `{[2000], [3000]}`: `CoalesceBatchStream`'s internal buffer with 2 batches buffered
/// Input of `CoalesceBatchStream` will generate three batches `[2000], [3000], [4000]`
/// The coalescing procedure will go through the following steps with 4096 coalescing threshold:
/// 1. Read the first batch and get it buffered.
/// - initial state: `Pull`
/// - initial buffer: `{}`
/// - updated buffer: `{[2000]}`
/// - next state: `Pull`
/// 2. Read the second batch, the coalescing target is reached since 2000 + 3000 > 4096
/// - initial state: `Pull`
/// - initial buffer: `{[2000]}`
/// - updated buffer: `{[2000], [3000]}`
/// - next state: `ReturnBuffer`
/// 4. Two batches in the batch get merged and consumed by the upstream operator.
/// - initial state: `ReturnBuffer`
/// - initial buffer: `{[2000], [3000]}`
/// - updated buffer: `{}`
/// - next state: `Pull`
/// 5. Read the third input batch.
/// - initial state: `Pull`
/// - initial buffer: `{}`
/// - updated buffer: `{[4000]}`
/// - next state: `Pull`
/// 5. The input is ended now. Jump to exhaustion state preparing the finalized data.
/// - initial state: `Pull`
/// - initial buffer: `{[4000]}`
/// - updated buffer: `{[4000]}`
/// - next state: `Exhausted`
#[derive(Debug, Clone, Eq, PartialEq)]
enum CoalesceBatchesStreamState {
    /// State to pull a new batch from the input stream.
    Pull,
    /// State to return a buffered batch.
    ReturnBuffer,
    /// State indicating that the stream is exhausted.
    Exhausted,
}

impl CoalesceBatchesStream {
    fn poll_next_inner(
        self: &mut Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Option<Result<RecordBatch>>> {
        let cloned_time = self.baseline_metrics.elapsed_compute().clone();
        loop {
            match &self.inner_state {
                CoalesceBatchesStreamState::Pull => {
                    // Attempt to pull the next batch from the input stream.
                    let input_batch = ready!(self.input.poll_next_unpin(cx));
                    // Start timing the operation. The timer records time upon being dropped.
                    let _timer = cloned_time.timer();

                    match input_batch {
                        Some(Ok(batch)) => match self.coalescer.push_batch(batch) {
                            CoalescerState::Continue => {}
                            CoalescerState::LimitReached => {
                                self.inner_state = CoalesceBatchesStreamState::Exhausted;
                            }
                            CoalescerState::TargetReached => {
                                self.inner_state =
                                    CoalesceBatchesStreamState::ReturnBuffer;
                            }
                        },
                        None => {
                            // End of input stream, but buffered batches might still be present.
                            self.inner_state = CoalesceBatchesStreamState::Exhausted;
                        }
                        other => return Poll::Ready(other),
                    }
                }
                CoalesceBatchesStreamState::ReturnBuffer => {
                    // Combine buffered batches into one batch and return it.
                    let batch = self.coalescer.finish_batch()?;
                    // Set to pull state for the next iteration.
                    self.inner_state = CoalesceBatchesStreamState::Pull;
                    return Poll::Ready(Some(Ok(batch)));
                }
                CoalesceBatchesStreamState::Exhausted => {
                    // Handle the end of the input stream.
                    return if self.coalescer.is_empty() {
                        // If buffer is empty, return None indicating the stream is fully consumed.
                        Poll::Ready(None)
                    } else {
                        // If the buffer still contains batches, prepare to return them.
                        let batch = self.coalescer.finish_batch()?;
                        Poll::Ready(Some(Ok(batch)))
                    };
                }
            }
        }
    }
}

impl RecordBatchStream for CoalesceBatchesStream {
    fn schema(&self) -> SchemaRef {
        self.coalescer.schema()
    }
}