datafusion_physical_plan/execution_plan.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;
use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use arrow_array::Array;
use futures::stream::{StreamExt, TryStreamExt};
use tokio::task::JoinSet;
use datafusion_common::config::ConfigOptions;
pub use datafusion_common::hash_utils;
pub use datafusion_common::utils::project_schema;
use datafusion_common::{exec_err, Result};
pub use datafusion_common::{internal_err, ColumnStatistics, Statistics};
use datafusion_execution::TaskContext;
pub use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream};
pub use datafusion_expr::{Accumulator, ColumnarValue};
pub use datafusion_physical_expr::window::WindowExpr;
pub use datafusion_physical_expr::{
expressions, udf, Distribution, Partitioning, PhysicalExpr,
};
use datafusion_physical_expr::{EquivalenceProperties, LexOrdering};
use datafusion_physical_expr_common::sort_expr::{LexOrderingRef, LexRequirement};
use crate::coalesce_partitions::CoalescePartitionsExec;
use crate::display::DisplayableExecutionPlan;
pub use crate::display::{DefaultDisplay, DisplayAs, DisplayFormatType, VerboseDisplay};
pub use crate::metrics::Metric;
use crate::metrics::MetricsSet;
pub use crate::ordering::InputOrderMode;
use crate::repartition::RepartitionExec;
use crate::sorts::sort_preserving_merge::SortPreservingMergeExec;
pub use crate::stream::EmptyRecordBatchStream;
use crate::stream::RecordBatchStreamAdapter;
/// Represent nodes in the DataFusion Physical Plan.
///
/// Calling [`execute`] produces an `async` [`SendableRecordBatchStream`] of
/// [`RecordBatch`] that incrementally computes a partition of the
/// `ExecutionPlan`'s output from its input. See [`Partitioning`] for more
/// details on partitioning.
///
/// Methods such as [`Self::schema`] and [`Self::properties`] communicate
/// properties of the output to the DataFusion optimizer, and methods such as
/// [`required_input_distribution`] and [`required_input_ordering`] express
/// requirements of the `ExecutionPlan` from its input.
///
/// [`ExecutionPlan`] can be displayed in a simplified form using the
/// return value from [`displayable`] in addition to the (normally
/// quite verbose) `Debug` output.
///
/// [`execute`]: ExecutionPlan::execute
/// [`required_input_distribution`]: ExecutionPlan::required_input_distribution
/// [`required_input_ordering`]: ExecutionPlan::required_input_ordering
pub trait ExecutionPlan: Debug + DisplayAs + Send + Sync {
/// Short name for the ExecutionPlan, such as 'ParquetExec'.
///
/// Implementation note: this method can just proxy to
/// [`static_name`](ExecutionPlan::static_name) if no special action is
/// needed. It doesn't provide a default implementation like that because
/// this method doesn't require the `Sized` constrain to allow a wilder
/// range of use cases.
fn name(&self) -> &str;
/// Short name for the ExecutionPlan, such as 'ParquetExec'.
/// Like [`name`](ExecutionPlan::name) but can be called without an instance.
fn static_name() -> &'static str
where
Self: Sized,
{
let full_name = std::any::type_name::<Self>();
let maybe_start_idx = full_name.rfind(':');
match maybe_start_idx {
Some(start_idx) => &full_name[start_idx + 1..],
None => "UNKNOWN",
}
}
/// Returns the execution plan as [`Any`] so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// Get the schema for this execution plan
fn schema(&self) -> SchemaRef {
Arc::clone(self.properties().schema())
}
/// Return properties of the output of the `ExecutionPlan`, such as output
/// ordering(s), partitioning information etc.
///
/// This information is available via methods on [`ExecutionPlanProperties`]
/// trait, which is implemented for all `ExecutionPlan`s.
fn properties(&self) -> &PlanProperties;
/// Specifies the data distribution requirements for all the
/// children for this `ExecutionPlan`, By default it's [[Distribution::UnspecifiedDistribution]] for each child,
fn required_input_distribution(&self) -> Vec<Distribution> {
vec![Distribution::UnspecifiedDistribution; self.children().len()]
}
/// Specifies the ordering required for all of the children of this
/// `ExecutionPlan`.
///
/// For each child, it's the local ordering requirement within
/// each partition rather than the global ordering
///
/// NOTE that checking `!is_empty()` does **not** check for a
/// required input ordering. Instead, the correct check is that at
/// least one entry must be `Some`
fn required_input_ordering(&self) -> Vec<Option<LexRequirement>> {
vec![None; self.children().len()]
}
/// Returns `false` if this `ExecutionPlan`'s implementation may reorder
/// rows within or between partitions.
///
/// For example, Projection, Filter, and Limit maintain the order
/// of inputs -- they may transform values (Projection) or not
/// produce the same number of rows that went in (Filter and
/// Limit), but the rows that are produced go in the same way.
///
/// DataFusion uses this metadata to apply certain optimizations
/// such as automatically repartitioning correctly.
///
/// The default implementation returns `false`
///
/// WARNING: if you override this default, you *MUST* ensure that
/// the `ExecutionPlan`'s maintains the ordering invariant or else
/// DataFusion may produce incorrect results.
fn maintains_input_order(&self) -> Vec<bool> {
vec![false; self.children().len()]
}
/// Specifies whether the `ExecutionPlan` benefits from increased
/// parallelization at its input for each child.
///
/// If returns `true`, the `ExecutionPlan` would benefit from partitioning
/// its corresponding child (and thus from more parallelism). For
/// `ExecutionPlan` that do very little work the overhead of extra
/// parallelism may outweigh any benefits
///
/// The default implementation returns `true` unless this `ExecutionPlan`
/// has signalled it requires a single child input partition.
fn benefits_from_input_partitioning(&self) -> Vec<bool> {
// By default try to maximize parallelism with more CPUs if
// possible
self.required_input_distribution()
.into_iter()
.map(|dist| !matches!(dist, Distribution::SinglePartition))
.collect()
}
/// Get a list of children `ExecutionPlan`s that act as inputs to this plan.
/// The returned list will be empty for leaf nodes such as scans, will contain
/// a single value for unary nodes, or two values for binary nodes (such as
/// joins).
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>>;
/// Returns a new `ExecutionPlan` where all existing children were replaced
/// by the `children`, in order
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>>;
/// If supported, attempt to increase the partitioning of this `ExecutionPlan` to
/// produce `target_partitions` partitions.
///
/// If the `ExecutionPlan` does not support changing its partitioning,
/// returns `Ok(None)` (the default).
///
/// It is the `ExecutionPlan` can increase its partitioning, but not to the
/// `target_partitions`, it may return an ExecutionPlan with fewer
/// partitions. This might happen, for example, if each new partition would
/// be too small to be efficiently processed individually.
///
/// The DataFusion optimizer attempts to use as many threads as possible by
/// repartitioning its inputs to match the target number of threads
/// available (`target_partitions`). Some data sources, such as the built in
/// CSV and Parquet readers, implement this method as they are able to read
/// from their input files in parallel, regardless of how the source data is
/// split amongst files.
fn repartitioned(
&self,
_target_partitions: usize,
_config: &ConfigOptions,
) -> Result<Option<Arc<dyn ExecutionPlan>>> {
Ok(None)
}
/// Begin execution of `partition`, returning a [`Stream`] of
/// [`RecordBatch`]es.
///
/// # Notes
///
/// The `execute` method itself is not `async` but it returns an `async`
/// [`futures::stream::Stream`]. This `Stream` should incrementally compute
/// the output, `RecordBatch` by `RecordBatch` (in a streaming fashion).
/// Most `ExecutionPlan`s should not do any work before the first
/// `RecordBatch` is requested from the stream.
///
/// [`RecordBatchStreamAdapter`] can be used to convert an `async`
/// [`Stream`] into a [`SendableRecordBatchStream`].
///
/// Using `async` `Streams` allows for network I/O during execution and
/// takes advantage of Rust's built in support for `async` continuations and
/// crate ecosystem.
///
/// [`Stream`]: futures::stream::Stream
/// [`StreamExt`]: futures::stream::StreamExt
/// [`TryStreamExt`]: futures::stream::TryStreamExt
/// [`RecordBatchStreamAdapter`]: crate::stream::RecordBatchStreamAdapter
///
/// # Error handling
///
/// Any error that occurs during execution is sent as an `Err` in the output
/// stream.
///
/// `ExecutionPlan` implementations in DataFusion cancel additional work
/// immediately once an error occurs. The rationale is that if the overall
/// query will return an error, any additional work such as continued
/// polling of inputs will be wasted as it will be thrown away.
///
/// # Cancellation / Aborting Execution
///
/// The [`Stream`] that is returned must ensure that any allocated resources
/// are freed when the stream itself is dropped. This is particularly
/// important for [`spawn`]ed tasks or threads. Unless care is taken to
/// "abort" such tasks, they may continue to consume resources even after
/// the plan is dropped, generating intermediate results that are never
/// used.
/// Thus, [`spawn`] is disallowed, and instead use [`SpawnedTask`].
///
/// For more details see [`SpawnedTask`], [`JoinSet`] and [`RecordBatchReceiverStreamBuilder`]
/// for structures to help ensure all background tasks are cancelled.
///
/// [`spawn`]: tokio::task::spawn
/// [`JoinSet`]: tokio::task::JoinSet
/// [`SpawnedTask`]: datafusion_common_runtime::SpawnedTask
/// [`RecordBatchReceiverStreamBuilder`]: crate::stream::RecordBatchReceiverStreamBuilder
///
/// # Implementation Examples
///
/// While `async` `Stream`s have a non trivial learning curve, the
/// [`futures`] crate provides [`StreamExt`] and [`TryStreamExt`]
/// which help simplify many common operations.
///
/// Here are some common patterns:
///
/// ## Return Precomputed `RecordBatch`
///
/// We can return a precomputed `RecordBatch` as a `Stream`:
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::RecordBatch;
/// # use arrow_schema::SchemaRef;
/// # use datafusion_common::Result;
/// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
/// # use datafusion_physical_plan::memory::MemoryStream;
/// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
/// struct MyPlan {
/// batch: RecordBatch,
/// }
///
/// impl MyPlan {
/// fn execute(
/// &self,
/// partition: usize,
/// context: Arc<TaskContext>
/// ) -> Result<SendableRecordBatchStream> {
/// // use functions from futures crate convert the batch into a stream
/// let fut = futures::future::ready(Ok(self.batch.clone()));
/// let stream = futures::stream::once(fut);
/// Ok(Box::pin(RecordBatchStreamAdapter::new(self.batch.schema(), stream)))
/// }
/// }
/// ```
///
/// ## Lazily (async) Compute `RecordBatch`
///
/// We can also lazily compute a `RecordBatch` when the returned `Stream` is polled
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::RecordBatch;
/// # use arrow_schema::SchemaRef;
/// # use datafusion_common::Result;
/// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
/// # use datafusion_physical_plan::memory::MemoryStream;
/// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
/// struct MyPlan {
/// schema: SchemaRef,
/// }
///
/// /// Returns a single batch when the returned stream is polled
/// async fn get_batch() -> Result<RecordBatch> {
/// todo!()
/// }
///
/// impl MyPlan {
/// fn execute(
/// &self,
/// partition: usize,
/// context: Arc<TaskContext>
/// ) -> Result<SendableRecordBatchStream> {
/// let fut = get_batch();
/// let stream = futures::stream::once(fut);
/// Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream)))
/// }
/// }
/// ```
///
/// ## Lazily (async) create a Stream
///
/// If you need to create the return `Stream` using an `async` function,
/// you can do so by flattening the result:
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::RecordBatch;
/// # use arrow_schema::SchemaRef;
/// # use futures::TryStreamExt;
/// # use datafusion_common::Result;
/// # use datafusion_execution::{SendableRecordBatchStream, TaskContext};
/// # use datafusion_physical_plan::memory::MemoryStream;
/// # use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
/// struct MyPlan {
/// schema: SchemaRef,
/// }
///
/// /// async function that returns a stream
/// async fn get_batch_stream() -> Result<SendableRecordBatchStream> {
/// todo!()
/// }
///
/// impl MyPlan {
/// fn execute(
/// &self,
/// partition: usize,
/// context: Arc<TaskContext>
/// ) -> Result<SendableRecordBatchStream> {
/// // A future that yields a stream
/// let fut = get_batch_stream();
/// // Use TryStreamExt::try_flatten to flatten the stream of streams
/// let stream = futures::stream::once(fut).try_flatten();
/// Ok(Box::pin(RecordBatchStreamAdapter::new(self.schema.clone(), stream)))
/// }
/// }
/// ```
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream>;
/// Return a snapshot of the set of [`Metric`]s for this
/// [`ExecutionPlan`]. If no `Metric`s are available, return None.
///
/// While the values of the metrics in the returned
/// [`MetricsSet`]s may change as execution progresses, the
/// specific metrics will not.
///
/// Once `self.execute()` has returned (technically the future is
/// resolved) for all available partitions, the set of metrics
/// should be complete. If this function is called prior to
/// `execute()` new metrics may appear in subsequent calls.
fn metrics(&self) -> Option<MetricsSet> {
None
}
/// Returns statistics for this `ExecutionPlan` node. If statistics are not
/// available, should return [`Statistics::new_unknown`] (the default), not
/// an error.
///
/// For TableScan executors, which supports filter pushdown, special attention
/// needs to be paid to whether the stats returned by this method are exact or not
fn statistics(&self) -> Result<Statistics> {
Ok(Statistics::new_unknown(&self.schema()))
}
/// Returns `true` if a limit can be safely pushed down through this
/// `ExecutionPlan` node.
///
/// If this method returns `true`, and the query plan contains a limit at
/// the output of this node, DataFusion will push the limit to the input
/// of this node.
fn supports_limit_pushdown(&self) -> bool {
false
}
/// Returns a fetching variant of this `ExecutionPlan` node, if it supports
/// fetch limits. Returns `None` otherwise.
fn with_fetch(&self, _limit: Option<usize>) -> Option<Arc<dyn ExecutionPlan>> {
None
}
/// Gets the fetch count for the operator, `None` means there is no fetch.
fn fetch(&self) -> Option<usize> {
None
}
/// Gets the effect on cardinality, if known
fn cardinality_effect(&self) -> CardinalityEffect {
CardinalityEffect::Unknown
}
}
/// Extension trait provides an easy API to fetch various properties of
/// [`ExecutionPlan`] objects based on [`ExecutionPlan::properties`].
pub trait ExecutionPlanProperties {
/// Specifies how the output of this `ExecutionPlan` is split into
/// partitions.
fn output_partitioning(&self) -> &Partitioning;
/// Specifies whether this plan generates an infinite stream of records.
/// If the plan does not support pipelining, but its input(s) are
/// infinite, returns [`ExecutionMode::PipelineBreaking`] to indicate this.
fn execution_mode(&self) -> ExecutionMode;
/// If the output of this `ExecutionPlan` within each partition is sorted,
/// returns `Some(keys)` describing the ordering. A `None` return value
/// indicates no assumptions should be made on the output ordering.
///
/// For example, `SortExec` (obviously) produces sorted output as does
/// `SortPreservingMergeStream`. Less obviously, `Projection` produces sorted
/// output if its input is sorted as it does not reorder the input rows.
fn output_ordering(&self) -> Option<LexOrderingRef>;
/// Get the [`EquivalenceProperties`] within the plan.
///
/// Equivalence properties tell DataFusion what columns are known to be
/// equal, during various optimization passes. By default, this returns "no
/// known equivalences" which is always correct, but may cause DataFusion to
/// unnecessarily resort data.
///
/// If this ExecutionPlan makes no changes to the schema of the rows flowing
/// through it or how columns within each row relate to each other, it
/// should return the equivalence properties of its input. For
/// example, since `FilterExec` may remove rows from its input, but does not
/// otherwise modify them, it preserves its input equivalence properties.
/// However, since `ProjectionExec` may calculate derived expressions, it
/// needs special handling.
///
/// See also [`ExecutionPlan::maintains_input_order`] and [`Self::output_ordering`]
/// for related concepts.
fn equivalence_properties(&self) -> &EquivalenceProperties;
}
impl ExecutionPlanProperties for Arc<dyn ExecutionPlan> {
fn output_partitioning(&self) -> &Partitioning {
self.properties().output_partitioning()
}
fn execution_mode(&self) -> ExecutionMode {
self.properties().execution_mode()
}
fn output_ordering(&self) -> Option<LexOrderingRef> {
self.properties().output_ordering()
}
fn equivalence_properties(&self) -> &EquivalenceProperties {
self.properties().equivalence_properties()
}
}
impl ExecutionPlanProperties for &dyn ExecutionPlan {
fn output_partitioning(&self) -> &Partitioning {
self.properties().output_partitioning()
}
fn execution_mode(&self) -> ExecutionMode {
self.properties().execution_mode()
}
fn output_ordering(&self) -> Option<LexOrderingRef> {
self.properties().output_ordering()
}
fn equivalence_properties(&self) -> &EquivalenceProperties {
self.properties().equivalence_properties()
}
}
/// Describes the execution mode of the result of calling
/// [`ExecutionPlan::execute`] with respect to its size and behavior.
///
/// The mode of the execution plan is determined by the mode of its input
/// execution plans and the details of the operator itself. For example, a
/// `FilterExec` operator will have the same execution mode as its input, but a
/// `SortExec` operator may have a different execution mode than its input,
/// depending on how the input stream is sorted.
///
/// There are three possible execution modes: `Bounded`, `Unbounded` and
/// `PipelineBreaking`.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum ExecutionMode {
/// The stream is bounded / finite.
///
/// In this case the stream will eventually return `None` to indicate that
/// there are no more records to process.
Bounded,
/// The stream is unbounded / infinite.
///
/// In this case, the stream will never be done (never return `None`),
/// except in case of error.
///
/// This mode is often used in "Steaming" use cases where data is
/// incrementally processed as it arrives.
///
/// Note that even though the operator generates an unbounded stream of
/// results, it can execute with bounded memory and incrementally produces
/// output.
Unbounded,
/// Some of the operator's input stream(s) are unbounded, but the operator
/// cannot generate streaming results from these streaming inputs.
///
/// In this case, the execution mode will be pipeline breaking, e.g. the
/// operator requires unbounded memory to generate results. This
/// information is used by the planner when performing sanity checks
/// on plans processings unbounded data sources.
PipelineBreaking,
}
impl ExecutionMode {
/// Check whether the execution mode is unbounded or not.
pub fn is_unbounded(&self) -> bool {
matches!(self, ExecutionMode::Unbounded)
}
/// Check whether the execution is pipeline friendly. If so, operator can
/// execute safely.
pub fn pipeline_friendly(&self) -> bool {
matches!(self, ExecutionMode::Bounded | ExecutionMode::Unbounded)
}
}
/// Conservatively "combines" execution modes of a given collection of operators.
pub(crate) fn execution_mode_from_children<'a>(
children: impl IntoIterator<Item = &'a Arc<dyn ExecutionPlan>>,
) -> ExecutionMode {
let mut result = ExecutionMode::Bounded;
for mode in children.into_iter().map(|child| child.execution_mode()) {
match (mode, result) {
(ExecutionMode::PipelineBreaking, _)
| (_, ExecutionMode::PipelineBreaking) => {
// If any of the modes is `PipelineBreaking`, so is the result:
return ExecutionMode::PipelineBreaking;
}
(ExecutionMode::Unbounded, _) | (_, ExecutionMode::Unbounded) => {
// Unbounded mode eats up bounded mode:
result = ExecutionMode::Unbounded;
}
(ExecutionMode::Bounded, ExecutionMode::Bounded) => {
// When both modes are bounded, so is the result:
result = ExecutionMode::Bounded;
}
}
}
result
}
/// Stores certain, often expensive to compute, plan properties used in query
/// optimization.
///
/// These properties are stored a single structure to permit this information to
/// be computed once and then those cached results used multiple times without
/// recomputation (aka a cache)
#[derive(Debug, Clone)]
pub struct PlanProperties {
/// See [ExecutionPlanProperties::equivalence_properties]
pub eq_properties: EquivalenceProperties,
/// See [ExecutionPlanProperties::output_partitioning]
pub partitioning: Partitioning,
/// See [ExecutionPlanProperties::execution_mode]
pub execution_mode: ExecutionMode,
/// See [ExecutionPlanProperties::output_ordering]
output_ordering: Option<LexOrdering>,
}
impl PlanProperties {
/// Construct a new `PlanPropertiesCache` from the
pub fn new(
eq_properties: EquivalenceProperties,
partitioning: Partitioning,
execution_mode: ExecutionMode,
) -> Self {
// Output ordering can be derived from `eq_properties`.
let output_ordering = eq_properties.output_ordering();
Self {
eq_properties,
partitioning,
execution_mode,
output_ordering,
}
}
/// Overwrite output partitioning with its new value.
pub fn with_partitioning(mut self, partitioning: Partitioning) -> Self {
self.partitioning = partitioning;
self
}
/// Overwrite the execution Mode with its new value.
pub fn with_execution_mode(mut self, execution_mode: ExecutionMode) -> Self {
self.execution_mode = execution_mode;
self
}
/// Overwrite equivalence properties with its new value.
pub fn with_eq_properties(mut self, eq_properties: EquivalenceProperties) -> Self {
// Changing equivalence properties also changes output ordering, so
// make sure to overwrite it:
self.output_ordering = eq_properties.output_ordering();
self.eq_properties = eq_properties;
self
}
pub fn equivalence_properties(&self) -> &EquivalenceProperties {
&self.eq_properties
}
pub fn output_partitioning(&self) -> &Partitioning {
&self.partitioning
}
pub fn output_ordering(&self) -> Option<LexOrderingRef> {
self.output_ordering.as_deref()
}
pub fn execution_mode(&self) -> ExecutionMode {
self.execution_mode
}
/// Get schema of the node.
fn schema(&self) -> &SchemaRef {
self.eq_properties.schema()
}
}
/// Indicate whether a data exchange is needed for the input of `plan`, which will be very helpful
/// especially for the distributed engine to judge whether need to deal with shuffling.
/// Currently there are 3 kinds of execution plan which needs data exchange
/// 1. RepartitionExec for changing the partition number between two `ExecutionPlan`s
/// 2. CoalescePartitionsExec for collapsing all of the partitions into one without ordering guarantee
/// 3. SortPreservingMergeExec for collapsing all of the sorted partitions into one with ordering guarantee
pub fn need_data_exchange(plan: Arc<dyn ExecutionPlan>) -> bool {
if let Some(repartition) = plan.as_any().downcast_ref::<RepartitionExec>() {
!matches!(
repartition.properties().output_partitioning(),
Partitioning::RoundRobinBatch(_)
)
} else if let Some(coalesce) = plan.as_any().downcast_ref::<CoalescePartitionsExec>()
{
coalesce.input().output_partitioning().partition_count() > 1
} else if let Some(sort_preserving_merge) =
plan.as_any().downcast_ref::<SortPreservingMergeExec>()
{
sort_preserving_merge
.input()
.output_partitioning()
.partition_count()
> 1
} else {
false
}
}
/// Returns a copy of this plan if we change any child according to the pointer comparison.
/// The size of `children` must be equal to the size of `ExecutionPlan::children()`.
pub fn with_new_children_if_necessary(
plan: Arc<dyn ExecutionPlan>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
let old_children = plan.children();
if children.len() != old_children.len() {
internal_err!("Wrong number of children")
} else if children.is_empty()
|| children
.iter()
.zip(old_children.iter())
.any(|(c1, c2)| !Arc::ptr_eq(c1, c2))
{
plan.with_new_children(children)
} else {
Ok(plan)
}
}
/// Return a [wrapper](DisplayableExecutionPlan) around an
/// [`ExecutionPlan`] which can be displayed in various easier to
/// understand ways.
pub fn displayable(plan: &dyn ExecutionPlan) -> DisplayableExecutionPlan<'_> {
DisplayableExecutionPlan::new(plan)
}
/// Execute the [ExecutionPlan] and collect the results in memory
pub async fn collect(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<Vec<RecordBatch>> {
let stream = execute_stream(plan, context)?;
crate::common::collect(stream).await
}
/// Execute the [ExecutionPlan] and return a single stream of `RecordBatch`es.
///
/// See [collect] to buffer the `RecordBatch`es in memory.
///
/// # Aborting Execution
///
/// Dropping the stream will abort the execution of the query, and free up
/// any allocated resources
pub fn execute_stream(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
match plan.output_partitioning().partition_count() {
0 => Ok(Box::pin(EmptyRecordBatchStream::new(plan.schema()))),
1 => plan.execute(0, context),
2.. => {
// merge into a single partition
let plan = CoalescePartitionsExec::new(Arc::clone(&plan));
// CoalescePartitionsExec must produce a single partition
assert_eq!(1, plan.properties().output_partitioning().partition_count());
plan.execute(0, context)
}
}
}
/// Execute the [ExecutionPlan] and collect the results in memory
pub async fn collect_partitioned(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<Vec<Vec<RecordBatch>>> {
let streams = execute_stream_partitioned(plan, context)?;
let mut join_set = JoinSet::new();
// Execute the plan and collect the results into batches.
streams.into_iter().enumerate().for_each(|(idx, stream)| {
join_set.spawn(async move {
let result: Result<Vec<RecordBatch>> = stream.try_collect().await;
(idx, result)
});
});
let mut batches = vec![];
// Note that currently this doesn't identify the thread that panicked
//
// TODO: Replace with [join_next_with_id](https://docs.rs/tokio/latest/tokio/task/struct.JoinSet.html#method.join_next_with_id
// once it is stable
while let Some(result) = join_set.join_next().await {
match result {
Ok((idx, res)) => batches.push((idx, res?)),
Err(e) => {
if e.is_panic() {
std::panic::resume_unwind(e.into_panic());
} else {
unreachable!();
}
}
}
}
batches.sort_by_key(|(idx, _)| *idx);
let batches = batches.into_iter().map(|(_, batch)| batch).collect();
Ok(batches)
}
/// Execute the [ExecutionPlan] and return a vec with one stream per output
/// partition
///
/// # Aborting Execution
///
/// Dropping the stream will abort the execution of the query, and free up
/// any allocated resources
pub fn execute_stream_partitioned(
plan: Arc<dyn ExecutionPlan>,
context: Arc<TaskContext>,
) -> Result<Vec<SendableRecordBatchStream>> {
let num_partitions = plan.output_partitioning().partition_count();
let mut streams = Vec::with_capacity(num_partitions);
for i in 0..num_partitions {
streams.push(plan.execute(i, Arc::clone(&context))?);
}
Ok(streams)
}
/// Executes an input stream and ensures that the resulting stream adheres to
/// the `not null` constraints specified in the `sink_schema`.
///
/// # Arguments
///
/// * `input` - An execution plan
/// * `sink_schema` - The schema to be applied to the output stream
/// * `partition` - The partition index to be executed
/// * `context` - The task context
///
/// # Returns
///
/// * `Result<SendableRecordBatchStream>` - A stream of `RecordBatch`es if successful
///
/// This function first executes the given input plan for the specified partition
/// and context. It then checks if there are any columns in the input that might
/// violate the `not null` constraints specified in the `sink_schema`. If there are
/// such columns, it wraps the resulting stream to enforce the `not null` constraints
/// by invoking the `check_not_null_contraits` function on each batch of the stream.
pub fn execute_input_stream(
input: Arc<dyn ExecutionPlan>,
sink_schema: SchemaRef,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
let input_stream = input.execute(partition, context)?;
debug_assert_eq!(sink_schema.fields().len(), input.schema().fields().len());
// Find input columns that may violate the not null constraint.
let risky_columns: Vec<_> = sink_schema
.fields()
.iter()
.zip(input.schema().fields().iter())
.enumerate()
.filter_map(|(idx, (sink_field, input_field))| {
(!sink_field.is_nullable() && input_field.is_nullable()).then_some(idx)
})
.collect();
if risky_columns.is_empty() {
Ok(input_stream)
} else {
// Check not null constraint on the input stream
Ok(Box::pin(RecordBatchStreamAdapter::new(
sink_schema,
input_stream
.map(move |batch| check_not_null_constraints(batch?, &risky_columns)),
)))
}
}
/// Checks a `RecordBatch` for `not null` constraints on specified columns.
///
/// # Arguments
///
/// * `batch` - The `RecordBatch` to be checked
/// * `column_indices` - A vector of column indices that should be checked for
/// `not null` constraints.
///
/// # Returns
///
/// * `Result<RecordBatch>` - The original `RecordBatch` if all constraints are met
///
/// This function iterates over the specified column indices and ensures that none
/// of the columns contain null values. If any column contains null values, an error
/// is returned.
pub fn check_not_null_constraints(
batch: RecordBatch,
column_indices: &Vec<usize>,
) -> Result<RecordBatch> {
for &index in column_indices {
if batch.num_columns() <= index {
return exec_err!(
"Invalid batch column count {} expected > {}",
batch.num_columns(),
index
);
}
if batch
.column(index)
.logical_nulls()
.map(|nulls| nulls.null_count())
.unwrap_or_default()
> 0
{
return exec_err!(
"Invalid batch column at '{}' has null but schema specifies non-nullable",
index
);
}
}
Ok(batch)
}
/// Utility function yielding a string representation of the given [`ExecutionPlan`].
pub fn get_plan_string(plan: &Arc<dyn ExecutionPlan>) -> Vec<String> {
let formatted = displayable(plan.as_ref()).indent(true).to_string();
let actual: Vec<&str> = formatted.trim().lines().collect();
actual.iter().map(|elem| elem.to_string()).collect()
}
/// Indicates the effect an execution plan operator will have on the cardinality
/// of its input stream
pub enum CardinalityEffect {
/// Unknown effect. This is the default
Unknown,
/// The operator is guaranteed to produce exactly one row for
/// each input row
Equal,
/// The operator may produce fewer output rows than it receives input rows
LowerEqual,
/// The operator may produce more output rows than it receives input rows
GreaterEqual,
}
#[cfg(test)]
mod tests {
use super::*;
use arrow_array::{DictionaryArray, Int32Array, NullArray, RunArray};
use arrow_schema::{DataType, Field, Schema, SchemaRef};
use std::any::Any;
use std::sync::Arc;
use datafusion_common::{Result, Statistics};
use datafusion_execution::{SendableRecordBatchStream, TaskContext};
use crate::{DisplayAs, DisplayFormatType, ExecutionPlan};
#[derive(Debug)]
pub struct EmptyExec;
impl EmptyExec {
pub fn new(_schema: SchemaRef) -> Self {
Self
}
}
impl DisplayAs for EmptyExec {
fn fmt_as(
&self,
_t: DisplayFormatType,
_f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
unimplemented!()
}
}
impl ExecutionPlan for EmptyExec {
fn name(&self) -> &'static str {
Self::static_name()
}
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
unimplemented!()
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![]
}
fn with_new_children(
self: Arc<Self>,
_: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
unimplemented!()
}
fn execute(
&self,
_partition: usize,
_context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
unimplemented!()
}
fn statistics(&self) -> Result<Statistics> {
unimplemented!()
}
}
#[derive(Debug)]
pub struct RenamedEmptyExec;
impl RenamedEmptyExec {
pub fn new(_schema: SchemaRef) -> Self {
Self
}
}
impl DisplayAs for RenamedEmptyExec {
fn fmt_as(
&self,
_t: DisplayFormatType,
_f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
unimplemented!()
}
}
impl ExecutionPlan for RenamedEmptyExec {
fn name(&self) -> &'static str {
Self::static_name()
}
fn static_name() -> &'static str
where
Self: Sized,
{
"MyRenamedEmptyExec"
}
fn as_any(&self) -> &dyn Any {
self
}
fn properties(&self) -> &PlanProperties {
unimplemented!()
}
fn children(&self) -> Vec<&Arc<dyn ExecutionPlan>> {
vec![]
}
fn with_new_children(
self: Arc<Self>,
_: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
unimplemented!()
}
fn execute(
&self,
_partition: usize,
_context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
unimplemented!()
}
fn statistics(&self) -> Result<Statistics> {
unimplemented!()
}
}
#[test]
fn test_execution_plan_name() {
let schema1 = Arc::new(Schema::empty());
let default_name_exec = EmptyExec::new(schema1);
assert_eq!(default_name_exec.name(), "EmptyExec");
let schema2 = Arc::new(Schema::empty());
let renamed_exec = RenamedEmptyExec::new(schema2);
assert_eq!(renamed_exec.name(), "MyRenamedEmptyExec");
assert_eq!(RenamedEmptyExec::static_name(), "MyRenamedEmptyExec");
}
/// A compilation test to ensure that the `ExecutionPlan::name()` method can
/// be called from a trait object.
/// Related ticket: https://github.com/apache/datafusion/pull/11047
#[allow(dead_code)]
fn use_execution_plan_as_trait_object(plan: &dyn ExecutionPlan) {
let _ = plan.name();
}
#[test]
fn test_check_not_null_constraints_accept_non_null() -> Result<()> {
check_not_null_constraints(
RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, true)])),
vec![Arc::new(Int32Array::from(vec![Some(1), Some(2), Some(3)]))],
)?,
&vec![0],
)?;
Ok(())
}
#[test]
fn test_check_not_null_constraints_reject_null() -> Result<()> {
let result = check_not_null_constraints(
RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, true)])),
vec![Arc::new(Int32Array::from(vec![Some(1), None, Some(3)]))],
)?,
&vec![0],
);
assert!(result.is_err());
assert_starts_with(
result.err().unwrap().message().as_ref(),
"Invalid batch column at '0' has null but schema specifies non-nullable",
);
Ok(())
}
#[test]
fn test_check_not_null_constraints_with_run_end_array() -> Result<()> {
// some null value inside REE array
let run_ends = Int32Array::from(vec![1, 2, 3, 4]);
let values = Int32Array::from(vec![Some(0), None, Some(1), None]);
let run_end_array = RunArray::try_new(&run_ends, &values)?;
let result = check_not_null_constraints(
RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new(
"a",
run_end_array.data_type().to_owned(),
true,
)])),
vec![Arc::new(run_end_array)],
)?,
&vec![0],
);
assert!(result.is_err());
assert_starts_with(
result.err().unwrap().message().as_ref(),
"Invalid batch column at '0' has null but schema specifies non-nullable",
);
Ok(())
}
#[test]
fn test_check_not_null_constraints_with_dictionary_array_with_null() -> Result<()> {
let values = Arc::new(Int32Array::from(vec![Some(1), None, Some(3), Some(4)]));
let keys = Int32Array::from(vec![0, 1, 2, 3]);
let dictionary = DictionaryArray::new(keys, values);
let result = check_not_null_constraints(
RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new(
"a",
dictionary.data_type().to_owned(),
true,
)])),
vec![Arc::new(dictionary)],
)?,
&vec![0],
);
assert!(result.is_err());
assert_starts_with(
result.err().unwrap().message().as_ref(),
"Invalid batch column at '0' has null but schema specifies non-nullable",
);
Ok(())
}
#[test]
fn test_check_not_null_constraints_with_dictionary_masking_null() -> Result<()> {
// some null value marked out by dictionary array
let values = Arc::new(Int32Array::from(vec![
Some(1),
None, // this null value is masked by dictionary keys
Some(3),
Some(4),
]));
let keys = Int32Array::from(vec![0, /*1,*/ 2, 3]);
let dictionary = DictionaryArray::new(keys, values);
check_not_null_constraints(
RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new(
"a",
dictionary.data_type().to_owned(),
true,
)])),
vec![Arc::new(dictionary)],
)?,
&vec![0],
)?;
Ok(())
}
#[test]
fn test_check_not_null_constraints_on_null_type() -> Result<()> {
// null value of Null type
let result = check_not_null_constraints(
RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Null, true)])),
vec![Arc::new(NullArray::new(3))],
)?,
&vec![0],
);
assert!(result.is_err());
assert_starts_with(
result.err().unwrap().message().as_ref(),
"Invalid batch column at '0' has null but schema specifies non-nullable",
);
Ok(())
}
fn assert_starts_with(actual: impl AsRef<str>, expected_prefix: impl AsRef<str>) {
let actual = actual.as_ref();
let expected_prefix = expected_prefix.as_ref();
assert!(
actual.starts_with(expected_prefix),
"Expected '{}' to start with '{}'",
actual,
expected_prefix
);
}
}