1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.
#![warn(missing_docs, clippy::needless_borrow)]

//! [DataFusion] is an extensible query engine written in Rust that
//! uses [Apache Arrow] as its in-memory format. DataFusion help developers
//! build fast and feature rich database and analytic systems, customized to
//! particular workloads. See [use cases] for examples
//!
//! "Out of the box," DataFusion quickly runs complex [SQL] and
//! [`DataFrame`] queries using a full-featured query planner, a columnar,
//! streaming, multi-threaded, vectorized execution engine, and partitioned data
//! sources (Parquet, CSV, JSON, and Avro).
//!
//! DataFusion is designed for easy customization such as
//! additional data sources, query languages, functions, custom
//! operators and more. See the [Architecture] section for more details.
//!
//! [DataFusion]: https://datafusion.apache.org/
//! [Apache Arrow]: https://arrow.apache.org
//! [use cases]: https://datafusion.apache.org/user-guide/introduction.html#use-cases
//! [SQL]: https://datafusion.apache.org/user-guide/sql/index.html
//! [`DataFrame`]: dataframe::DataFrame
//! [Architecture]: #architecture
//!
//! # Examples
//!
//! The main entry point for interacting with DataFusion is the
//! [`SessionContext`]. [`Expr`]s represent expressions such as `a + b`.
//!
//! [`SessionContext`]: execution::context::SessionContext
//!
//! ## DataFrame
//!
//! To execute a query against data stored
//! in a CSV file using a [`DataFrame`]:
//!
//! ```rust
//! # use datafusion::prelude::*;
//! # use datafusion::error::Result;
//! # use datafusion::functions_aggregate::expr_fn::min;
//! # use datafusion::arrow::record_batch::RecordBatch;
//!
//! # #[tokio::main]
//! # async fn main() -> Result<()> {
//! let ctx = SessionContext::new();
//!
//! // create the dataframe
//! let df = ctx.read_csv("tests/data/example.csv", CsvReadOptions::new()).await?;
//!
//! // create a plan
//! let df = df.filter(col("a").lt_eq(col("b")))?
//!            .aggregate(vec![col("a")], vec![min(col("b"))])?
//!            .limit(0, Some(100))?;
//!
//! // execute the plan
//! let results: Vec<RecordBatch> = df.collect().await?;
//!
//! // format the results
//! let pretty_results = arrow::util::pretty::pretty_format_batches(&results)?
//!    .to_string();
//!
//! let expected = vec![
//!     "+---+----------------+",
//!     "| a | min(?table?.b) |",
//!     "+---+----------------+",
//!     "| 1 | 2              |",
//!     "+---+----------------+"
//! ];
//!
//! assert_eq!(pretty_results.trim().lines().collect::<Vec<_>>(), expected);
//! # Ok(())
//! # }
//! ```
//!
//! ## SQL
//!
//! To execute a query against a CSV file using [SQL]:
//!
//! ```
//! # use datafusion::prelude::*;
//! # use datafusion::error::Result;
//! # use datafusion::arrow::record_batch::RecordBatch;
//!
//! # #[tokio::main]
//! # async fn main() -> Result<()> {
//! let ctx = SessionContext::new();
//!
//! ctx.register_csv("example", "tests/data/example.csv", CsvReadOptions::new()).await?;
//!
//! // create a plan
//! let df = ctx.sql("SELECT a, MIN(b) FROM example WHERE a <= b GROUP BY a LIMIT 100").await?;
//!
//! // execute the plan
//! let results: Vec<RecordBatch> = df.collect().await?;
//!
//! // format the results
//! let pretty_results = arrow::util::pretty::pretty_format_batches(&results)?
//!   .to_string();
//!
//! let expected = vec![
//!     "+---+----------------+",
//!     "| a | min(example.b) |",
//!     "+---+----------------+",
//!     "| 1 | 2              |",
//!     "+---+----------------+"
//! ];
//!
//! assert_eq!(pretty_results.trim().lines().collect::<Vec<_>>(), expected);
//! # Ok(())
//! # }
//! ```
//!
//! ## More Examples
//!
//! There are many additional annotated examples of using DataFusion in the [datafusion-examples] directory.
//!
//! [datafusion-examples]: https://github.com/apache/datafusion/tree/main/datafusion-examples
//!
//! # Architecture
//!
//! <!-- NOTE: The goal of this section is to provide a high level
//! overview of how DataFusion is organized and then link to other
//! sections of the docs with more details -->
//!
//! You can find a formal description of DataFusion's architecture in our
//! [SIGMOD 2024 Paper].
//!
//! [SIGMOD 2024 Paper]: https://dl.acm.org/doi/10.1145/3626246.3653368
//!
//! ## Design Goals
//! DataFusion's Architecture Goals are:
//!
//! 1. Work β€œout of the box”: Provide a very fast, world class query engine with
//!    minimal setup or required configuration.
//!
//! 2. Customizable everything: All behavior should be customizable by
//!    implementing traits.
//!
//! 3. Architecturally boring πŸ₯±: Follow industrial best practice rather than
//!    trying cutting edge, but unproven, techniques.
//!
//! With these principles, users start with a basic, high-performance engine
//! and specialize it over time to suit their needs and available engineering
//! capacity.
//!
//! ## Overview  Presentations
//!
//! The following presentations offer high level overviews of the
//! different components and how they interact together.
//!
//! - [Apr 2023]: The Apache DataFusion Architecture talks
//!   - _Query Engine_: [recording](https://youtu.be/NVKujPxwSBA) and [slides](https://docs.google.com/presentation/d/1D3GDVas-8y0sA4c8EOgdCvEjVND4s2E7I6zfs67Y4j8/edit#slide=id.p)
//!   - _Logical Plan and Expressions_: [recording](https://youtu.be/EzZTLiSJnhY) and [slides](https://docs.google.com/presentation/d/1ypylM3-w60kVDW7Q6S99AHzvlBgciTdjsAfqNP85K30)
//!   - _Physical Plan and Execution_: [recording](https://youtu.be/2jkWU3_w6z0) and [slides](https://docs.google.com/presentation/d/1cA2WQJ2qg6tx6y4Wf8FH2WVSm9JQ5UgmBWATHdik0hg)
//! - [July 2022]: DataFusion and Arrow: Supercharge Your Data Analytical Tool with a Rusty Query Engine: [recording](https://www.youtube.com/watch?v=Rii1VTn3seQ) and [slides](https://docs.google.com/presentation/d/1q1bPibvu64k2b7LPi7Yyb0k3gA1BiUYiUbEklqW1Ckc/view#slide=id.g11054eeab4c_0_1165)
//! - [March 2021]: The DataFusion architecture is described in _Query Engine Design and the Rust-Based DataFusion in Apache Arrow_: [recording](https://www.youtube.com/watch?v=K6eCAVEk4kU) (DataFusion content starts [~ 15 minutes in](https://www.youtube.com/watch?v=K6eCAVEk4kU&t=875s)) and [slides](https://www.slideshare.net/influxdata/influxdb-iox-tech-talks-query-engine-design-and-the-rustbased-datafusion-in-apache-arrow-244161934)
//! - [February 2021]: How DataFusion is used within the Ballista Project is described in _Ballista: Distributed Compute with Rust and Apache Arrow_: [recording](https://www.youtube.com/watch?v=ZZHQaOap9pQ)
//!
//! ## Customization and Extension
//!
//! DataFusion is designed to be highly extensible, so you can
//! start with a working, full featured engine, and then
//! specialize any behavior for your usecase. For example,
//! some projects may add custom [`ExecutionPlan`] operators, or create their own
//! query language that directly creates [`LogicalPlan`] rather than using the
//! built in SQL planner, [`SqlToRel`].
//!
//! In order to achieve this, DataFusion supports extension at many points:
//!
//! * read from any datasource ([`TableProvider`])
//! * define your own catalogs, schemas, and table lists ([`catalog`] and [`CatalogProvider`])
//! * build your own query language or plans ([`LogicalPlanBuilder`])
//! * declare and use user-defined functions ([`ScalarUDF`], and [`AggregateUDF`], [`WindowUDF`])
//! * add custom plan rewrite passes ([`AnalyzerRule`], [`OptimizerRule`]  and [`PhysicalOptimizerRule`])
//! * extend the planner to use user-defined logical and physical nodes ([`QueryPlanner`])
//!
//! You can find examples of each of them in the [datafusion-examples] directory.
//!
//! [`TableProvider`]: crate::datasource::TableProvider
//! [`CatalogProvider`]: crate::catalog::CatalogProvider
//! [`LogicalPlanBuilder`]: datafusion_expr::logical_plan::builder::LogicalPlanBuilder
//! [`ScalarUDF`]: crate::logical_expr::ScalarUDF
//! [`AggregateUDF`]: crate::logical_expr::AggregateUDF
//! [`WindowUDF`]: crate::logical_expr::WindowUDF
//! [`QueryPlanner`]: execution::context::QueryPlanner
//! [`OptimizerRule`]: datafusion_optimizer::optimizer::OptimizerRule
//! [`AnalyzerRule`]:  datafusion_optimizer::analyzer::AnalyzerRule
//! [`PhysicalOptimizerRule`]: crate::physical_optimizer::PhysicalOptimizerRule
//!
//! ## Query Planning and Execution Overview
//!
//! ### SQL
//!
//! ```text
//!                 Parsed with            SqlToRel creates
//!                 sqlparser              initial plan
//! β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”             β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
//! β”‚   SELECT *    β”‚           β”‚Query {  β”‚             β”‚Project      β”‚
//! β”‚   FROM ...    │──────────▢│..       │────────────▢│  TableScan  β”‚
//! β”‚               β”‚           β”‚}        β”‚             β”‚    ...      β”‚
//! β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜             β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
//!
//!   SQL String                 sqlparser               LogicalPlan
//!                              AST nodes
//! ```
//!
//! 1. The query string is parsed to an Abstract Syntax Tree (AST)
//!    [`Statement`] using [sqlparser].
//!
//! 2. The AST is converted to a [`LogicalPlan`] and logical
//!    expressions [`Expr`]s to compute the desired result by the
//!    [`SqlToRel`] planner.
//!
//! [`Statement`]: https://docs.rs/sqlparser/latest/sqlparser/ast/enum.Statement.html
//!
//! ### DataFrame
//!
//! When executing plans using the [`DataFrame`] API, the process is
//! identical as with SQL, except the DataFrame API builds the
//! [`LogicalPlan`] directly using [`LogicalPlanBuilder`]. Systems
//! that have their own custom query languages typically also build
//! [`LogicalPlan`] directly.
//!
//! ### Planning
//!
//! ```text
//!             AnalyzerRules and      PhysicalPlanner          PhysicalOptimizerRules
//!             OptimizerRules         creates ExecutionPlan    improve performance
//!             rewrite plan
//! β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
//! β”‚Project      β”‚        β”‚Project(x, y)β”‚      β”‚ProjectExec    β”‚        β”‚ProjectExec    β”‚
//! β”‚  TableScan  │──...──▢│  TableScan  │─────▢│  ...          │──...──▢│  ...          β”‚
//! β”‚    ...      β”‚        β”‚    ...      β”‚      β”‚    ParquetExecβ”‚        β”‚    ParquetExecβ”‚
//! β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
//!
//!  LogicalPlan            LogicalPlan         ExecutionPlan             ExecutionPlan
//! ```
//!
//! To process large datasets with many rows as efficiently as
//! possible, significant effort is spent planning and
//! optimizing, in the following manner:
//!
//! 1. The [`LogicalPlan`] is checked and rewritten to enforce
//!    semantic rules, such as type coercion, by [`AnalyzerRule`]s
//!
//! 2. The [`LogicalPlan`] is rewritten by [`OptimizerRule`]s, such as
//!    projection and filter pushdown, to improve its efficiency.
//!
//! 3. The [`LogicalPlan`] is converted to an [`ExecutionPlan`] by a
//!    [`PhysicalPlanner`]
//!
//! 4. The [`ExecutionPlan`] is rewritten by
//!    [`PhysicalOptimizerRule`]s, such as sort and join selection, to
//!    improve its efficiency.
//!
//! ## Data Sources
//!
//! ```text
//! Planning       β”‚
//! requests       β”‚            TableProvider::scan
//! information    β”‚            creates an
//! such as schema β”‚            ExecutionPlan
//!                β”‚
//!                β–Ό
//!   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
//!   β”‚                         β”‚         β”‚              β”‚
//!   β”‚impl TableProvider       │────────▢│ParquetExec   β”‚
//!   β”‚                         β”‚         β”‚              β”‚
//!   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
//!         TableProvider
//!         (built in or user provided)    ExecutionPlan
//! ```
//!
//! DataFusion includes several built in data sources for common use
//! cases, and can be extended by implementing the [`TableProvider`]
//! trait. A [`TableProvider`] provides information for planning and
//! an [`ExecutionPlan`]s for execution.
//!
//! 1. [`ListingTable`]: Reads data from Parquet, JSON, CSV, or AVRO
//!    files.  Supports single files or multiple files with HIVE style
//!    partitioning, optional compression, directly reading from remote
//!    object store and more.
//!
//! 2. [`MemTable`]: Reads data from in memory [`RecordBatch`]es.
//!
//! 3. [`StreamingTable`]: Reads data from potentially unbounded inputs.
//!
//! [`ListingTable`]: crate::datasource::listing::ListingTable
//! [`MemTable`]: crate::datasource::memory::MemTable
//! [`StreamingTable`]: crate::datasource::streaming::StreamingTable
//!
//! ## Plan Representations
//!
//! ### Logical Plans
//! Logical planning yields [`LogicalPlan`] nodes and [`Expr`]
//! representing expressions which are [`Schema`] aware and represent statements
//! independent of how they are physically executed.
//! A [`LogicalPlan`] is a Directed Acyclic Graph (DAG) of other
//! [`LogicalPlan`]s, each potentially containing embedded [`Expr`]s.
//!
//! `LogicalPlan`s can be rewritten with [`TreeNode`] API, see the
//! [`tree_node module`] for more details.
//!
//! [`Expr`]s can also be rewritten with [`TreeNode`] API and simplified using
//! [`ExprSimplifier`]. Examples of working with and executing `Expr`s can be
//! found in the [`expr_api`.rs] example
//!
//! [`TreeNode`]: datafusion_common::tree_node::TreeNode
//! [`tree_node module`]: datafusion_expr::logical_plan::tree_node
//! [`ExprSimplifier`]: crate::optimizer::simplify_expressions::ExprSimplifier
//! [`expr_api`.rs]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/expr_api.rs
//!
//! ### Physical Plans
//!
//! An [`ExecutionPlan`] (sometimes referred to as a "physical plan")
//! is a plan that can be executed against data. It a DAG of other
//! [`ExecutionPlan`]s each potentially containing expressions that implement the
//! [`PhysicalExpr`] trait.
//!
//! Compared to a [`LogicalPlan`], an [`ExecutionPlan`] has additional concrete
//! information about how to perform calculations (e.g. hash vs merge
//! join), and how data flows during execution (e.g. partitioning and
//! sortedness).
//!
//! [cp_solver] performs range propagation analysis on [`PhysicalExpr`]s and
//! [`PruningPredicate`] can prove certain boolean [`PhysicalExpr`]s used for
//! filtering can never be `true` using additional statistical information.
//!
//! [cp_solver]: crate::physical_expr::intervals::cp_solver
//! [`PruningPredicate`]: crate::physical_optimizer::pruning::PruningPredicate
//! [`PhysicalExpr`]: crate::physical_plan::PhysicalExpr
//!
//! ## Execution
//!
//! ```text
//!            ExecutionPlan::execute             Calling next() on the
//!            produces a stream                  stream produces the data
//!
//! β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
//! β”‚ProjectExec    β”‚      β”‚impl                     β”‚    β”Œβ”€β”€β”€β–Άβ”‚RecordBatch β”‚
//! β”‚  ...          │─────▢│SendableRecordBatchStream│─────    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
//! β”‚    ParquetExecβ”‚      β”‚                         β”‚    β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
//! β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”œβ”€β”€β”€β–Άβ”‚RecordBatch β”‚
//!               β–²                                       β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
//! ExecutionPlan β”‚                                       β”‚         ...
//!               β”‚                                       β”‚
//!               β”‚                                       β”‚    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
//!             PhysicalOptimizerRules                    β”œβ”€β”€β”€β–Άβ”‚RecordBatch β”‚
//!             request information                       β”‚    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
//!             such as partitioning                      β”‚    β”Œ ─ ─ ─ ─ ─ ─
//!                                                       └───▢ None        β”‚
//!                                                            β”” ─ ─ ─ ─ ─ ─
//! ```
//!
//! [`ExecutionPlan`]s process data using the [Apache Arrow] memory
//! format, making heavy use of functions from the [arrow]
//! crate. Values are represented with [`ColumnarValue`], which are either
//! [`ScalarValue`] (single constant values) or [`ArrayRef`] (Arrow
//! Arrays).
//!
//! Calling [`execute`] produces 1 or more partitions of data,
//! as a [`SendableRecordBatchStream`], which implements a pull based execution
//! API. Calling `.next().await` will incrementally compute and return the next
//! [`RecordBatch`]. Balanced parallelism is achieved using [Volcano style]
//! "Exchange" operations implemented by [`RepartitionExec`].
//!
//! While some recent research such as [Morsel-Driven Parallelism] describes challenges
//! with the pull style Volcano execution model on NUMA architectures, in practice DataFusion achieves
//! similar scalability as systems that use morsel driven approach such as DuckDB.
//! See the [DataFusion paper submitted to SIGMOD] for more details.
//!
//! [`execute`]: physical_plan::ExecutionPlan::execute
//! [`SendableRecordBatchStream`]: crate::physical_plan::SendableRecordBatchStream
//! [`ColumnarValue`]: datafusion_expr::ColumnarValue
//! [`ScalarValue`]: crate::scalar::ScalarValue
//! [`ArrayRef`]: arrow::array::ArrayRef
//! [`Stream`]: futures::stream::Stream
//!
//! See the [implementors of `ExecutionPlan`] for a list of physical operators available.
//!
//! [`RepartitionExec`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/repartition/struct.RepartitionExec.html
//! [Volcano style]: https://w6113.github.io/files/papers/volcanoparallelism-89.pdf
//! [Morsel-Driven Parallelism]: https://db.in.tum.de/~leis/papers/morsels.pdf
//! [DataFusion paper submitted SIGMOD]: https://github.com/apache/datafusion/files/13874720/DataFusion_Query_Engine___SIGMOD_2024.pdf
//! [implementors of `ExecutionPlan`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.ExecutionPlan.html#implementors
//!
//! ## Thread Scheduling
//!
//! DataFusion incrementally computes output from a [`SendableRecordBatchStream`]
//! with `target_partitions` threads. Parallelism is implementing using multiple
//! [Tokio] [`task`]s, which are executed by threads managed by a tokio Runtime.
//! While tokio is most commonly used
//! for asynchronous network I/O, its combination of an efficient, work-stealing
//! scheduler, first class compiler support for automatic continuation generation,
//! and exceptional performance makes it a compelling choice for CPU intensive
//! applications as well. This is explained in more detail in [Using Rustlang’s Async Tokio
//! Runtime for CPU-Bound Tasks].
//!
//! [Tokio]:  https://tokio.rs
//! [`task`]: tokio::task
//! [Using Rustlang’s Async Tokio Runtime for CPU-Bound Tasks]: https://thenewstack.io/using-rustlangs-async-tokio-runtime-for-cpu-bound-tasks/
//!
//! ## State Management and Configuration
//!
//! [`ConfigOptions`] contain options to control DataFusion's
//! execution.
//!
//! [`ConfigOptions`]: datafusion_common::config::ConfigOptions
//!
//! The state required to execute queries is managed by the following
//! structures:
//!
//! 1. [`SessionContext`]: State needed for create [`LogicalPlan`]s such
//!    as the table definitions, and the function registries.
//!
//! 2. [`TaskContext`]: State needed for execution such as the
//!    [`MemoryPool`], [`DiskManager`], and [`ObjectStoreRegistry`].
//!
//! 3. [`ExecutionProps`]: Per-execution properties and data (such as
//!    starting timestamps, etc).
//!
//! [`SessionContext`]: crate::execution::context::SessionContext
//! [`TaskContext`]: crate::execution::context::TaskContext
//! [`ExecutionProps`]: crate::execution::context::ExecutionProps
//!
//! ### Resource Management
//!
//! The amount of memory and temporary local disk space used by
//! DataFusion when running a plan can be controlled using the
//! [`MemoryPool`] and [`DiskManager`]. Other runtime options can be
//! found on [`RuntimeEnv`].
//!
//! [`DiskManager`]: crate::execution::DiskManager
//! [`MemoryPool`]: crate::execution::memory_pool::MemoryPool
//! [`RuntimeEnv`]: crate::execution::runtime_env::RuntimeEnv
//! [`ObjectStoreRegistry`]: crate::datasource::object_store::ObjectStoreRegistry
//!
//! ## Crate Organization
//!
//! DataFusion is organized into multiple crates to enforce modularity
//! and improve compilation times. The crates are:
//!
//! * [datafusion_common]: Common traits and types
//! * [datafusion_execution]: State and structures needed for execution
//! * [datafusion_expr]: [`LogicalPlan`],  [`Expr`] and related logical planning structure
//! * [datafusion_functions]: Scalar function packages
//! * [datafusion_functions_nested]: Scalar function packages for `ARRAY`s, `MAP`s and `STRUCT`s
//! * [datafusion_optimizer]: [`OptimizerRule`]s and [`AnalyzerRule`]s
//! * [datafusion_physical_expr]: [`PhysicalExpr`] and related expressions
//! * [datafusion_physical_plan]: [`ExecutionPlan`] and related expressions
//! * [datafusion_sql]: SQL planner ([`SqlToRel`])
//!
//! ## Citing DataFusion in Academic Papers
//!
//! You can use the following citation to reference DataFusion in academic papers:
//!
//! ```text
//! @inproceedings{lamb2024apache
//!   title={Apache Arrow DataFusion: A Fast, Embeddable, Modular Analytic Query Engine},
//!   author={Lamb, Andrew and Shen, Yijie and Heres, Dani{\"e}l and Chakraborty, Jayjeet and Kabak, Mehmet Ozan and Hsieh, Liang-Chi and Sun, Chao},
//!   booktitle={Companion of the 2024 International Conference on Management of Data},
//!   pages={5--17},
//!   year={2024}
//! }
//! ```
//!
//! [sqlparser]: https://docs.rs/sqlparser/latest/sqlparser
//! [`SqlToRel`]: sql::planner::SqlToRel
//! [`Expr`]: datafusion_expr::Expr
//! [`LogicalPlan`]: datafusion_expr::LogicalPlan
//! [`AnalyzerRule`]: datafusion_optimizer::analyzer::AnalyzerRule
//! [`OptimizerRule`]: optimizer::optimizer::OptimizerRule
//! [`ExecutionPlan`]: physical_plan::ExecutionPlan
//! [`PhysicalPlanner`]: physical_planner::PhysicalPlanner
//! [`PhysicalOptimizerRule`]: datafusion::physical_optimizer::optimizer::PhysicalOptimizerRule
//! [`Schema`]: arrow::datatypes::Schema
//! [`PhysicalExpr`]: physical_plan::PhysicalExpr
//! [`AggregateExpr`]: physical_plan::AggregateExpr
//! [`RecordBatch`]: arrow::record_batch::RecordBatch
//! [`RecordBatchReader`]: arrow::record_batch::RecordBatchReader
//! [`Array`]: arrow::array::Array

/// DataFusion crate version
pub const DATAFUSION_VERSION: &str = env!("CARGO_PKG_VERSION");

extern crate core;
extern crate sqlparser;

pub mod catalog_common;
pub mod dataframe;
pub mod datasource;
pub mod error;
pub mod execution;
pub mod physical_optimizer;
pub mod physical_planner;
pub mod prelude;
pub mod scalar;
pub mod variable;

// re-export dependencies from arrow-rs to minimize version maintenance for crate users
pub use arrow;
#[cfg(feature = "parquet")]
pub use parquet;

// re-export DataFusion sub-crates at the top level. Use `pub use *`
// so that the contents of the subcrates appears in rustdocs
// for details, see https://github.com/apache/datafusion/issues/6648

/// re-export of [`datafusion_common`] crate
pub mod common {
    pub use datafusion_common::*;

    /// re-export of [`datafusion_common_runtime`] crate
    pub mod runtime {
        pub use datafusion_common_runtime::*;
    }
}

// Backwards compatibility
pub use common::config;

// NB datafusion execution is re-exported in the `execution` module

/// re-export of [`datafusion_catalog`] crate
pub mod catalog {
    pub use datafusion_catalog::*;
}

/// re-export of [`datafusion_expr`] crate
pub mod logical_expr {
    pub use datafusion_expr::*;
}

/// re-export of [`datafusion_optimizer`] crate
pub mod optimizer {
    pub use datafusion_optimizer::*;
}

/// re-export of [`datafusion_physical_expr`] crate
pub mod physical_expr_common {
    pub use datafusion_physical_expr_common::*;
}

/// re-export of [`datafusion_physical_expr`] crate
pub mod physical_expr {
    pub use datafusion_physical_expr::*;
}

/// re-export of [`datafusion_physical_plan`] crate
pub mod physical_plan {
    pub use datafusion_physical_plan::*;
}

// Reexport testing macros for compatibility
pub use datafusion_common::assert_batches_eq;
pub use datafusion_common::assert_batches_sorted_eq;

/// re-export of [`datafusion_sql`] crate
pub mod sql {
    pub use datafusion_sql::*;
}

/// re-export of [`datafusion_functions`] crate
pub mod functions {
    pub use datafusion_functions::*;
}

/// re-export of [`datafusion_functions_nested`] crate, if "nested_expressions" feature is enabled
pub mod functions_nested {
    #[cfg(feature = "nested_expressions")]
    pub use datafusion_functions_nested::*;
}

/// re-export of [`datafusion_functions_nested`] crate as [`functions_array`] for backward compatibility, if "nested_expressions" feature is enabled
#[deprecated(since = "41.0.0", note = "use datafusion-functions-nested instead")]
pub mod functions_array {
    #[cfg(feature = "nested_expressions")]
    pub use datafusion_functions_nested::*;
}

/// re-export of [`datafusion_functions_aggregate`] crate
pub mod functions_aggregate {
    pub use datafusion_functions_aggregate::*;
}

#[cfg(test)]
pub mod test;
pub mod test_util;

#[cfg(doctest)]
doc_comment::doctest!("../../../README.md", readme_example_test);

// Instructions for Documentation Examples
//
// The following commands test the examples from the user guide as part of
// `cargo test --doc`
//
// # Adding new tests:
//
// Simply add code like this to your .md file and ensure your md file is
// included in the lists below.
//
// ```rust
// <code here will be tested>
// ```
//
// Note that sometimes it helps to author the doctest as a standalone program
// first, and then copy it into the user guide.
//
// # Debugging Test Failures
//
// Unfortunately, the line numbers reported by doctest do not correspond to the
// line numbers of in the .md files. Thus, if a doctest fails, use the name of
// the test to find the relevant file in the list below, and then find the
// example in that file to fix.
//
// For example, if `user_guide_expressions(line 123)` fails,
// go to `docs/source/user-guide/expressions.md` to find the relevant problem.

#[cfg(doctest)]
doc_comment::doctest!(
    "../../../docs/source/user-guide/example-usage.md",
    user_guide_example_usage
);

#[cfg(doctest)]
doc_comment::doctest!(
    "../../../docs/source/user-guide/crate-configuration.md",
    user_guide_crate_configuration
);

#[cfg(doctest)]
doc_comment::doctest!(
    "../../../docs/source/user-guide/configs.md",
    user_guide_configs
);

#[cfg(doctest)]
doc_comment::doctest!(
    "../../../docs/source/user-guide/dataframe.md",
    user_guide_dataframe
);

#[cfg(doctest)]
doc_comment::doctest!(
    "../../../docs/source/user-guide/expressions.md",
    user_guide_expressions
);

#[cfg(doctest)]
doc_comment::doctest!(
    "../../../docs/source/library-user-guide/using-the-sql-api.md",
    library_user_guide_sql_api
);

#[cfg(doctest)]
doc_comment::doctest!(
    "../../../docs/source/library-user-guide/using-the-dataframe-api.md",
    library_user_guide_dataframe_api
);