deltalake_core/operations/
writer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
//! Abstractions and implementations for writing data to delta tables

use std::collections::HashMap;

use arrow_array::RecordBatch;
use arrow_schema::{ArrowError, SchemaRef as ArrowSchemaRef};
use bytes::Bytes;
use delta_kernel::expressions::Scalar;
use futures::{StreamExt, TryStreamExt};
use indexmap::IndexMap;
use object_store::{path::Path, ObjectStore};
use parquet::arrow::ArrowWriter;
use parquet::basic::Compression;
use parquet::file::properties::WriterProperties;
use tracing::debug;

use crate::crate_version;
use crate::errors::{DeltaResult, DeltaTableError};
use crate::kernel::{Add, PartitionsExt};
use crate::storage::ObjectStoreRef;
use crate::writer::record_batch::{divide_by_partition_values, PartitionResult};
use crate::writer::stats::create_add;
use crate::writer::utils::{
    arrow_schema_without_partitions, next_data_path, record_batch_without_partitions,
    ShareableBuffer,
};

// TODO databricks often suggests a file size of 100mb, should we set this default?
const DEFAULT_TARGET_FILE_SIZE: usize = 104_857_600;
const DEFAULT_WRITE_BATCH_SIZE: usize = 1024;

#[derive(thiserror::Error, Debug)]
enum WriteError {
    #[error("Unexpected Arrow schema: got: {schema}, expected: {expected_schema}")]
    SchemaMismatch {
        schema: ArrowSchemaRef,
        expected_schema: ArrowSchemaRef,
    },

    #[error("Error creating add action: {source}")]
    CreateAdd {
        source: Box<dyn std::error::Error + Send + Sync + 'static>,
    },

    #[error("Error handling Arrow data: {source}")]
    Arrow {
        #[from]
        source: ArrowError,
    },

    #[error("Error partitioning record batch: {0}")]
    Partitioning(String),
}

impl From<WriteError> for DeltaTableError {
    fn from(err: WriteError) -> Self {
        match err {
            WriteError::SchemaMismatch { .. } => DeltaTableError::SchemaMismatch {
                msg: err.to_string(),
            },
            WriteError::Arrow { source } => DeltaTableError::Arrow { source },
            _ => DeltaTableError::GenericError {
                source: Box::new(err),
            },
        }
    }
}

/// Configuration to write data into Delta tables
#[derive(Debug)]
pub struct WriterConfig {
    /// Schema of the delta table
    table_schema: ArrowSchemaRef,
    /// Column names for columns the table is partitioned by
    partition_columns: Vec<String>,
    /// Properties passed to underlying parquet writer
    writer_properties: WriterProperties,
    /// Size above which we will write a buffered parquet file to disk.
    target_file_size: usize,
    /// Row chunks passed to parquet writer. This and the internal parquet writer settings
    /// determine how fine granular we can track / control the size of resulting files.
    write_batch_size: usize,
    /// Num index cols to collect stats for
    num_indexed_cols: i32,
    /// Stats columns, specific columns to collect stats from, takes precedence over num_indexed_cols
    stats_columns: Option<Vec<String>>,
}

impl WriterConfig {
    /// Create a new instance of [WriterConfig].
    pub fn new(
        table_schema: ArrowSchemaRef,
        partition_columns: Vec<String>,
        writer_properties: Option<WriterProperties>,
        target_file_size: Option<usize>,
        write_batch_size: Option<usize>,
        num_indexed_cols: i32,
        stats_columns: Option<Vec<String>>,
    ) -> Self {
        let writer_properties = writer_properties.unwrap_or_else(|| {
            WriterProperties::builder()
                .set_compression(Compression::SNAPPY)
                .build()
        });
        let target_file_size = target_file_size.unwrap_or(DEFAULT_TARGET_FILE_SIZE);
        let write_batch_size = write_batch_size.unwrap_or(DEFAULT_WRITE_BATCH_SIZE);

        Self {
            table_schema,
            partition_columns,
            writer_properties,
            target_file_size,
            write_batch_size,
            num_indexed_cols,
            stats_columns,
        }
    }

    /// Schema of files written to disk
    pub fn file_schema(&self) -> ArrowSchemaRef {
        arrow_schema_without_partitions(&self.table_schema, &self.partition_columns)
    }
}

#[derive(Debug)]
/// A parquet writer implementation tailored to the needs of writing data to a delta table.
pub struct DeltaWriter {
    /// An object store pointing at Delta table root
    object_store: ObjectStoreRef,
    /// configuration for the writers
    config: WriterConfig,
    /// partition writers for individual partitions
    partition_writers: HashMap<Path, PartitionWriter>,
}

impl DeltaWriter {
    /// Create a new instance of [`DeltaWriter`]
    pub fn new(object_store: ObjectStoreRef, config: WriterConfig) -> Self {
        Self {
            object_store,
            config,
            partition_writers: HashMap::new(),
        }
    }

    /// Apply custom writer_properties to the underlying parquet writer
    pub fn with_writer_properties(mut self, writer_properties: WriterProperties) -> Self {
        self.config.writer_properties = writer_properties;
        self
    }

    fn divide_by_partition_values(
        &mut self,
        values: &RecordBatch,
    ) -> DeltaResult<Vec<PartitionResult>> {
        Ok(divide_by_partition_values(
            self.config.file_schema(),
            self.config.partition_columns.clone(),
            values,
        )
        .map_err(|err| WriteError::Partitioning(err.to_string()))?)
    }

    /// Write a batch to the partition induced by the partition_values. The record batch is expected
    /// to be pre-partitioned and only contain rows that belong into the same partition.
    /// However, it should still contain the partition columns.
    pub async fn write_partition(
        &mut self,
        record_batch: RecordBatch,
        partition_values: &IndexMap<String, Scalar>,
    ) -> DeltaResult<()> {
        let partition_key = Path::parse(partition_values.hive_partition_path())?;

        let record_batch =
            record_batch_without_partitions(&record_batch, &self.config.partition_columns)?;

        match self.partition_writers.get_mut(&partition_key) {
            Some(writer) => {
                writer.write(&record_batch).await?;
            }
            None => {
                let config = PartitionWriterConfig::try_new(
                    self.config.file_schema(),
                    partition_values.clone(),
                    Some(self.config.writer_properties.clone()),
                    Some(self.config.target_file_size),
                    Some(self.config.write_batch_size),
                )?;
                let mut writer = PartitionWriter::try_with_config(
                    self.object_store.clone(),
                    config,
                    self.config.num_indexed_cols,
                    self.config.stats_columns.clone(),
                )?;
                writer.write(&record_batch).await?;
                let _ = self.partition_writers.insert(partition_key, writer);
            }
        }

        Ok(())
    }

    /// Buffers record batches in-memory per partition up to appx. `target_file_size` for a partition.
    /// Flushes data to storage once a full file can be written.
    ///
    /// The `close` method has to be invoked to write all data still buffered
    /// and get the list of all written files.
    pub async fn write(&mut self, batch: &RecordBatch) -> DeltaResult<()> {
        for result in self.divide_by_partition_values(batch)? {
            self.write_partition(result.record_batch, &result.partition_values)
                .await?;
        }
        Ok(())
    }

    /// Close the writer and get the new [Add] actions.
    ///
    /// This will flush all remaining data.
    pub async fn close(mut self) -> DeltaResult<Vec<Add>> {
        let writers = std::mem::take(&mut self.partition_writers);
        let actions = futures::stream::iter(writers)
            .map(|(_, writer)| async move {
                let writer_actions = writer.close().await?;
                Ok::<_, DeltaTableError>(writer_actions)
            })
            .buffered(num_cpus::get())
            .try_fold(Vec::new(), |mut acc, actions| {
                acc.extend(actions);
                futures::future::ready(Ok(acc))
            })
            .await?;

        Ok(actions)
    }
}

/// Write configuration for partition writers
#[derive(Debug)]
pub struct PartitionWriterConfig {
    /// Schema of the data written to disk
    file_schema: ArrowSchemaRef,
    /// Prefix applied to all paths
    prefix: Path,
    /// Values for all partition columns
    partition_values: IndexMap<String, Scalar>,
    /// Properties passed to underlying parquet writer
    writer_properties: WriterProperties,
    /// Size above which we will write a buffered parquet file to disk.
    target_file_size: usize,
    /// Row chunks passed to parquet writer. This and the internal parquet writer settings
    /// determine how fine granular we can track / control the size of resulting files.
    write_batch_size: usize,
}

impl PartitionWriterConfig {
    /// Create a new instance of [PartitionWriterConfig]
    pub fn try_new(
        file_schema: ArrowSchemaRef,
        partition_values: IndexMap<String, Scalar>,
        writer_properties: Option<WriterProperties>,
        target_file_size: Option<usize>,
        write_batch_size: Option<usize>,
    ) -> DeltaResult<Self> {
        let part_path = partition_values.hive_partition_path();
        let prefix = Path::parse(part_path)?;
        let writer_properties = writer_properties.unwrap_or_else(|| {
            WriterProperties::builder()
                .set_created_by(format!("delta-rs version {}", crate_version()))
                .build()
        });
        let target_file_size = target_file_size.unwrap_or(DEFAULT_TARGET_FILE_SIZE);
        let write_batch_size = write_batch_size.unwrap_or(DEFAULT_WRITE_BATCH_SIZE);

        Ok(Self {
            file_schema,
            prefix,
            partition_values,
            writer_properties,
            target_file_size,
            write_batch_size,
        })
    }
}

/// Partition writer implementation
/// This writer takes in table data as RecordBatches and writes it out to partitioned parquet files.
/// It buffers data in memory until it reaches a certain size, then writes it out to optimize file sizes.
/// When you complete writing you get back a list of Add actions that can be used to update the Delta table commit log.
#[derive(Debug)]
pub struct PartitionWriter {
    object_store: ObjectStoreRef,
    writer_id: uuid::Uuid,
    config: PartitionWriterConfig,
    buffer: ShareableBuffer,
    arrow_writer: ArrowWriter<ShareableBuffer>,
    part_counter: usize,
    files_written: Vec<Add>,
    /// Num index cols to collect stats for
    num_indexed_cols: i32,
    /// Stats columns, specific columns to collect stats from, takes precedence over num_indexed_cols
    stats_columns: Option<Vec<String>>,
}

impl PartitionWriter {
    /// Create a new instance of [`PartitionWriter`] from [`PartitionWriterConfig`]
    pub fn try_with_config(
        object_store: ObjectStoreRef,
        config: PartitionWriterConfig,
        num_indexed_cols: i32,
        stats_columns: Option<Vec<String>>,
    ) -> DeltaResult<Self> {
        let buffer = ShareableBuffer::default();
        let arrow_writer = ArrowWriter::try_new(
            buffer.clone(),
            config.file_schema.clone(),
            Some(config.writer_properties.clone()),
        )?;

        Ok(Self {
            object_store,
            writer_id: uuid::Uuid::new_v4(),
            config,
            buffer,
            arrow_writer,
            part_counter: 0,
            files_written: Vec::new(),
            num_indexed_cols,
            stats_columns,
        })
    }

    fn next_data_path(&mut self) -> Path {
        self.part_counter += 1;

        next_data_path(
            &self.config.prefix,
            self.part_counter,
            &self.writer_id,
            &self.config.writer_properties,
        )
    }

    fn reset_writer(&mut self) -> DeltaResult<(ArrowWriter<ShareableBuffer>, ShareableBuffer)> {
        let new_buffer = ShareableBuffer::default();
        let arrow_writer = ArrowWriter::try_new(
            new_buffer.clone(),
            self.config.file_schema.clone(),
            Some(self.config.writer_properties.clone()),
        )?;
        Ok((
            std::mem::replace(&mut self.arrow_writer, arrow_writer),
            std::mem::replace(&mut self.buffer, new_buffer),
        ))
    }

    fn write_batch(&mut self, batch: &RecordBatch) -> DeltaResult<()> {
        Ok(self.arrow_writer.write(batch)?)
    }

    async fn flush_arrow_writer(&mut self) -> DeltaResult<()> {
        // replace counter / buffers and close the current writer
        let (writer, buffer) = self.reset_writer()?;
        let metadata = writer.close()?;
        // don't write empty file
        if metadata.num_rows == 0 {
            return Ok(());
        }

        let buffer = match buffer.into_inner() {
            Some(buffer) => Bytes::from(buffer),
            None => return Ok(()), // Nothing to write
        };

        // collect metadata
        let path = self.next_data_path();
        let file_size = buffer.len() as i64;

        // write file to object store
        self.object_store.put(&path, buffer.into()).await?;

        self.files_written.push(
            create_add(
                &self.config.partition_values,
                path.to_string(),
                file_size,
                &metadata,
                self.num_indexed_cols,
                &self.stats_columns,
            )
            .map_err(|err| WriteError::CreateAdd {
                source: Box::new(err),
            })?,
        );

        Ok(())
    }

    /// Buffers record batches in-memory up to appx. `target_file_size`.
    /// Flushes data to storage once a full file can be written.
    ///
    /// The `close` method has to be invoked to write all data still buffered
    /// and get the list of all written files.
    pub async fn write(&mut self, batch: &RecordBatch) -> DeltaResult<()> {
        if batch.schema() != self.config.file_schema {
            return Err(WriteError::SchemaMismatch {
                schema: batch.schema(),
                expected_schema: self.config.file_schema.clone(),
            }
            .into());
        }

        let max_offset = batch.num_rows();
        for offset in (0..max_offset).step_by(self.config.write_batch_size) {
            let length = usize::min(self.config.write_batch_size, max_offset - offset);
            self.write_batch(&batch.slice(offset, length))?;
            // flush currently buffered data to disk once we meet or exceed the target file size.
            let estimated_size = self.buffer.len() + self.arrow_writer.in_progress_size();
            if estimated_size >= self.config.target_file_size {
                debug!(
                    "Writing file with estimated size {:?} to disk.",
                    estimated_size
                );
                self.flush_arrow_writer().await?;
            }
        }

        Ok(())
    }

    /// Close the writer and get the new [Add] actions.
    pub async fn close(mut self) -> DeltaResult<Vec<Add>> {
        self.flush_arrow_writer().await?;
        Ok(self.files_written)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::storage::utils::flatten_list_stream as list;
    use crate::table::config::DEFAULT_NUM_INDEX_COLS;
    use crate::writer::test_utils::*;
    use crate::DeltaTableBuilder;
    use arrow::array::{Int32Array, StringArray};
    use arrow::datatypes::{DataType, Field, Schema as ArrowSchema};
    use std::sync::Arc;

    fn get_delta_writer(
        object_store: ObjectStoreRef,
        batch: &RecordBatch,
        writer_properties: Option<WriterProperties>,
        target_file_size: Option<usize>,
        write_batch_size: Option<usize>,
    ) -> DeltaWriter {
        let config = WriterConfig::new(
            batch.schema(),
            vec![],
            writer_properties,
            target_file_size,
            write_batch_size,
            DEFAULT_NUM_INDEX_COLS,
            None,
        );
        DeltaWriter::new(object_store, config)
    }

    fn get_partition_writer(
        object_store: ObjectStoreRef,
        batch: &RecordBatch,
        writer_properties: Option<WriterProperties>,
        target_file_size: Option<usize>,
        write_batch_size: Option<usize>,
    ) -> PartitionWriter {
        let config = PartitionWriterConfig::try_new(
            batch.schema(),
            IndexMap::new(),
            writer_properties,
            target_file_size,
            write_batch_size,
        )
        .unwrap();
        PartitionWriter::try_with_config(object_store, config, DEFAULT_NUM_INDEX_COLS, None)
            .unwrap()
    }

    #[tokio::test]
    async fn test_write_partition() {
        let log_store = DeltaTableBuilder::from_uri("memory://")
            .build_storage()
            .unwrap();
        let object_store = log_store.object_store();
        let batch = get_record_batch(None, false);

        // write single un-partitioned batch
        let mut writer = get_partition_writer(object_store.clone(), &batch, None, None, None);
        writer.write(&batch).await.unwrap();
        let files = list(object_store.as_ref(), None).await.unwrap();
        assert_eq!(files.len(), 0);
        let adds = writer.close().await.unwrap();
        let files = list(object_store.as_ref(), None).await.unwrap();
        assert_eq!(files.len(), 1);
        assert_eq!(files.len(), adds.len());
        let head = object_store
            .head(&Path::from(adds[0].path.clone()))
            .await
            .unwrap();
        assert_eq!(head.size, adds[0].size as usize)
    }

    #[tokio::test]
    async fn test_write_partition_with_parts() {
        let base_int = Arc::new(Int32Array::from((0..10000).collect::<Vec<i32>>()));
        let base_str = Arc::new(StringArray::from(vec!["A"; 10000]));
        let schema = Arc::new(ArrowSchema::new(vec![
            Field::new("id", DataType::Utf8, true),
            Field::new("value", DataType::Int32, true),
        ]));
        let batch = RecordBatch::try_new(schema, vec![base_str, base_int]).unwrap();

        let object_store = DeltaTableBuilder::from_uri("memory://")
            .build_storage()
            .unwrap()
            .object_store();
        let properties = WriterProperties::builder()
            .set_max_row_group_size(1024)
            .build();
        // configure small target file size and and row group size so we can observe multiple files written
        let mut writer =
            get_partition_writer(object_store, &batch, Some(properties), Some(10_000), None);
        writer.write(&batch).await.unwrap();

        // check that we have written more then once file, and no more then 1 is below target size
        let adds = writer.close().await.unwrap();
        assert!(adds.len() > 1);
        let target_file_count = adds
            .iter()
            .fold(0, |acc, add| acc + (add.size > 10_000) as i32);
        assert!(target_file_count >= adds.len() as i32 - 1)
    }

    #[tokio::test]
    async fn test_unflushed_row_group_size() {
        let base_int = Arc::new(Int32Array::from((0..10000).collect::<Vec<i32>>()));
        let base_str = Arc::new(StringArray::from(vec!["A"; 10000]));
        let schema = Arc::new(ArrowSchema::new(vec![
            Field::new("id", DataType::Utf8, true),
            Field::new("value", DataType::Int32, true),
        ]));
        let batch = RecordBatch::try_new(schema, vec![base_str, base_int]).unwrap();

        let object_store = DeltaTableBuilder::from_uri("memory://")
            .build_storage()
            .unwrap()
            .object_store();
        // configure small target file size so we can observe multiple files written
        let mut writer = get_partition_writer(object_store, &batch, None, Some(10_000), None);
        writer.write(&batch).await.unwrap();

        // check that we have written more then once file, and no more then 1 is below target size
        let adds = writer.close().await.unwrap();
        assert!(adds.len() > 1);
        let target_file_count = adds
            .iter()
            .fold(0, |acc, add| acc + (add.size > 10_000) as i32);
        assert!(target_file_count >= adds.len() as i32 - 1)
    }

    #[tokio::test]
    async fn test_do_not_write_empty_file_on_close() {
        let base_int = Arc::new(Int32Array::from((0..10000_i32).collect::<Vec<i32>>()));
        let base_str = Arc::new(StringArray::from(vec!["A"; 10000]));
        let schema = Arc::new(ArrowSchema::new(vec![
            Field::new("id", DataType::Utf8, true),
            Field::new("value", DataType::Int32, true),
        ]));
        let batch = RecordBatch::try_new(schema, vec![base_str, base_int]).unwrap();

        let object_store = DeltaTableBuilder::from_uri("memory://")
            .build_storage()
            .unwrap()
            .object_store();
        // configure high batch size and low file size to observe one file written and flushed immediately
        // upon writing batch, then ensures the buffer is empty upon closing writer
        let mut writer = get_partition_writer(object_store, &batch, None, Some(9000), Some(10000));
        writer.write(&batch).await.unwrap();

        let adds = writer.close().await.unwrap();
        assert!(adds.len() == 1);
    }

    #[tokio::test]
    async fn test_write_mismatched_schema() {
        let log_store = DeltaTableBuilder::from_uri("memory://")
            .build_storage()
            .unwrap();
        let object_store = log_store.object_store();
        let batch = get_record_batch(None, false);

        // write single un-partitioned batch
        let mut writer = get_delta_writer(object_store.clone(), &batch, None, None, None);
        writer.write(&batch).await.unwrap();
        // Ensure the write hasn't been flushed
        let files = list(object_store.as_ref(), None).await.unwrap();
        assert_eq!(files.len(), 0);

        // Create a second batch with a different schema
        let second_schema = Arc::new(ArrowSchema::new(vec![
            Field::new("id", DataType::Int32, true),
            Field::new("name", DataType::Utf8, true),
        ]));
        let second_batch = RecordBatch::try_new(
            second_schema,
            vec![
                Arc::new(Int32Array::from(vec![Some(1), Some(2)])),
                Arc::new(StringArray::from(vec![Some("will"), Some("robert")])),
            ],
        )
        .unwrap();

        let result = writer.write(&second_batch).await;
        assert!(result.is_err());

        match result {
            Ok(_) => {
                panic!("Should not have successfully written");
            }
            Err(e) => {
                match e {
                    DeltaTableError::SchemaMismatch { .. } => {
                        // this is expected
                    }
                    others => {
                        panic!("Got the wrong error: {others:?}");
                    }
                }
            }
        };
    }
}