1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//! # A custom derive implementation for `#[derive(new)]`
//!
//! A `derive(new)` attribute creates a `new` constructor function for the annotated
//! type. That function takes an argument for each field in the type giving a
//! trivial constructor. This is useful since as your type evolves you can make the
//! constructor non-trivial (and add or remove fields) without changing client code
//! (i.e., without breaking backwards compatibility). It is also the most succinct
//! way to initialise a struct or an enum.
//!
//! Implementation uses macros 1.1 custom derive (which works in stable Rust from
//! 1.15 onwards).
//!
//! ## Examples
//!
//! Cargo.toml:
//!
//! ```toml
//! [dependencies]
//! derive-new = "0.5"
//! ```
//!
//! Include the macro:
//!
//! ```rust
//! use derive_new::new;
//!
//! fn main() {}
//! ```
//!
//! Generating constructor for a simple struct:
//!
//! ```rust
//! use derive_new::new;
//!
//! #[derive(new)]
//! struct Bar {
//!     a: i32,
//!     b: String,
//! }
//!
//! fn main() {
//!   let _ = Bar::new(42, "Hello".to_owned());
//! }
//! ```
//!
//! Default values can be specified either via `#[new(default)]` attribute which removes
//! the argument from the constructor and populates the field with `Default::default()`,
//! or via `#[new(value = "..")]` which initializes the field with a given expression:
//!
//! ```rust
//! use derive_new::new;
//!
//! #[derive(new)]
//! struct Foo {
//!     x: bool,
//!     #[new(value = "42")]
//!     y: i32,
//!     #[new(default)]
//!     z: Vec<String>,
//! }
//!
//! fn main() {
//!   let _ = Foo::new(true);
//! }
//! ```
//!
//! Generic types are supported; in particular, `PhantomData<T>` fields will be not
//! included in the argument list and will be initialized automatically:
//!
//! ```rust
//! use derive_new::new;
//!
//! use std::marker::PhantomData;
//!
//! #[derive(new)]
//! struct Generic<'a, T: Default, P> {
//!     x: &'a str,
//!     y: PhantomData<P>,
//!     #[new(default)]
//!     z: T,
//! }
//!
//! fn main() {
//!   let _ = Generic::<i32, u8>::new("Hello");
//! }
//! ```
//!
//! For enums, one constructor method is generated for each variant, with the type
//! name being converted to snake case; otherwise, all features supported for
//! structs work for enum variants as well:
//!
//! ```rust
//! use derive_new::new;
//!
//! #[derive(new)]
//! enum Enum {
//!     FirstVariant,
//!     SecondVariant(bool, #[new(default)] u8),
//!     ThirdVariant { x: i32, #[new(value = "vec![1]")] y: Vec<u8> }
//! }
//!
//! fn main() {
//!   let _ = Enum::new_first_variant();
//!   let _ = Enum::new_second_variant(true);
//!   let _ = Enum::new_third_variant(42);
//! }
//! ```
#![crate_type = "proc-macro"]
#![recursion_limit = "192"]

extern crate proc_macro;
extern crate proc_macro2;
#[macro_use]
extern crate quote;
extern crate syn;

macro_rules! my_quote {
    ($($t:tt)*) => (quote_spanned!(proc_macro2::Span::call_site() => $($t)*))
}

fn path_to_string(path: &syn::Path) -> String {
    path.segments.iter().map(|s| s.ident.to_string()).collect::<Vec<String>>().join("::")
}

use proc_macro::TokenStream;
use proc_macro2::TokenStream as TokenStream2;
use syn::{Token, punctuated::Punctuated};

#[proc_macro_derive(new, attributes(new))]
pub fn derive(input: TokenStream) -> TokenStream {
    let ast: syn::DeriveInput = syn::parse(input).expect("Couldn't parse item");
    let result = match ast.data {
        syn::Data::Enum(ref e) => new_for_enum(&ast, e),
        syn::Data::Struct(ref s) => new_for_struct(&ast, &s.fields, None),
        syn::Data::Union(_) => panic!("doesn't work with unions yet"),
    };
    result.into()
}

fn new_for_struct(
    ast: &syn::DeriveInput,
    fields: &syn::Fields,
    variant: Option<&syn::Ident>,
) -> proc_macro2::TokenStream {
    match *fields {
        syn::Fields::Named(ref fields) => new_impl(&ast, Some(&fields.named), true, variant),
        syn::Fields::Unit => new_impl(&ast, None, false, variant),
        syn::Fields::Unnamed(ref fields) => new_impl(&ast, Some(&fields.unnamed), false, variant),
    }
}

fn new_for_enum(ast: &syn::DeriveInput, data: &syn::DataEnum) -> proc_macro2::TokenStream {
    if data.variants.is_empty() {
        panic!("#[derive(new)] cannot be implemented for enums with zero variants");
    }
    let impls = data.variants.iter().map(|v| {
        if v.discriminant.is_some() {
            panic!("#[derive(new)] cannot be implemented for enums with discriminants");
        }
        new_for_struct(ast, &v.fields, Some(&v.ident))
    });
    my_quote!(#(#impls)*)
}

fn new_impl(
    ast: &syn::DeriveInput,
    fields: Option<&Punctuated<syn::Field, Token![,]>>,
    named: bool,
    variant: Option<&syn::Ident>,
) -> proc_macro2::TokenStream {
    let name = &ast.ident;
    let unit = fields.is_none();
    let empty = Default::default();
    let fields: Vec<_> = fields
        .unwrap_or(&empty)
        .iter()
        .enumerate()
        .map(|(i, f)| FieldExt::new(f, i, named))
        .collect();
    let args = fields.iter().filter(|f| f.needs_arg()).map(|f| f.as_arg());
    let inits = fields.iter().map(|f| f.as_init());
    let inits = if unit {
        my_quote!()
    } else if named {
        my_quote![{ #(#inits),* }]
    } else {
        my_quote![( #(#inits),* )]
    };
    let (impl_generics, ty_generics, where_clause) = ast.generics.split_for_impl();
    let (mut new, qual, doc) = match variant {
        None => (
            syn::Ident::new("new", proc_macro2::Span::call_site()),
            my_quote!(),
            format!("Constructs a new `{}`.", name),
        ),
        Some(ref variant) => (
            syn::Ident::new(
                &format!("new_{}", to_snake_case(&variant.to_string())),
                proc_macro2::Span::call_site(),
            ),
            my_quote!(::#variant),
            format!("Constructs a new `{}::{}`.", name, variant),
        ),
    };
    new.set_span(proc_macro2::Span::call_site());
    let lint_attrs = collect_parent_lint_attrs(&ast.attrs);
    let lint_attrs = my_quote![#(#lint_attrs),*];
    my_quote! {
        impl #impl_generics #name #ty_generics #where_clause {
            #[doc = #doc]
            #lint_attrs
            pub fn #new(#(#args),*) -> Self {
                #name #qual #inits
            }
        }
    }
}

fn collect_parent_lint_attrs(attrs: &[syn::Attribute]) -> Vec<syn::Attribute> {
    fn is_lint(item: &syn::Meta) -> bool {
        if let syn::Meta::List(ref l) = *item {
            let path = &l.path;
            return path.is_ident("allow") || path.is_ident("deny") || path.is_ident("forbid") || path.is_ident("warn")
        }
        false
    }

    fn is_cfg_attr_lint(item: &syn::Meta) -> bool {
        if let syn::Meta::List(ref l) = *item {
            if l.path.is_ident("cfg_attr") {
                if let Ok(nested) =
                    l.parse_args_with(Punctuated::<syn::Meta, Token![,]>::parse_terminated)
                {
                    return nested.len() == 2 && is_lint(&nested[1]);
                }
            }
        }
        false
    }

    attrs
        .iter()
        .filter(|a| is_lint(&a.meta) || is_cfg_attr_lint(&a.meta))
        .cloned()
        .collect()
}

enum FieldAttr {
    Default,
    Value(proc_macro2::TokenStream),
}

impl FieldAttr {
    pub fn as_tokens(&self) -> proc_macro2::TokenStream {
        match *self {
            FieldAttr::Default => my_quote!(::core::default::Default::default()),
            FieldAttr::Value(ref s) => my_quote!(#s),
        }
    }

    pub fn parse(attrs: &[syn::Attribute]) -> Option<FieldAttr> {
        let mut result = None;
        for attr in attrs.iter() {
            match attr.style {
                syn::AttrStyle::Outer => {}
                _ => continue,
            }
            let last_attr_path = attr
                .path()
                .segments
                .last()
                .expect("Expected at least one segment where #[segment[::segment*](..)]");
            if (*last_attr_path).ident != "new" {
                continue;
            }
            let list = match attr.meta {
                syn::Meta::List(ref l) => l,
                _ if attr.path().is_ident("new") => {
                    panic!("Invalid #[new] attribute, expected #[new(..)]")
                }
                _ => continue,
            };
            if result.is_some() {
                panic!("Expected at most one #[new] attribute");
            }
            for item in list
                .parse_args_with(Punctuated::<syn::Meta, Token![,]>::parse_terminated)
                .unwrap_or_else(|err| panic!("Invalid #[new] attribute: {}", err))
            {
                match item {
                    syn::Meta::Path(path) => {
                        if path.is_ident("default") {
                            result = Some(FieldAttr::Default);
                        } else {
                            panic!("Invalid #[new] attribute: #[new({})]", path_to_string(&path));
                        }
                    }
                    syn::Meta::NameValue(kv) => {
                        if let syn::Expr::Lit(syn::ExprLit { lit: syn::Lit::Str(ref s), .. }) = kv.value {
                            if kv.path.is_ident("value") {
                                let tokens = lit_str_to_token_stream(s).ok().expect(&format!(
                                    "Invalid expression in #[new]: `{}`",
                                    s.value()
                                ));
                                result = Some(FieldAttr::Value(tokens));
                            } else {
                                panic!("Invalid #[new] attribute: #[new({} = ..)]", path_to_string(&kv.path));
                            }
                        } else {
                            panic!("Non-string literal value in #[new] attribute");
                        }
                    }
                    syn::Meta::List(l) => {
                        panic!("Invalid #[new] attribute: #[new({}(..))]", path_to_string(&l.path));
                    }
                }
            }
        }
        result
    }
}

struct FieldExt<'a> {
    ty: &'a syn::Type,
    attr: Option<FieldAttr>,
    ident: syn::Ident,
    named: bool,
}

impl<'a> FieldExt<'a> {
    pub fn new(field: &'a syn::Field, idx: usize, named: bool) -> FieldExt<'a> {
        FieldExt {
            ty: &field.ty,
            attr: FieldAttr::parse(&field.attrs),
            ident: if named {
                field.ident.clone().unwrap()
            } else {
                syn::Ident::new(&format!("f{}", idx), proc_macro2::Span::call_site())
            },
            named: named,
        }
    }

    pub fn has_attr(&self) -> bool {
        self.attr.is_some()
    }

    pub fn is_phantom_data(&self) -> bool {
        match *self.ty {
            syn::Type::Path(syn::TypePath {
                qself: None,
                ref path,
            }) => path
                .segments
                .last()
                .map(|x| x.ident == "PhantomData")
                .unwrap_or(false),
            _ => false,
        }
    }

    pub fn needs_arg(&self) -> bool {
        !self.has_attr() && !self.is_phantom_data()
    }

    pub fn as_arg(&self) -> proc_macro2::TokenStream {
        let f_name = &self.ident;
        let ty = &self.ty;
        my_quote!(#f_name: #ty)
    }

    pub fn as_init(&self) -> proc_macro2::TokenStream {
        let f_name = &self.ident;
        let init = if self.is_phantom_data() {
            my_quote!(::core::marker::PhantomData)
        } else {
            match self.attr {
                None => my_quote!(#f_name),
                Some(ref attr) => attr.as_tokens(),
            }
        };
        if self.named {
            my_quote!(#f_name: #init)
        } else {
            my_quote!(#init)
        }
    }
}

fn lit_str_to_token_stream(s: &syn::LitStr) -> Result<TokenStream2, proc_macro2::LexError> {
    let code = s.value();
    let ts: TokenStream2 = code.parse()?;
    Ok(set_ts_span_recursive(ts, &s.span()))
}

fn set_ts_span_recursive(ts: TokenStream2, span: &proc_macro2::Span) -> TokenStream2 {
    ts.into_iter().map(|mut tt| {
        tt.set_span(span.clone());
        if let proc_macro2::TokenTree::Group(group) = &mut tt {
            let stream = set_ts_span_recursive(group.stream(), span);
            *group = proc_macro2::Group::new(group.delimiter(), stream);
        }
        tt
    }).collect()
}

fn to_snake_case(s: &str) -> String {
    let (ch, next, mut acc): (Option<char>, Option<char>, String) =
        s.chars()
            .fold((None, None, String::new()), |(prev, ch, mut acc), next| {
                if let Some(ch) = ch {
                    if let Some(prev) = prev {
                        if ch.is_uppercase() {
                            if prev.is_lowercase()
                                || prev.is_numeric()
                                || (prev.is_uppercase() && next.is_lowercase())
                            {
                                acc.push('_');
                            }
                        }
                    }
                    acc.extend(ch.to_lowercase());
                }
                (ch, Some(next), acc)
            });
    if let Some(next) = next {
        if let Some(ch) = ch {
            if (ch.is_lowercase() || ch.is_numeric()) && next.is_uppercase() {
                acc.push('_');
            }
        }
        acc.extend(next.to_lowercase());
    }
    acc
}

#[test]
fn test_to_snake_case() {
    assert_eq!(to_snake_case(""), "");
    assert_eq!(to_snake_case("a"), "a");
    assert_eq!(to_snake_case("B"), "b");
    assert_eq!(to_snake_case("BC"), "bc");
    assert_eq!(to_snake_case("Bc"), "bc");
    assert_eq!(to_snake_case("bC"), "b_c");
    assert_eq!(to_snake_case("Fred"), "fred");
    assert_eq!(to_snake_case("CARGO"), "cargo");
    assert_eq!(to_snake_case("_Hello"), "_hello");
    assert_eq!(to_snake_case("QuxBaz"), "qux_baz");
    assert_eq!(to_snake_case("FreeBSD"), "free_bsd");
    assert_eq!(to_snake_case("specialK"), "special_k");
    assert_eq!(to_snake_case("hello1World"), "hello1_world");
    assert_eq!(to_snake_case("Keep_underscore"), "keep_underscore");
    assert_eq!(to_snake_case("ThisISNotADrill"), "this_is_not_a_drill");
}