Derive Macro derive_more_impl::LowerHex
source · #[derive(LowerHex)]
{
// Attributes available to this derive:
#[lower_hex]
}
display
only.Expand description
What #[derive(Display)]
generates
Deriving Display
will generate a Display
implementation, with a fmt
method that matches self
and each of its variants. In the case of a struct or union,
only a single variant is available, and it is thus equivalent to a simple let
statement.
In the case of an enum, each of its variants is matched.
For each matched variant, a write!
expression will be generated with
the supplied format, or an automatically inferred one.
You specify the format on each variant by writing e.g. #[display("my val: {}", some_val * 2)]
.
For enums, you can either specify it on each variant, or on the enum as a whole.
For variants that don’t have a format specified, it will simply defer to the format of the inner variable. If there is no such variable, or there is more than 1, an error is generated.
The format of the format
You supply a format by attaching an attribute of the syntax: #[display("...", args...)]
.
The format supplied is passed verbatim to write!
.
The variables available in the arguments is self
and each member of the variant,
with members of tuple structs being named with a leading underscore and their index,
i.e. _0
, _1
, _2
, etc.
Other formatting traits
The syntax does not change, but the name of the attribute is the snake case version of the trait.
E.g. Octal
-> octal
, Pointer
-> pointer
, UpperHex
-> upper_hex
.
Note, that Debug
has a slightly different API and semantics, described in its docs, and so,
requires a separate debug
feature.
Generic data types
When deriving Display
(or other formatting trait) for a generic struct/enum, all generic type
arguments used during formatting are bound by respective formatting trait.
Bounds can only be inferred this way if a field is used directly in the interpolation.
E.g., for a structure Foo
defined like this:
#[derive(Display)]
#[display("{} {} {:?} {:p}", a, b, c, d)]
struct Foo<'a, T1, T2: Trait, T3> {
a: T1,
b: <T2 as Trait>::Type,
c: Vec<T3>,
d: &'a T1,
}
The following where clauses would be generated:
T1: Display
<T2 as Trait>::Type: Display
Vec<T3>: Debug
&'a T1: Pointer
Custom trait bounds
Sometimes you may want to specify additional trait bounds on your generic type parameters, so that they
could be used during formatting. This can be done with a #[display(bound(...))]
attribute.
#[display(bound(...))]
accepts code tokens in a format similar to the format
used in angle bracket list (or where
clause predicates): T: MyTrait, U: Trait1 + Trait2
.
#[display("fmt", ...)]
arguments are parsed as an arbitrary Rust expression and passed to generated
write!
as-is, it’s impossible to meaningfully infer any kind of trait bounds for generic type parameters
used this way. That means that you’ll have to explicitly specify all the required trait bounds of the
expression. Either in the struct/enum definition, or via #[display(bound(...))]
attribute.
Explicitly specified bounds are added to the inferred ones. Note how no V: Display
bound is necessary,
because it’s inferred already.
#[derive(Display)]
#[display(bound(T: MyTrait, U: Display))]
#[display("{} {} {}", a.my_function(), b.to_string().len(), c)]
struct MyStruct<T, U, V> {
a: T,
b: U,
c: V,
}
Example usage
#[derive(Display)]
struct MyInt(i32);
#[derive(Display)]
#[display("({x}, {y})")]
struct Point2D {
x: i32,
y: i32,
}
#[derive(Display)]
enum E {
Uint(u32),
#[display("I am B {:b}", i)]
Binary {
i: i8,
},
#[display("I am C {}", _0.display())]
Path(PathBuf),
}
#[derive(Display)]
#[display("Hello there!")]
union U {
i: u32,
}
#[derive(Octal)]
#[octal("7")]
struct S;
#[derive(UpperHex)]
#[upper_hex("UpperHex")]
struct UH;
#[derive(Display)]
struct Unit;
#[derive(Display)]
struct UnitStruct {}
#[derive(Display)]
#[display("{}", self.sign())]
struct PositiveOrNegative {
x: i32,
}
impl PositiveOrNegative {
fn sign(&self) -> &str {
if self.x >= 0 {
"Positive"
} else {
"Negative"
}
}
}
assert_eq!(MyInt(-2).to_string(), "-2");
assert_eq!(Point2D { x: 3, y: 4 }.to_string(), "(3, 4)");
assert_eq!(E::Uint(2).to_string(), "2");
assert_eq!(E::Binary { i: -2 }.to_string(), "I am B 11111110");
assert_eq!(E::Path("abc".into()).to_string(), "I am C abc");
assert_eq!(U { i: 2 }.to_string(), "Hello there!");
assert_eq!(format!("{:o}", S), "7");
assert_eq!(format!("{:X}", UH), "UpperHex");
assert_eq!(Unit.to_string(), "Unit");
assert_eq!(UnitStruct {}.to_string(), "UnitStruct");
assert_eq!(PositiveOrNegative { x: 1 }.to_string(), "Positive");
assert_eq!(PositiveOrNegative { x: -1 }.to_string(), "Negative");