dicom_core/
ops.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
//! Module for the attribute operations API.
//!
//! This allows consumers to specify and implement
//! operations on DICOM objects
//! as part of a larger process,
//! such as anonymization or transcoding.
//!
//! The most important type here is [`AttributeOp`],
//! which indicates which attribute is affected ([`AttributeSelector`]),
//! and the operation to apply ([`AttributeAction`]).
//! All DICOM object types supporting this API
//! implement the [`ApplyOp`] trait.
//!
//! # Example
//!
//! Given a DICOM object
//! (opened using [`dicom_object`](https://docs.rs/dicom-object)),
//! construct an [`AttributeOp`]
//! and apply it using [`apply`](ApplyOp::apply).
//!
//! ```no_run
//! # use dicom_core::Tag;
//! use dicom_core::ops::*;
//! # /* do not really import this
//! use dicom_object::open_file;
//! # */
//!
//! # struct DicomObj;
//! # impl ApplyOp for DicomObj {
//! #     type Err = snafu::Whatever;
//! #     fn apply(&mut self, _: AttributeOp) -> Result<(), Self::Err> {
//! #         panic!("this is just a stub");
//! #     }
//! # }
//! # fn open_file(_: &str) -> Result<DicomObj, Box<dyn std::error::Error>> { Ok(DicomObj) }
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let mut obj = open_file("1/2/0003.dcm")?;
//! // hide patient name
//! obj.apply(AttributeOp::new(
//!     Tag(0x0010, 0x0010),
//!     AttributeAction::SetStr("Patient^Anonymous".into()),
//! ))?;
//! # Ok(())
//! # }
//! ```
use std::{borrow::Cow, fmt::Write};

use smallvec::{smallvec, SmallVec};

use crate::{PrimitiveValue, Tag, VR};

/// Descriptor for a single operation
/// to apply over a DICOM data set.
///
/// This type is purely descriptive.
/// It outlines a non-exhaustive set of possible changes around an attribute,
/// as well as set some expectations regarding the outcome of certain actions
/// against the attribute's previous state.
///
/// The operations themselves are provided
/// alongside DICOM object or DICOM data set implementations,
/// such as the `InMemDicomObject` from the [`dicom_object`] crate.
///
/// Attribute operations can only select shallow attributes,
/// but the operation may be implemented when applied against nested data sets.
///
/// [`dicom_object`]: https://docs.rs/dicom_object
#[derive(Debug, Clone, PartialEq)]
pub struct AttributeOp {
    /// the selector for the attribute to apply
    pub selector: AttributeSelector,
    /// the effective action to apply
    pub action: AttributeAction,
}

impl AttributeOp {
    /// Construct an attribute operation.
    ///
    /// This constructor function may be easier to use
    /// than writing a public struct expression directly,
    /// due to its automatic conversion of `selector`.
    ///
    /// # Example
    ///
    /// ```
    /// # use dicom_core::Tag;
    /// # use dicom_core::ops::{AttributeAction, AttributeOp};
    /// let op = AttributeOp::new(
    ///     // ImageType
    ///     Tag(0x0008, 0x0008),
    ///     AttributeAction::SetStr("DERIVED\\SECONDARY\\DOSE_INFO".into()),
    /// );
    /// ```
    pub fn new(selector: impl Into<AttributeSelector>, action: AttributeAction) -> Self {
        AttributeOp {
            selector: selector.into(),
            action,
        }
    }
}

/// A single step of an attribute selection.
///
/// A selector step may either select an element directly at the root (`Tag`)
/// or a specific item in a sequence to navigate into (`Nested`).
///
/// A full attribute selector can be specified
/// by using a sequence of these steps
/// (but should always end with the `Tag` variant,
/// otherwise the operation would be unspecified).
#[derive(Debug, Copy, Clone, Eq, Hash, PartialEq)]
pub enum AttributeSelectorStep {
    /// Select the element with the tag reachable at the root of this data set
    Tag(Tag),
    /// Select an item in a data set sequence,
    /// as an intermediate step
    Nested { tag: Tag, item: u32 },
}

impl From<Tag> for AttributeSelectorStep {
    /// Creates an attribute selector step by data element tag.
    fn from(value: Tag) -> Self {
        AttributeSelectorStep::Tag(value)
    }
}

impl From<(Tag, u32)> for AttributeSelectorStep {
    /// Creates a sequence item selector step
    /// by data element tag and item index.
    fn from((tag, item): (Tag, u32)) -> Self {
        AttributeSelectorStep::Nested { tag, item }
    }
}

impl std::fmt::Display for AttributeSelectorStep {
    /// Displays the attribute selector step:
    /// `(GGGG,EEEE)` if `Tag`,,
    /// `(GGGG,EEEE)[i]` if `Nested`
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            AttributeSelectorStep::Tag(tag) => std::fmt::Display::fmt(tag, f),
            AttributeSelectorStep::Nested { tag, item } => write!(f, "{}[{}]", tag, item),
        }
    }
}

/// An attribute selector.
///
/// This type defines the path to an element in a DICOM data set,
/// even at an arbitrary depth of nested data sets.
/// A selector may be perceived as a series of navigation steps
/// to reach a certain data element,
/// where all steps but the last one refer to data set sequences.
///
/// Attribute selectors can be created through
/// one of the various [`From`] conversions,
/// the dynamic constructor function [`new`],
/// or through parsing.
///
/// # Syntax
///
/// A syntax is defined for the unambiguous conversion
/// between a string and an `AttributeSelector` value,
/// in both directions.
/// Attribute selectors are defined by the syntax
/// `( «key»([«item»])? . )* «key» `
/// where:
///
/// - _`«key»`_ is either a DICOM tag in a supported textual form,
///   or a tag keyword as accepted by the [data dictionary][dict] in use;
/// - _`«item»`_ is an unsigned integer representing the item index,
///   which is always surrounded by square brackets in the input;
/// - _`[`_, _`]`_, and _`.`_ are literally their own characters
///   as part of the input.
///
/// [dict]: crate::dictionary::DataDictionary
///
/// The first part in parentheses may appear zero or more times.
/// The `[«item»]` part can be omitted,
/// in which case it is assumed that the first item is selected.
/// Whitespace is not admitted in any position.
/// Displaying a selector through the [`Display`](std::fmt::Display) trait
/// produces a string that is compliant with this syntax.
///
/// ### Examples of attribute selectors in text:
///
/// - `(0002,00010)`:
///   selects _Transfer Syntax UID_
/// - `00101010`:
///   selects _Patient Age_
/// - `0040A168[0].CodeValue`:
///   selects _Code Value_ within the first item of _Concept Code Sequence_
/// - `0040,A730[1].ContentSequence`:
///   selects _Content Sequence_ in second item of _Content Sequence_
/// - `SequenceOfUltrasoundRegions.RegionSpatialFormat`:
///   _Region Spatial Format_ in first item of _Sequence of Ultrasound Regions_
///
/// # Example
///
/// In most cases, you might only wish to select an attribute
/// that is sitting at the root of the data set.
/// This can be done by converting a [DICOM tag](crate::Tag) via [`From<Tag>`]:
///
/// ```
/// # use dicom_core::Tag;
/// # use dicom_core::ops::AttributeSelector;
/// // select Patient Name
/// let selector = AttributeSelector::from(Tag(0x0010, 0x0010));
/// ```
///
/// For working with nested data sets,
/// `From` also supports converting
/// an interleaved sequence of tags and item indices in a tuple.
/// For instance,
/// this is how we can select the second frame's acquisition date time
/// from the per-frame functional groups sequence.
///
/// ```
/// # use dicom_core::Tag;
/// # use dicom_core::ops::AttributeSelector;
/// let selector: AttributeSelector = (
///     // Per-frame functional groups sequence
///     Tag(0x5200, 0x9230),
///     // item #1
///     1,
///     // Frame Acquisition Date Time (DT)
///     Tag(0x0018, 0x9074)
/// ).into();
/// ```
///
/// For a more dynamic construction,
/// the [`new`] function supports an iterator of attribute selector steps
/// (of type [`AttributeSelectorStep`]).
/// Note that the function fails
/// if the last step refers to a sequence item.
///
/// [`new`]: AttributeSelector::new
///
/// ```
/// # use dicom_core::Tag;
/// # use dicom_core::ops::{AttributeSelector, AttributeSelectorStep};
/// let selector = AttributeSelector::new([
///     // Per-frame functional groups sequence, item #1
///     AttributeSelectorStep::Nested {
///         tag: Tag(0x5200, 0x9230),
///         // item #1
///         item: 1,
///     },
///     // Frame Acquisition Date Time
///     AttributeSelectorStep::Tag(Tag(0x0018, 0x9074)),
/// ]).ok_or_else(|| "should be a valid sequence")?;
/// # let selector: AttributeSelector = selector;
/// # Result::<_, &'static str>::Ok(())
/// ```
///
/// A data dictionary's [`parse_selector`][parse] method
/// can be used if you want to describe these selectors in text.
///
/// ```no_run
/// # // compile only: we don't have the std dict here
/// # use dicom_core::{Tag, ops::AttributeSelector};
/// use dicom_core::dictionary::DataDictionary;
/// # use dicom_core::dictionary::stub::StubDataDictionary;
/// # /* faking an import
/// use dicom_dictionary_std::StandardDataDictionary;
/// # */
///
/// # let StandardDataDictionary = StubDataDictionary;
/// assert_eq!(
///     StandardDataDictionary.parse_selector(
///         "PerFrameFunctionalGroupsSequence[1].(0018,9074)"
///     )?,
///     AttributeSelector::from((
///         // Per-frame functional groups sequence
///         Tag(0x5200, 0x9230),
///         // item #1
///         1,
///         // Frame Acquisition Date Time (DT)
///         Tag(0x0018, 0x9074)
///     )),
/// );
/// # Result::<_, Box<dyn std::error::Error>>::Ok(())
/// ```
///
/// [parse]: crate::dictionary::DataDictionary::parse_selector
///
/// Selectors can be decomposed back into its constituent steps
/// by turning it into an iterator:
///
/// ```
/// # use dicom_core::Tag;
/// # use dicom_core::ops::{AttributeSelector, AttributeSelectorStep};
/// # let selector = AttributeSelector::from(
/// #     (Tag(0x5200, 0x9230), 1, Tag(0x0018, 0x9074)));
/// let steps: Vec<AttributeSelectorStep> = selector.into_iter().collect();
///
/// assert_eq!(
///     &steps,
///     &[
///         AttributeSelectorStep::Nested {
///             tag: Tag(0x5200, 0x9230),
///             item: 1,
///         },
///         AttributeSelectorStep::Tag(Tag(0x0018, 0x9074)),
///     ],
/// );
/// ```
///
#[derive(Debug, Clone, Eq, Hash, PartialEq)]
pub struct AttributeSelector(SmallVec<[AttributeSelectorStep; 2]>);

impl AttributeSelector {
    /// Construct an attribute selector
    /// from an arbitrary sequence of selector steps.
    ///
    /// Intermediate steps of variant [`Tag`][1]
    /// (which do not specify an item index)
    /// are automatically reinterpreted as item selectors for item index 0.
    ///
    /// Returns `None` if the sequence is empty
    /// or the last step is not a tag selector step.
    ///
    /// [1]: AttributeSelectorStep::Tag
    pub fn new(steps: impl IntoIterator<Item = AttributeSelectorStep>) -> Option<Self> {
        let mut steps: SmallVec<_> = steps.into_iter().collect();
        let (last, rest) = steps.split_last_mut()?;
        if matches!(last, AttributeSelectorStep::Nested { .. }) {
            return None;
        }
        // transform intermediate `Tag` steps into the `Nested` variant
        for step in rest {
            if let AttributeSelectorStep::Tag(tag) = step {
                *step = AttributeSelectorStep::Nested { tag: *tag, item: 0 };
            }
        }
        Some(AttributeSelector(steps))
    }

    /// Return a non-empty iterator over the steps of attribute selection.
    ///
    /// The iterator is guaranteed to produce a series
    /// starting with zero or more steps of the variant [`Nested`][1],
    /// and terminated by one item guaranteed to be a [tag][2].
    ///
    /// [1]: AttributeSelectorStep::Nested
    /// [2]: AttributeSelectorStep::Tag
    pub fn iter(&self) -> impl Iterator<Item = &AttributeSelectorStep> {
        self.into_iter()
    }

    /// Obtain a reference to the first attribute selection step.
    pub fn first_step(&self) -> &AttributeSelectorStep {
        // guaranteed not to be empty
        self.0
            .first()
            .expect("invariant broken: attribute selector should have at least one step")
    }

    /// Obtain a reference to the last attribute selection step.
    pub fn last_step(&self) -> &AttributeSelectorStep {
        // guaranteed not to be empty
        self.0
            .last()
            .expect("invariant broken: attribute selector should have at least one step")
    }

    /// Obtain the tag of the last attribute selection step.
    pub fn last_tag(&self) -> Tag {
        match self.last_step() {
            AttributeSelectorStep::Tag(tag) => *tag,
            _ => unreachable!("invariant broken: last attribute selector step should be Tag"),
        }
    }
}

impl IntoIterator for AttributeSelector {
    type Item = AttributeSelectorStep;
    type IntoIter = <SmallVec<[AttributeSelectorStep; 2]> as IntoIterator>::IntoIter;

    /// Returns a non-empty iterator over the steps of attribute selection.
    ///
    /// The iterator is guaranteed to produce a series
    /// starting with zero or more steps of the variant [`Nested`][1],
    /// and terminated by one item guaranteed to be a [tag][2].
    ///
    /// [1]: AttributeSelectorStep::Nested
    /// [2]: AttributeSelectorStep::Tag
    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<'a> IntoIterator for &'a AttributeSelector {
    type Item = &'a AttributeSelectorStep;
    type IntoIter = <&'a SmallVec<[AttributeSelectorStep; 2]> as IntoIterator>::IntoIter;

    /// Returns a non-empty iterator over the steps of attribute selection.
    ///
    /// The iterator is guaranteed to produce a series
    /// starting with zero or more steps of the variant [`Nested`][1],
    /// and terminated by one item guaranteed to be a [tag][2].
    ///
    /// [1]: AttributeSelectorStep::Nested
    /// [2]: AttributeSelectorStep::Tag
    fn into_iter(self) -> Self::IntoIter {
        self.0.iter()
    }
}

/// Creates an attribute selector for just a [`tag`](AttributeSelectorStep::Tag).
impl From<Tag> for AttributeSelector {
    /// Creates a simple attribute selector
    /// by selecting the element at the data set root with the given DICOM tag.
    fn from(tag: Tag) -> Self {
        AttributeSelector(smallvec![tag.into()])
    }
}

/// Creates an attribute selector for `tag[item].tag`
impl From<(Tag, u32, Tag)> for AttributeSelector {
    /// Creates an attribute selector
    /// which navigates to the data set item at index `item`
    /// in the sequence at the first DICOM tag (`tag0`),
    /// then selects the element with the second DICOM tag (`tag1`).
    fn from((tag0, item, tag1): (Tag, u32, Tag)) -> Self {
        AttributeSelector(smallvec![(tag0, item).into(), tag1.into()])
    }
}

/// Creates an attribute selector for `tag.tag`
/// (where the first)
impl From<(Tag, Tag)> for AttributeSelector {
    /// Creates an attribute selector
    /// which navigates to the first data set item
    /// in the sequence at the first DICOM tag (`tag0`),
    /// then selects the element with the second DICOM tag (`tag1`).
    #[inline]
    fn from((tag0, tag1): (Tag, Tag)) -> Self {
        AttributeSelector(smallvec![(tag0, 0).into(), tag1.into()])
    }
}

/// Creates an attribute selector for `tag[item].tag[item].tag`
impl From<(Tag, u32, Tag, u32, Tag)> for AttributeSelector {
    /// Creates an attribute selector
    /// which navigates to data set item #`item0`
    /// in the sequence at `tag0`,
    /// navigates further down to item #`item1` in the sequence at `tag1`,
    /// then selects the element at `tag2`.
    fn from((tag0, item0, tag1, item1, tag2): (Tag, u32, Tag, u32, Tag)) -> Self {
        AttributeSelector(smallvec![
            (tag0, item0).into(),
            (tag1, item1).into(),
            tag2.into()
        ])
    }
}

/// Creates an attribute selector for `tag.tag[item].tag`
impl From<(Tag, Tag, u32, Tag)> for AttributeSelector {
    /// Creates an attribute selector
    /// which navigates to the first data set item
    /// in the sequence at `tag0`,
    /// navigates further down to item #`item1` in the sequence at `tag1`,
    /// then selects the element at `tag2`.
    fn from((tag0, tag1, item1, tag2): (Tag, Tag, u32, Tag)) -> Self {
        AttributeSelector(smallvec![
            (tag0, 0).into(),
            (tag1, item1).into(),
            tag2.into()
        ])
    }
}

/// Creates an attribute selector for `tag[item].tag.tag`
impl From<(Tag, u32, Tag, Tag)> for AttributeSelector {
    /// Creates an attribute selector
    /// which navigates to the data set item #`item0`
    /// in the sequence at `tag0`,
    /// navigates further down to the first item in the sequence at `tag1`,
    /// then selects the element at `tag2`.
    fn from((tag0, item0, tag1, tag2): (Tag, u32, Tag, Tag)) -> Self {
        AttributeSelector(smallvec![
            (tag0, item0).into(),
            (tag1, 0).into(),
            tag2.into()
        ])
    }
}

/// Creates an attribute selector for `tag.tag.tag`
impl From<(Tag, Tag, Tag)> for AttributeSelector {
    /// Creates an attribute selector
    /// which navigates to the first data set item
    /// in the sequence at `tag0`,
    /// navigates further down to the first item in the sequence at `tag1`,
    /// then selects the element at `tag2`.
    fn from((tag0, tag1, tag2): (Tag, Tag, Tag)) -> Self {
        AttributeSelector(smallvec![(tag0, 0).into(), (tag1, 0).into(), tag2.into()])
    }
}

/// Creates an attribute selector for `tag[item].tag[item].tag[item].tag`
impl From<(Tag, u32, Tag, u32, Tag, u32, Tag)> for AttributeSelector {
    // you should get the gist at this point
    fn from(
        (tag0, item0, tag1, item1, tag2, item2, tag3): (Tag, u32, Tag, u32, Tag, u32, Tag),
    ) -> Self {
        AttributeSelector(smallvec![
            (tag0, item0).into(),
            (tag1, item1).into(),
            (tag2, item2).into(),
            tag3.into()
        ])
    }
}

impl std::fmt::Display for AttributeSelector {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut started = false;
        for step in &self.0 {
            if !started {
                started = true;
            } else {
                // separate each step by a dot
                f.write_char('.')?;
            }
            std::fmt::Display::fmt(step, f)?;
        }
        Ok(())
    }
}

/// Descriptor for the kind of action to apply over an attribute.
///
/// See the [module-level documentation](crate::ops)
/// for more details.
#[non_exhaustive]
#[derive(Debug, Clone, PartialEq)]
pub enum AttributeAction {
    /// Remove the attribute if it exists.
    ///
    /// Do nothing otherwise.
    Remove,
    /// If the attribute exists, clear its value to zero bytes.
    Empty,
    /// If the attribute exists,
    /// set or provide a hint about the attribute's value representation.
    ///
    /// The underlying value is not modified.
    /// Implementations are free to ignore this request if
    /// it cannot be done or it does not make sense
    /// for the given implementation.
    SetVr(VR),
    /// Fully reset the attribute with the given DICOM value,
    /// creating it if it does not exist yet.
    ///
    /// For objects supporting nested data sets,
    /// passing [`PrimitiveValue::Empty`] will create
    /// an empty data set sequence.
    Set(PrimitiveValue),
    /// Fully reset a textual attribute with the given string,
    /// creating it if it does not exist yet.
    SetStr(Cow<'static, str>),
    /// Provide the attribute with the given DICOM value,
    /// if it does not exist yet.
    ///
    /// For objects supporting nested data sets,
    /// passing [`PrimitiveValue::Empty`] will create
    /// an empty data set sequence.
    SetIfMissing(PrimitiveValue),
    /// Provide the textual attribute with the given string,
    /// creating it if it does not exist yet.
    SetStrIfMissing(Cow<'static, str>),
    /// Fully replace the value with the given DICOM value,
    /// but only if the attribute already exists.
    ///
    /// For objects supporting nested data sets,
    /// passing [`PrimitiveValue::Empty`] will clear the items
    /// of an existing data set sequence.
    Replace(PrimitiveValue),
    /// Fully replace a textual value with the given string,
    /// but only if the attribute already exists.
    ReplaceStr(Cow<'static, str>),
    /// Append a string as an additional textual value,
    /// creating the attribute if it does not exist yet.
    ///
    /// New value items are recorded as separate text values,
    /// meaning that they are delimited by a backslash (`\`) at encoding time,
    /// regardless of the value representation.
    PushStr(Cow<'static, str>),
    /// Append a 32-bit signed integer as an additional numeric value,
    /// creating the attribute if it does not exist yet.
    PushI32(i32),
    /// Append a 32-bit unsigned integer as an additional numeric value,
    /// creating the attribute if it does not exist yet.
    PushU32(u32),
    /// Append a 16-bit signed integer as an additional numeric value,
    /// creating the attribute if it does not exist yet.
    PushI16(i16),
    /// Append a 16-bit unsigned integer as an additional numeric value,
    /// creating the attribute if it does not exist yet.
    PushU16(u16),
    /// Append a 32-bit floating point number as an additional numeric value,
    /// creating the attribute if it does not exist yet.
    PushF32(f32),
    /// Append a 64-bit floating point number as an additional numeric value,
    /// creating the attribute if it does not exist yet.
    PushF64(f64),
    /// Truncate a value or a sequence to the given number of items,
    /// removing extraneous items from the end of the list.
    ///
    /// On primitive values, this truncates the value
    /// by the number of individual value items
    /// (note that bytes in a [`PrimitiveValue::U8`]
    /// are treated as individual items).
    /// On data set sequences and pixel data fragment sequences,
    /// this operation is applied to
    /// the data set items (or fragments) in the sequence.
    ///
    /// Does nothing if the attribute does not exist
    /// or the cardinality of the element is already lower than or equal to
    /// the given size.
    Truncate(usize),
}

impl AttributeAction {
    /// Report whether this is considered a _constructive_ action,
    /// operations of which create new elements if they do not exist yet.
    ///
    /// The actions currently considered to be constructive are
    /// all actions of the families `Set*`, `SetIfMissing`, and `Push*`.
    pub fn is_constructive(&self) -> bool {
        matches!(
            self,
            AttributeAction::Set(_)
                | AttributeAction::SetStr(_)
                | AttributeAction::SetIfMissing(_)
                | AttributeAction::SetStrIfMissing(_)
                | AttributeAction::PushF32(_)
                | AttributeAction::PushF64(_)
                | AttributeAction::PushI16(_)
                | AttributeAction::PushI32(_)
                | AttributeAction::PushStr(_)
                | AttributeAction::PushU16(_)
                | AttributeAction::PushU32(_)
        )
    }
}

/// Trait for applying DICOM attribute operations.
///
/// This is typically implemented by DICOM objects and other data set types
/// to serve as a common API for attribute manipulation.
pub trait ApplyOp {
    /// The operation error type
    type Err: std::error::Error + 'static;

    /// Apply the given attribute operation on the receiving object.
    ///
    /// Effects may slightly differ between implementations,
    /// but should always be compliant with
    /// the expectations defined in [`AttributeAction`] variants.
    ///
    /// If the action to apply is unsupported,
    /// or not possible for other reasons,
    /// an error is returned and no changes to the receiver are made.
    /// While not all kinds of operations may be possible,
    /// generic DICOM data set holders will usually support all actions.
    /// See the respective documentation of the implementing type
    /// for more details.
    fn apply(&mut self, op: AttributeOp) -> Result<(), Self::Err>;
}

#[cfg(test)]
mod tests {
    use crate::{ops::AttributeSelector, Tag};

    #[test]
    fn display_selectors() {
        let selector: AttributeSelector = Tag(0x0014, 0x5100).into();
        assert_eq!(selector.to_string(), "(0014,5100)",);

        let selector: AttributeSelector = (Tag(0x0018, 0x6011), 2, Tag(0x0018, 0x6012)).into();
        assert_eq!(selector.to_string(), "(0018,6011)[2].(0018,6012)",);

        let selector = AttributeSelector::from((Tag(0x0040, 0xA730), 1, Tag(0x0040, 0xA730)));
        assert_eq!(selector.to_string(), "(0040,A730)[1].(0040,A730)",);
    }
}