dicom_encoding/transfer_syntax/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
//! Module containing the DICOM Transfer Syntax data structure and related methods.
//! Similar to the DcmCodec in DCMTK, the `TransferSyntax` contains all of the necessary
//! algorithms for decoding and encoding DICOM data in a certain transfer syntax.
//!
//! This crate does not host specific transfer syntaxes. Instead, they are created in
//! other crates and registered in the global transfer syntax registry,
//! which implements [`TransferSyntaxIndex`].
//! For more information, please see the [`dicom-transfer-syntax-registry`] crate,
//! which provides built-in implementations.
//!
//! This module allows you to register your own transfer syntaxes.
//! With the `inventory-registry` Cargo feature,
//! you can use the macro [`submit_transfer_syntax`](crate::submit_transfer_syntax)
//! or [`submit_ele_transfer_syntax`](crate::submit_ele_transfer_syntax)
//! to instruct the compiler to include your implementation in the registry.
//! Without the `inventory`-based registry
//! (in case your environment does not support it),
//! you can still roll your own [transfer syntax index][1].
//!
//! [1]: TransferSyntaxIndex
//! [`dicom-transfer-syntax-registry`]: https://docs.rs/dicom-transfer-syntax-registry
use crate::adapters::{
DynPixelDataReader, DynPixelDataWriter, NeverPixelAdapter, PixelDataReader, PixelDataWriter,
};
use crate::decode::{
basic::BasicDecoder, explicit_be::ExplicitVRBigEndianDecoder,
explicit_le::ExplicitVRLittleEndianDecoder, implicit_le::ImplicitVRLittleEndianDecoder,
DecodeFrom,
};
use crate::encode::{
explicit_be::ExplicitVRBigEndianEncoder, explicit_le::ExplicitVRLittleEndianEncoder,
implicit_le::ImplicitVRLittleEndianEncoder, EncodeTo, EncoderFor,
};
use std::io::{Read, Write};
pub use byteordered::Endianness;
/// A decoder with its type erased.
pub type DynDecoder<S> = Box<dyn DecodeFrom<S>>;
/// An encoder with its type erased.
pub type DynEncoder<'w, W> = Box<dyn EncodeTo<W> + 'w>;
/// A DICOM transfer syntax specifier.
///
/// Custom encoding and decoding capabilities
/// are defined via the parameter types `D` and `P`,
/// The type parameter `D` specifies
/// an adapter for reading and writing data sets,
/// whereas `P` specifies the encoder and decoder of encapsulated pixel data.
///
/// This type is usually consumed in its "type erased" form,
/// with its default parameter types.
/// On the other hand, implementers of `TransferSyntax` will typically specify
/// concrete types for `D` and `P`,
/// which are type-erased before registration.
/// If the transfer syntax requires no data set codec,
/// `D` can be assigned to the utility type [`NeverAdapter`].
/// If pixel data encoding/decoding is not needed or not supported,
/// you can assign `P` to [`NeverPixelAdapter`].
#[derive(Debug)]
pub struct TransferSyntax<D = DynDataRWAdapter, R = DynPixelDataReader, W = DynPixelDataWriter> {
/// The unique identifier of the transfer syntax.
uid: &'static str,
/// The name of the transfer syntax.
name: &'static str,
/// The byte order of data.
byte_order: Endianness,
/// Whether the transfer syntax mandates an explicit value representation,
/// or the VR is implicit.
explicit_vr: bool,
/// The transfer syntax' requirements and implemented capabilities.
codec: Codec<D, R, W>,
}
/// Wrapper type for a provider of transfer syntax descriptors.
///
/// This is a piece of the plugin interface for
/// registering and collecting transfer syntaxes.
/// Implementers and consumers of transfer syntaxes
/// will usually not interact with it directly.
/// In order to register a new transfer syntax,
/// see the macro [`submit_transfer_syntax`](crate::submit_transfer_syntax).
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct TransferSyntaxFactory(pub fn() -> TransferSyntax);
#[cfg(feature = "inventory-registry")]
// Collect transfer syntax specifiers from other crates.
inventory::collect!(TransferSyntaxFactory);
/// Trait for a container/repository of transfer syntax specifiers.
///
/// Types implementing this trait are held responsible for populating
/// themselves with a set of transfer syntaxes, which can be fully supported,
/// partially supported, or not supported. Usually, only one implementation
/// of this trait is used for the entire program,
/// the most common one being the `TransferSyntaxRegistry` type
/// from [`transfer-syntax-registry`].
///
/// [`transfer-syntax-registry`]: https://docs.rs/dicom-transfer-syntax-registry
pub trait TransferSyntaxIndex {
/// Obtain a DICOM transfer syntax by its respective UID.
///
/// Implementations of this method should be robust to the possible
/// presence of trailing null characters (`\0`) in `uid`.
fn get(&self, uid: &str) -> Option<&TransferSyntax>;
}
impl<T: ?Sized> TransferSyntaxIndex for &T
where
T: TransferSyntaxIndex,
{
fn get(&self, uid: &str) -> Option<&TransferSyntax> {
(**self).get(uid)
}
}
#[cfg(feature = "inventory-registry")]
#[macro_export]
/// Submit a transfer syntax specifier to be supported by the
/// program's runtime. This is to be used by crates wishing to provide
/// additional support for a certain transfer syntax using the
/// main transfer syntax registry.
///
/// This macro does not actually "run" anything, so place it outside of a
/// function body at the root of the crate.
/// The expression is evaluated when the transfer syntax registry is populated
/// upon the first request,
/// and must resolve to a value of type [`TransferSyntax<D, P>`],
/// for valid definitions of the parameter types `D` and `P`.
/// The macro will type-erase these parameters automatically.
///
/// # Example
///
/// One common use case is wanting to read data sets
/// of DICOM objects in a private transfer syntax,
/// even when a decoder for that pixel data is not available.
/// By writing a simple stub at your project's root,
/// the rest of the ecosystem will know
/// how to read and write data sets in that transfer syntax.
///
/// ```
/// use dicom_encoding::{
/// submit_transfer_syntax, AdapterFreeTransferSyntax, Codec, Endianness,
/// };
///
/// submit_transfer_syntax!(AdapterFreeTransferSyntax::new(
/// // Transfer Syntax UID
/// "1.3.46.670589.33.1.4.1",
/// // Name/alias
/// "CT Private ELE",
/// // Data set byte order
/// Endianness::Little,
/// // Explicit VR (true) or Implicit VR (false)
/// true,
/// Codec::EncapsulatedPixelData(None, None), // pixel data codec
/// ));
/// ```
///
/// With [`Codec::EncapsulatedPixelData(None, None)`][1],
/// we are indicating that the transfer syntax uses encapsulated pixel data.
/// albeit without the means to decode or encode it.
/// See the [`adapters`](crate::adapters) module
/// to know how to write pixel data encoders and decoders.
///
/// [1]: Codec::EncapsulatedPixelData
macro_rules! submit_transfer_syntax {
($ts: expr) => {
$crate::inventory::submit! {
$crate::transfer_syntax::TransferSyntaxFactory(|| ($ts).erased())
}
};
}
#[cfg(not(feature = "inventory-registry"))]
#[macro_export]
/// Submit a transfer syntax specifier to be supported by the
/// program's runtime. This is to be used by crates wishing to provide
/// additional support for a certain transfer syntax using the
/// main transfer syntax registry.
///
/// This macro does actually "run" anything, so place it outside of a
/// function body at the root of the crate.
///
/// Without the `inventory-registry` feature, this request is ignored.
macro_rules! submit_transfer_syntax {
($ts: expr) => {
// ignore request
};
}
#[cfg(feature = "inventory-registry")]
#[macro_export]
/// Submit an explicit VR little endian transfer syntax specifier
/// to be supported by the program's runtime.
///
/// This macro is equivalent in behavior as [`submit_transfer_syntax`](crate::submit_transfer_syntax),
/// but it is easier to use when
/// writing support for compressed pixel data formats,
/// which are usually in explicit VR little endian.
///
/// This macro does not actually "run" anything, so place it outside of a
/// function body at the root of the crate.
/// The expression is evaluated when the transfer syntax registry is populated
/// upon the first request,
/// and must resolve to a value of type [`Codec<D, R, W>`],
/// for valid definitions of the parameter types `D`, `R`, and `W`.
/// The macro will type-erase these parameters automatically.
///
/// # Example
///
/// One common use case is wanting to read data sets
/// of DICOM objects in a private transfer syntax,
/// even when a decoder for that pixel data is not available.
/// By writing a simple stub at your project's root,
/// the rest of the ecosystem will know
/// how to read and write data sets in that transfer syntax.
///
/// ```
/// use dicom_encoding::{submit_ele_transfer_syntax, Codec};
///
/// submit_ele_transfer_syntax!(
/// // Transfer Syntax UID
/// "1.3.46.670589.33.1.4.1",
/// // Name/alias
/// "CT Private ELE",
/// // pixel data codec
/// Codec::EncapsulatedPixelData(None, None)
/// );
/// ```
///
/// With [`Codec::EncapsulatedPixelData(None, None)`][1],
/// we are indicating that the transfer syntax uses encapsulated pixel data.
/// albeit without the means to decode or encode it.
/// See the [`adapters`](crate::adapters) module
/// to know how to write pixel data encoders and decoders.
///
/// [1]: Codec::EncapsulatedPixelData
macro_rules! submit_ele_transfer_syntax {
($uid: expr, $name: expr, $codec: expr) => {
$crate::submit_transfer_syntax! {
$crate::AdapterFreeTransferSyntax::new_ele(
$uid,
$name,
$codec
)
}
};
}
#[cfg(not(feature = "inventory-registry"))]
#[macro_export]
/// Submit an explicit VR little endian transfer syntax specifier
/// to be supported by the program's runtime.
///
/// This macro is equivalent in behavior as [`submit_transfer_syntax`],
/// but it is easier to use when
/// writing support for compressed pixel data formats,
/// which are usually in explicit VR little endian.
///
/// This macro does actually "run" anything, so place it outside of a
/// function body at the root of the crate.
///
/// Without the `inventory-registry` feature, this request is ignored.
macro_rules! submit_ele_transfer_syntax {
($uid: literal, $name: literal, $codec: expr) => {
// ignore request
};
}
/// A description and possible implementation regarding
/// the encoding and decoding requirements of a transfer syntax.
/// This is also used as a means to describe whether pixel data is encapsulated
/// and whether this implementation supports decoding and/or encoding it.
///
/// ### Type parameters
///
/// - `D` should implement [`DataRWAdapter`]
/// and defines how one should read and write DICOM data sets,
/// such as in the case for deflated data.
/// When no special considerations for data set reading and writing
/// are necessary, this can be set to [`NeverAdapter`].
/// - `R` should implement [`PixelDataReader`],
/// and enables programs to convert encapsulated pixel data fragments
/// into native pixel data.
/// - `W` should implement [`PixelDataWriter`],
/// and enables programs to convert native pixel data
/// into encapsulated pixel data.
///
#[derive(Debug, Clone, PartialEq)]
pub enum Codec<D, R, W> {
/// No codec is required for this transfer syntax.
///
/// Pixel data, if any, should be in its _native_, unencapsulated format.
None,
/// Pixel data for this transfer syntax is encapsulated
/// and likely subjected to a specific encoding process.
/// The first part of the tuple struct contains the pixel data decoder,
/// whereas the second item is for the pixel data encoder.
///
/// Decoding of the pixel data is not supported
/// if the decoder is `None`.
/// In this case, the program should still be able to
/// parse DICOM data sets
/// and fetch the pixel data in its encapsulated form.
EncapsulatedPixelData(Option<R>, Option<W>),
/// A custom data set codec is required for reading and writing data sets.
///
/// If the item in the tuple struct is `None`,
/// then no reading and writing whatsoever is supported.
/// This could be used by a stub of
/// _Deflated Explicit VR Little Endian_, for example.
Dataset(Option<D>),
}
/// An alias for a transfer syntax specifier with no pixel data encapsulation
/// nor data set deflating.
pub type AdapterFreeTransferSyntax =
TransferSyntax<NeverAdapter, NeverPixelAdapter, NeverPixelAdapter>;
/// An adapter of byte read and write streams.
pub trait DataRWAdapter<R, W> {
/// The type of the adapted reader.
type Reader: Read;
/// The type of the adapted writer.
type Writer: Write;
/// Adapt a byte reader.
fn adapt_reader(&self, reader: R) -> Self::Reader
where
R: Read;
/// Adapt a byte writer.
fn adapt_writer(&self, writer: W) -> Self::Writer
where
W: Write;
}
/// Alias type for a dynamically dispatched data adapter.
pub type DynDataRWAdapter = Box<
dyn DataRWAdapter<
Box<dyn Read>,
Box<dyn Write>,
Reader = Box<dyn Read>,
Writer = Box<dyn Write>,
> + Send
+ Sync,
>;
impl<T, R, W> DataRWAdapter<R, W> for &'_ T
where
T: DataRWAdapter<R, W>,
R: Read,
W: Write,
{
type Reader = <T as DataRWAdapter<R, W>>::Reader;
type Writer = <T as DataRWAdapter<R, W>>::Writer;
/// Adapt a byte reader.
fn adapt_reader(&self, reader: R) -> Self::Reader
where
R: Read,
{
(**self).adapt_reader(reader)
}
/// Adapt a byte writer.
fn adapt_writer(&self, writer: W) -> Self::Writer
where
W: Write,
{
(**self).adapt_writer(writer)
}
}
/// An immaterial type representing a data set adapter which is never required,
/// and as such is never instantiated.
/// Most transfer syntaxes use this,
/// as they do not have to adapt readers and writers
/// for encoding and decoding data sets.
/// The main exception is in the family of
/// _Deflated Explicit VR Little Endian_ transfer syntaxes.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum NeverAdapter {}
impl<R, W> DataRWAdapter<R, W> for NeverAdapter {
type Reader = Box<dyn Read>;
type Writer = Box<dyn Write>;
fn adapt_reader(&self, _reader: R) -> Self::Reader
where
R: Read,
{
unreachable!()
}
fn adapt_writer(&self, _writer: W) -> Self::Writer
where
W: Write,
{
unreachable!()
}
}
impl<D, R, W> TransferSyntax<D, R, W> {
/// Create a new transfer syntax descriptor.
///
/// Note that only transfer syntax implementers are expected to
/// construct TS descriptors from scratch.
/// For a practical usage of transfer syntaxes,
/// one should look up an existing transfer syntax registry by UID.
///
/// # Example
///
/// To register a private transfer syntax in your program,
/// use [`submit_transfer_syntax`](crate::submit_transfer_syntax)
/// outside of a function body:
///
/// ```no_run
/// # use dicom_encoding::{
/// # submit_transfer_syntax, Codec, Endianness,
/// # NeverAdapter, NeverPixelAdapter, TransferSyntax,
/// # };
/// submit_transfer_syntax! {
/// TransferSyntax::<NeverAdapter, NeverPixelAdapter, NeverPixelAdapter>::new(
/// "1.3.46.670589.33.1.4.1",
/// "CT-Private-ELE",
/// Endianness::Little,
/// true,
/// Codec::EncapsulatedPixelData(None, None),
/// )
/// }
/// ```
pub const fn new(
uid: &'static str,
name: &'static str,
byte_order: Endianness,
explicit_vr: bool,
codec: Codec<D, R, W>,
) -> Self {
TransferSyntax {
uid,
name,
byte_order,
explicit_vr,
codec,
}
}
/// Create a new descriptor
/// for a transfer syntax in explicit VR little endian.
///
/// Note that only transfer syntax implementers are expected to
/// construct TS descriptors from scratch.
/// For a practical usage of transfer syntaxes,
/// one should look up an existing transfer syntax registry by UID.
///
/// # Example
///
/// To register a private transfer syntax in your program,
/// use [`submit_transfer_syntax`](crate::submit_transfer_syntax)
/// outside of a function body:
///
/// ```no_run
/// # use dicom_encoding::{
/// # submit_transfer_syntax, Codec,
/// # NeverAdapter, NeverPixelAdapter, TransferSyntax,
/// # };
/// submit_transfer_syntax! {
/// TransferSyntax::<NeverAdapter, NeverPixelAdapter, NeverPixelAdapter>::new_ele(
/// "1.3.46.670589.33.1.4.1",
/// "CT-Private-ELE",
/// Codec::EncapsulatedPixelData(None, None),
/// )
/// }
/// ```
///
/// See [`submit_ele_transfer_syntax`](crate::submit_ele_transfer_syntax)
/// for an alternative.
pub const fn new_ele(uid: &'static str, name: &'static str, codec: Codec<D, R, W>) -> Self {
TransferSyntax {
uid,
name,
byte_order: Endianness::Little,
explicit_vr: true,
codec,
}
}
/// Obtain this transfer syntax' unique identifier.
pub const fn uid(&self) -> &'static str {
self.uid
}
/// Obtain the name of this transfer syntax.
pub const fn name(&self) -> &'static str {
self.name
}
/// Obtain this transfer syntax' expected endianness.
pub const fn endianness(&self) -> Endianness {
self.byte_order
}
/// Obtain this transfer syntax' codec specification.
pub fn codec(&self) -> &Codec<D, R, W> {
&self.codec
}
/// Check whether this transfer syntax specifier provides a complete
/// implementation,
/// meaning that it can both decode and encode in this transfer syntax.
pub fn is_fully_supported(&self) -> bool {
matches!(
self.codec,
Codec::None | Codec::Dataset(Some(_)) | Codec::EncapsulatedPixelData(Some(_), Some(_)),
)
}
/// Check whether no codecs are required for this transfer syntax,
/// meaning that a complete implementation is available
/// and no pixel data conversion is required.
pub fn is_codec_free(&self) -> bool {
matches!(self.codec, Codec::None)
}
/// Check whether neither reading nor writing of data sets is supported.
/// If this is `true`, encoding and decoding will not be available.
pub fn is_unsupported(&self) -> bool {
matches!(self.codec, Codec::Dataset(None))
}
/// Check whether reading and writing the pixel data is unsupported.
/// If this is `true`, encoding and decoding of the data set may still
/// be possible, but the pixel data will only be available in its
/// encapsulated form.
pub fn is_unsupported_pixel_encapsulation(&self) -> bool {
matches!(
self.codec,
Codec::Dataset(None) | Codec::EncapsulatedPixelData(None, None)
)
}
/// Check whether this codec can fully decode
/// both data sets and pixel data.
pub fn can_decode_all(&self) -> bool {
matches!(
self.codec,
Codec::None | Codec::Dataset(Some(_)) | Codec::EncapsulatedPixelData(Some(_), _)
)
}
/// Check whether this codec can decode the data set.
pub fn can_decode_dataset(&self) -> bool {
matches!(
self.codec,
Codec::None | Codec::Dataset(Some(_)) | Codec::EncapsulatedPixelData(..)
)
}
/// Retrieve the appropriate data element decoder for this transfer syntax.
/// Can yield none if decoding is not supported.
///
/// The resulting decoder does not consider pixel data encapsulation or
/// data set compression rules. This means that the consumer of this method
/// needs to adapt the reader before using the decoder.
pub fn decoder<'s>(&self) -> Option<DynDecoder<dyn Read + 's>> {
self.decoder_for()
}
/// Retrieve the appropriate data element decoder for this transfer syntax
/// and given reader type (this method is not object safe).
/// Can yield none if decoding is not supported.
///
/// The resulting decoder does not consider pixel data encapsulation or
/// data set compression rules. This means that the consumer of this method
/// needs to adapt the reader before using the decoder.
pub fn decoder_for<S>(&self) -> Option<DynDecoder<S>>
where
Self: Sized,
S: ?Sized + Read,
{
match (self.byte_order, self.explicit_vr) {
(Endianness::Little, false) => Some(Box::<ImplicitVRLittleEndianDecoder<_>>::default()),
(Endianness::Little, true) => Some(Box::<ExplicitVRLittleEndianDecoder>::default()),
(Endianness::Big, true) => Some(Box::<ExplicitVRBigEndianDecoder>::default()),
_ => None,
}
}
/// Retrieve the appropriate data element encoder for this transfer syntax.
/// Can yield none if encoding is not supported. The resulting encoder does not
/// consider pixel data encapsulation or data set compression rules.
pub fn encoder<'w>(&self) -> Option<DynEncoder<'w, dyn Write + 'w>> {
self.encoder_for()
}
/// Retrieve the appropriate data element encoder for this transfer syntax
/// and the given writer type (this method is not object safe).
/// Can yield none if encoding is not supported. The resulting encoder does not
/// consider pixel data encapsulation or data set compression rules.
pub fn encoder_for<'w, T>(&self) -> Option<DynEncoder<'w, T>>
where
Self: Sized,
T: ?Sized + Write + 'w,
{
match (self.byte_order, self.explicit_vr) {
(Endianness::Little, false) => Some(Box::new(EncoderFor::new(
ImplicitVRLittleEndianEncoder::default(),
))),
(Endianness::Little, true) => Some(Box::new(EncoderFor::new(
ExplicitVRLittleEndianEncoder::default(),
))),
(Endianness::Big, true) => Some(Box::new(EncoderFor::new(
ExplicitVRBigEndianEncoder::default(),
))),
_ => None,
}
}
/// Obtain a dynamic basic decoder, based on this transfer syntax' expected endianness.
pub fn basic_decoder(&self) -> BasicDecoder {
BasicDecoder::from(self.endianness())
}
/// Type-erase the pixel data or data set codec.
pub fn erased(self) -> TransferSyntax
where
D: Send + Sync + 'static,
D: DataRWAdapter<
Box<dyn Read>,
Box<dyn Write>,
Reader = Box<dyn Read>,
Writer = Box<dyn Write>,
>,
R: Send + Sync + 'static,
R: PixelDataReader,
W: Send + Sync + 'static,
W: PixelDataWriter,
{
let codec = match self.codec {
Codec::Dataset(d) => Codec::Dataset(d.map(|d| Box::new(d) as _)),
Codec::EncapsulatedPixelData(r, w) => Codec::EncapsulatedPixelData(
r.map(|r| Box::new(r) as _),
w.map(|w| Box::new(w) as _),
),
Codec::None => Codec::None,
};
TransferSyntax {
uid: self.uid,
name: self.name,
byte_order: self.byte_order,
explicit_vr: self.explicit_vr,
codec,
}
}
}