dicom_transfer_syntax_registry/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
#![deny(trivial_numeric_casts, unsafe_code, unstable_features)]
#![warn(
missing_debug_implementations,
missing_docs,
unused_qualifications,
unused_import_braces
)]
//! This crate contains the DICOM transfer syntax registry.
//!
//! The transfer syntax registry maps a DICOM UID of a transfer syntax (TS)
//! into the respective transfer syntax specifier.
//! This specifier defines:
//!
//! 1. how to read and write DICOM data sets;
//! 2. how to decode and encode pixel data.
//!
//! Support may be partial, in which case the data set can be retrieved
//! but the pixel data may not be decoded through the DICOM-rs ecosystem.
//! By default, adapters for encapsulated pixel data
//! need to be explicitly added by dependent projects,
//! such as `dicom-pixeldata`.
//! When adding `dicom-transfer-syntax-registry` yourself,
//! to include support for some transfer syntaxes with encapsulated pixel data,
//! add the **`native`** Cargo feature
//! or one of the other image encoding features available.
//!
//! By default, a fixed known set of transfer syntaxes are provided as built in.
//! Moreover, support for more TSes can be extended by other crates
//! through the [inventory] pattern,
//! in which the registry is automatically populated before main.
//! This is done by enabling the Cargo feature **`inventory-registry`**.
//! The feature can be left disabled
//! for environments which do not support `inventory`,
//! with the downside of only providing the built-in transfer syntaxes.
//!
//! All registered TSes will be readily available
//! through the [`TransferSyntaxRegistry`] type.
//!
//! This registry is intended to be used in the development of higher level APIs,
//! which should learn to negotiate and resolve the expected
//! transfer syntax automatically.
//!
//! ## Transfer Syntaxes
//!
//! This crate encompasses basic DICOM level of conformance,
//! plus support for some transfer syntaxes with compressed pixel data.
//! _Implicit VR Little Endian_,
//! _Explicit VR Little Endian_,
//! and _Explicit VR Big Endian_
//! are fully supported.
//! Support may vary for transfer syntaxes which rely on encapsulated pixel data.
//!
//! | transfer syntax | decoding support | encoding support |
//! |-------------------------------|----------------------|------------------|
//! | JPEG Baseline (Process 1) | Cargo feature `jpeg` | ✓ |
//! | JPEG Extended (Process 2 & 4) | Cargo feature `jpeg` | x |
//! | JPEG Lossless, Non-Hierarchical (Process 14) | Cargo feature `jpeg` | x |
//! | JPEG Lossless, Non-Hierarchical, First-Order Prediction (Process 14 [Selection Value 1]) | Cargo feature `jpeg` | x |
//! | JPEG-LS Lossless | Cargo feature `charls` | ✓ |
//! | JPEG-LS Lossy (Near-Lossless) | Cargo feature `charls` | ✓ |
//! | JPEG 2000 (Lossless Only) | Cargo feature `openjp2` or `openjpeg-sys` | x |
//! | JPEG 2000 | Cargo feature `openjp2` or `openjpeg-sys` | x |
//! | JPEG 2000 Part 2 Multi-component Image Compression (Lossless Only) | Cargo feature `openjp2` or `openjpeg-sys` | x |
//! | JPEG 2000 Part 2 Multi-component Image Compression | Cargo feature `openjp2` or `openjpeg-sys` | x |
//! | High-Throughput JPEG 2000 (Lossless Only) | Cargo feature `openjp2` or `openjpeg-sys` | x |
//! | High-Throughput JPEG 2000 with RPCL Options (Lossless Only) | Cargo feature `openjp2` or `openjpeg-sys` | x |
//! | High-Throughput JPEG 2000 | Cargo feature `openjp2` or `openjpeg-sys` | x |
//! | JPEG XL Lossless | Cargo feature `jpegxl` | ✓ |
//! | JPEG XL Recompression | Cargo feature `jpegxl` | x |
//! | JPEG XL | Cargo feature `jpegxl` | ✓ |
//! | RLE Lossless | Cargo feature `rle` | x |
//!
//! Cargo features behind `native` (`jpeg`, `rle`) are added by default.
//! They provide implementations that are written in pure Rust
//! and are likely available in all supported platforms without issues.
//! Additional codecs are opt-in by enabling Cargo features,
//! for scenarios where a native implementation is not available,
//! or alternative implementations are available.
//!
//! - `charls` provides support for JPEG-LS
//! by linking to the CharLS reference implementation,
//! which is written in C++.
//! No alternative JPEG-LS implementations are available at the moment.
//! - `openjpeg-sys` provides a binding to the OpenJPEG reference implementation,
//! which is written in C and is statically linked.
//! It may offer better performance than the pure Rust implementation,
//! but cannot be used in WebAssembly.
//! Include `openjpeg-sys-threads` to build OpenJPEG with multithreading.
//! - `openjp2` provides a binding to a computer-translated Rust port of OpenJPEG.
//! Due to the nature of this crate,
//! it might not work on all modern platforms.
//! - `jpegxl` adds JPEG XL support using `jxl-oxide` for decoding
//! and `zune-jpegxl` for encoding.
//!
//! Transfer syntaxes which are not supported,
//! either due to being unable to read the data set
//! or decode encapsulated pixel data,
//! are listed as _stubs_ for partial support.
//! The full list is available in the [`entries`] module.
//! These stubs may also be replaced by separate libraries
//! if using the inventory-based registry.
//!
//! [inventory]: https://docs.rs/inventory/0.3.15/inventory
use dicom_encoding::transfer_syntax::{
AdapterFreeTransferSyntax as Ts, Codec, TransferSyntaxIndex,
};
use lazy_static::lazy_static;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
pub use dicom_encoding::TransferSyntax;
pub mod entries;
mod adapters;
#[cfg(feature = "inventory-registry")]
pub use dicom_encoding::inventory;
/// Main implementation of a registry of DICOM transfer syntaxes.
///
/// Consumers would generally use [`TransferSyntaxRegistry`] instead.
pub struct TransferSyntaxRegistryImpl {
m: HashMap<&'static str, TransferSyntax>,
}
impl fmt::Debug for TransferSyntaxRegistryImpl {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let entries: HashMap<&str, &str> =
self.m.iter().map(|(uid, ts)| (*uid, ts.name())).collect();
f.debug_struct("TransferSyntaxRegistryImpl")
.field("m", &entries)
.finish()
}
}
impl TransferSyntaxRegistryImpl {
/// Obtain an iterator of all registered transfer syntaxes.
pub fn iter(&self) -> impl Iterator<Item = &TransferSyntax> {
self.m.values()
}
/// Obtain a DICOM codec by transfer syntax UID.
fn get<U: AsRef<str>>(&self, uid: U) -> Option<&TransferSyntax> {
let ts_uid = uid
.as_ref()
.trim_end_matches(|c: char| c.is_whitespace() || c == '\0');
self.m.get(ts_uid)
}
/// Register the given transfer syntax (TS) to the system. It can override
/// another TS with the same UID, in the only case that the TS requires
/// certain codecs which are not supported by the previously registered
/// TS. If no such requirements are imposed, this function returns `false`
/// and no changes are made.
fn register(&mut self, ts: TransferSyntax) -> bool {
match self.m.entry(ts.uid()) {
Entry::Occupied(mut e) => {
let replace = match (&e.get().codec(), ts.codec()) {
(Codec::Dataset(None), Codec::Dataset(Some(_)))
| (
Codec::EncapsulatedPixelData(None, None),
Codec::EncapsulatedPixelData(..),
)
| (
Codec::EncapsulatedPixelData(Some(_), None),
Codec::EncapsulatedPixelData(Some(_), Some(_)),
)
| (
Codec::EncapsulatedPixelData(None, Some(_)),
Codec::EncapsulatedPixelData(Some(_), Some(_)),
) => true,
// weird one ahead: the two specifiers do not agree on
// requirements, better keep it as a separate match arm for
// debugging purposes
(Codec::Dataset(None), Codec::EncapsulatedPixelData(_, _)) => {
tracing::warn!("Inconsistent requirements for transfer syntax {}: `Dataset` cannot be replaced by `EncapsulatedPixelData`", ts.uid());
false
}
// another weird one:
// the two codecs do not agree on requirements
(Codec::EncapsulatedPixelData(_, _), Codec::Dataset(None)) => {
tracing::warn!("Inconsistent requirements for transfer syntax {}: `EncapsulatedPixelData` cannot be replaced by `Dataset`", ts.uid());
false
}
// ignoring TS with less or equal implementation
_ => false,
};
if replace {
e.insert(ts);
true
} else {
false
}
}
Entry::Vacant(e) => {
e.insert(ts);
true
}
}
}
}
impl TransferSyntaxIndex for TransferSyntaxRegistryImpl {
#[inline]
fn get(&self, uid: &str) -> Option<&TransferSyntax> {
Self::get(self, uid)
}
}
impl TransferSyntaxRegistry {
/// Obtain an iterator of all registered transfer syntaxes.
#[inline]
pub fn iter(&self) -> impl Iterator<Item = &TransferSyntax> {
get_registry().iter()
}
}
/// Zero-sized representative of the main transfer syntax registry.
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, Hash)]
pub struct TransferSyntaxRegistry;
impl TransferSyntaxIndex for TransferSyntaxRegistry {
#[inline]
fn get(&self, uid: &str) -> Option<&TransferSyntax> {
get_registry().get(uid)
}
}
lazy_static! {
static ref REGISTRY: TransferSyntaxRegistryImpl = {
let mut registry = TransferSyntaxRegistryImpl {
m: HashMap::with_capacity(32),
};
use self::entries::*;
let built_in_ts: [TransferSyntax; 45] = [
IMPLICIT_VR_LITTLE_ENDIAN.erased(),
EXPLICIT_VR_LITTLE_ENDIAN.erased(),
EXPLICIT_VR_BIG_ENDIAN.erased(),
ENCAPSULATED_UNCOMPRESSED_EXPLICIT_VR_LITTLE_ENDIAN.erased(),
DEFLATED_EXPLICIT_VR_LITTLE_ENDIAN.erased(),
JPIP_REFERENCED_DEFLATE.erased(),
JPIP_HTJ2K_REFERENCED_DEFLATE.erased(),
JPEG_BASELINE.erased(),
JPEG_EXTENDED.erased(),
JPEG_LOSSLESS_NON_HIERARCHICAL.erased(),
JPEG_LOSSLESS_NON_HIERARCHICAL_FIRST_ORDER_PREDICTION.erased(),
JPEG_LS_LOSSLESS_IMAGE_COMPRESSION.erased(),
JPEG_LS_LOSSY_IMAGE_COMPRESSION.erased(),
JPEG_2000_IMAGE_COMPRESSION_LOSSLESS_ONLY.erased(),
JPEG_2000_IMAGE_COMPRESSION.erased(),
JPEG_2000_PART2_MULTI_COMPONENT_IMAGE_COMPRESSION_LOSSLESS_ONLY.erased(),
JPEG_2000_PART2_MULTI_COMPONENT_IMAGE_COMPRESSION.erased(),
HIGH_THROUGHPUT_JPEG_2000_IMAGE_COMPRESSION_LOSSLESS_ONLY.erased(),
HIGH_THROUGHPUT_JPEG_2000_WITH_RPCL_OPTIONS_IMAGE_COMPRESSION_LOSSLESS_ONLY.erased(),
HIGH_THROUGHPUT_JPEG_2000_IMAGE_COMPRESSION.erased(),
JPEG_XL_LOSSLESS.erased(),
JPEG_XL_RECOMPRESSION.erased(),
JPEG_XL.erased(),
JPIP_REFERENCED.erased(),
JPIP_HTJ2K_REFERENCED.erased(),
MPEG2_MAIN_PROFILE_MAIN_LEVEL.erased(),
FRAGMENTABLE_MPEG2_MAIN_PROFILE_MAIN_LEVEL.erased(),
MPEG2_MAIN_PROFILE_HIGH_LEVEL.erased(),
FRAGMENTABLE_MPEG2_MAIN_PROFILE_HIGH_LEVEL.erased(),
MPEG4_AVC_H264_HIGH_PROFILE.erased(),
FRAGMENTABLE_MPEG4_AVC_H264_HIGH_PROFILE.erased(),
MPEG4_AVC_H264_BD_COMPATIBLE_HIGH_PROFILE.erased(),
FRAGMENTABLE_MPEG4_AVC_H264_BD_COMPATIBLE_HIGH_PROFILE.erased(),
MPEG4_AVC_H264_HIGH_PROFILE_FOR_2D_VIDEO.erased(),
FRAGMENTABLE_MPEG4_AVC_H264_HIGH_PROFILE_FOR_2D_VIDEO.erased(),
MPEG4_AVC_H264_HIGH_PROFILE_FOR_3D_VIDEO.erased(),
FRAGMENTABLE_MPEG4_AVC_H264_HIGH_PROFILE_FOR_3D_VIDEO.erased(),
MPEG4_AVC_H264_STEREO_HIGH_PROFILE.erased(),
FRAGMENTABLE_MPEG4_AVC_H264_STEREO_HIGH_PROFILE.erased(),
HEVC_H265_MAIN_PROFILE.erased(),
HEVC_H265_MAIN_10_PROFILE.erased(),
RLE_LOSSLESS.erased(),
SMPTE_ST_2110_20_UNCOMPRESSED_PROGRESSIVE.erased(),
SMPTE_ST_2110_20_UNCOMPRESSED_INTERLACED.erased(),
SMPTE_ST_2110_30_PCM.erased(),
];
// add built-in TSes manually
for ts in built_in_ts {
registry.register(ts);
}
// add TSes from inventory, if available
inventory_populate(&mut registry);
registry
};
}
#[cfg(feature = "inventory-registry")]
#[inline]
fn inventory_populate(registry: &mut TransferSyntaxRegistryImpl) {
use dicom_encoding::transfer_syntax::TransferSyntaxFactory;
for TransferSyntaxFactory(tsf) in inventory::iter::<TransferSyntaxFactory> {
let ts = tsf();
registry.register(ts);
}
}
#[cfg(not(feature = "inventory-registry"))]
#[inline]
fn inventory_populate(_: &mut TransferSyntaxRegistryImpl) {
// do nothing
}
/// Retrieve a reference to the global codec registry.
#[inline]
pub(crate) fn get_registry() -> &'static TransferSyntaxRegistryImpl {
®ISTRY
}
/// create a TS with an unsupported pixel encapsulation
pub(crate) const fn create_ts_stub(uid: &'static str, name: &'static str) -> Ts {
TransferSyntax::new_ele(uid, name, Codec::EncapsulatedPixelData(None, None))
}
/// Retrieve the default transfer syntax.
pub fn default() -> Ts {
entries::IMPLICIT_VR_LITTLE_ENDIAN
}
#[cfg(test)]
mod tests {
use dicom_encoding::TransferSyntaxIndex;
use crate::TransferSyntaxRegistry;
#[test]
fn has_mandatory_tss() {
let implicit_vr_le = TransferSyntaxRegistry
.get("1.2.840.10008.1.2")
.expect("transfer syntax registry should provide Implicit VR Little Endian");
assert_eq!(implicit_vr_le.uid(), "1.2.840.10008.1.2");
assert!(implicit_vr_le.is_fully_supported());
// should also work with trailing null character
let implicit_vr_le_2 = TransferSyntaxRegistry.get("1.2.840.10008.1.2\0").expect(
"transfer syntax registry should provide Implicit VR Little Endian with padded TS UID",
);
assert_eq!(implicit_vr_le_2.uid(), implicit_vr_le.uid());
let explicit_vr_le = TransferSyntaxRegistry
.get("1.2.840.10008.1.2.1")
.expect("transfer syntax registry should provide Explicit VR Little Endian");
assert_eq!(explicit_vr_le.uid(), "1.2.840.10008.1.2.1");
assert!(explicit_vr_le.is_fully_supported());
// should also work with trailing null character
let explicit_vr_le_2 = TransferSyntaxRegistry.get("1.2.840.10008.1.2.1\0").expect(
"transfer syntax registry should provide Explicit VR Little Endian with padded TS UID",
);
assert_eq!(explicit_vr_le_2.uid(), explicit_vr_le.uid());
}
#[test]
fn provides_iter() {
let all_tss: Vec<_> = TransferSyntaxRegistry.iter().collect();
assert!(all_tss.len() >= 2);
// contains at least Implicit VR Little Endian and Explicit VR Little Endian
assert!(all_tss.iter().any(|ts| ts.uid() == "1.2.840.10008.1.2"));
assert!(all_tss.iter().any(|ts| ts.uid() == "1.2.840.10008.1.2.1"));
}
}